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1. Introduction  

Lots of research efforts have been focused to realize all-optical high-speed switches through 

nonlinear optical elements, for instance, high nonlinear fibers (HNLF), nonlinear 

waveguides as well as semiconductor optical amplifiers (SOAs). All-optical switches 

incorporating SOAs is one of the particularly attractive candidates due to their small size, 

high nonlinearities (low switching energy required) and ease of integration. All-optical 

switches also keep the network transparent, enhance the flexibility and capacity in network, 

and offer the function of signal regeneration, therefore SOAs provide various attractive all-

optical functions in high-speed signal processing in fiber communication systems (Stubkjaer, 

2000; Poustie, 2007), including all-optical AND/XOR logic gates, wavelength conversion 

(WC), optical-time division multiplexing (OTDM) de-multiplexing, optical signal 

regeneration and so on, which will be essential to the implementation of future wavelength 

division multiplexing (WDM) or optical packet switching (OPS) networks. 

However, the operation speed of SOA based switches is inherently limited by its relative 

slow carrier lifetime (in an order of 100 ps) (Manning et al., 2007). Various schemes have 

been proposed to enhance the operation speed of SOA-based all-optical devices, for 

instance, 160 Gb/s and 320 Gb/s wavelength conversion was reported by using a detuned 

narrow band-pass filter to spectrally select one of the side-bands (blue-shifted or red-

shifted) of the output signal (Liu et al., 2006, 2007). In this case, the SOA operation speed can 

be increased via the chirp effect on the SOA output associated with the SOA ultrafast gain 

dynamics. It has been shown that, the CW modulation response time has been reduced from 

100 ps to 6 ps via filter detuning (Liu et al., 2006, 2007). Although using a detuned filter after 

the SOA can improve the optical signal-to-noise ratio (OSNR) of the output when 

comparing with the case of using a non-detuned filter (Leuthold, 2002), however the OSNR 

of the output signal will degrade to a large extent since the optical carrier was suppressed. 

Recently, all-optical high-speed switches based on the cascaded SOAs were proposed and 

demonstrated. In Fig. 1, an all-optical switch incorporating two cascaded SOAs was 

proposed as an alternative high-speed technique, which was dubbed as “turbo-switch” 

(Manning et al., 2006; Yang et al., 2006, 2010), while preserving the OSNR of the output 

signal. An error-free wavelength conversion was demonstrated at 170 Gb/s (Manning et al., 

2006). In addition, the operating speed of an all-optical XOR gate was also demonstrated at 
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85Gb/s, where dual ultrafast nonlinear interferometers (UNIs) were implemented (Yang et 

al., 2006, 2010) and the turbo-switch configuration was incorporated.  

 

 

Fig. 1. Schematic setup of the turbo-switch, where the OBF is used to remove the pump 
signal. OBF: optical band-pass filter. 

In this chapter, we will review the recent progress of the all-optical high-speed switches 
using cascaded SOAs, from both theoretical and experimental aspects. A majority of the 
publications (Manning et al., 2006, 2007; Yang et al., 2006, 2010) related to turbo-switch were 
reported, showing the high-speed experimental performances of turbo-switch over a single 
SOA. Apparently, a systematic theoretical turbo-switch model is necessary for the purpose 
of understanding the fundamental behaviors of the turbo-switch and how to further 
enhance the switch performance. First of all, we will present a detailed time-domain SOA 
model, from which the turbo-switches and switches with three or more cascaded SOAs can 
be evaluated. For the reason of convenience, we will refer hereafter to this kind of switch, 
including turbo-switch, as cascaded-SOA-switch. Then, we will focus on the relation 
between the overall performance of the switch and the nonlinear gain/refractive-index 
dynamics of the individual SOAs. The amplitude/phase dynamics of the optical output 
signal from the switch will be analyzed in details and compared with the experimental data. 
The SOA model will certainly help us not only to understand the basic principles of the 
switch, but also to exploit the way and the critical conditions for the switch to operate at 
even higher bit-rates. 
The chapter is organized as follows. Section 2 presents a comprehensive theoretical analysis 
of the cascaded-SOA-switch, where the SOA model and the corresponding simulation 
method are presented. Simulation results including the gain/phase dynamics, pattern effect 
mitigation using turbo-switch, are shown in Section 3. Experimental demonstrations of 170 
Gb/s AND gate (wavelength conversion) and 85 Gb/s XOR gate using turbo-switches are 
presented in Section 4. The cascaded-SOA-switches are further exploited in terms of the 
number of cascaded SOAs in Section 5, where the overall gain recovery time, the noise 
figure as well as the impact of injected SOA current of the cascaded switches are illustrated 
in details, as simulated by the model. Finally, conclusions will be given in Section 6. 

2. Theoretical analysis of SOAs 

To explore the operation principle and understand the performances of the cascaded-SOA-
switch, a time-domain SOA model is required to analyze the fundamental gain/phase 
behaviors of the SOA-based device as well as to simulate the speed and application of the 
devices. 

2.1 SOA model 

The basic time-domain rate equations describing the carrier dynamics via the inter-band and 
intra-band processes in a single SOA, as proposed in (Gutiérrez-Castrejón, 2009; Mecozzi & 
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Mørk, 1997), are adopted. Travelling-wave equations in terms of the optical 
amplitude/power and phase, derived from Maxwell equations and Kramers-Kronig 
relations, are also incorporated in the SOA model to obtain the amplitude and phase of the 
output optical signal propagating through the SOA (Mecozzi & Mørk, 1997; Agrawal & 
Olsson, 1989). 
Following the SOA model in (Mecozzi & Mørk, 1997), rate equations for the total carrier 
density N related to the (inter-band) band-filling effect, and the local carrier density 
variations nCH and nSHB, which are associated with the ultrafast (intra-band) effects: carrier 
heating (CH) and spectrum hole burning (SHB) processes respectively, can be expressed as 
follows: 

  
( , )
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where the first term in the right hand side (RHS) of (1) represents the increase of the total 
carrier density due to the injected current I to the SOA. Here, we have assumed a uniform 
distribution of the injected current along the longitude. In (1), e is the electron charge, and V 
is the volume of the active region in the SOA.  
The radiative and nonradiative recombination rate due to the limited carrier lifetime in the 
SOA, R(N) (Connelly, 2001), can be approached by, 

 2 3( )   R N AN BN CN   (4) 

where A, B, C represent the linear, bimolecular, and auger recombination coefficients 
respectively.  
The third and fourth terms in the RHS of (1) are used to account for the depletion of total 
carrier density aroused from the stimulation emission by the injected light and the amplified 
spontaneous emission (ASE), respectively. vg is the group velocity. g is the gain coefficient 
and S is the photon density in the active region. gase is the equivalent gain coefficient for ASE 

(Talli & Adams, 2003). CH and CH in (2) are carrier-carrier relaxation time and gain 

suppression factor caused by CH, while SHB and SHB in (3) are temperature relaxation time 
and gain suppression factor caused by SHB. 
To take the gain dispersion into account better, and make our model applicable in a wide 
optical wavelength range, a polynomial model for the gain coefficient (Leuthold et al., 2000), 
which combines of a quadratic and a cubic function, is used, with one modification to 
include the ultrafast effect induced by CH and SHB. 
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where  = l, h represents the gain coefficient attributed to total carrier density N and 
CH/SHB effect, respectively. 
Polynomial coefficients are calculated by, 
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where gp, , p(N) and z(N) stand for the material gain at the peak wavelength, the shifted 
wavelength at peak and transparency respectively. They are approximated by, 

 0
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where a0, N0, a , p0, b0, b1, z0, and z0 are parameters which have to be obtained by 

experimental gain dispersion curves (Leuthold et al., 2000). N0 represents the transparency 

carrier density at the peak wavelength 0. 
By definition, the photon density S (in unit of m-3) in (1)-(3) can be expressed in terms of the 
light power P (in unit of W) as, 

 
( , )

( , )
( / )( / )  


g

P z t
S z t

h c v
  (6) 

where h, c,  denotes for Planck’s constant, speed of light in vacuum, cross section area of 
the active region and confinement factor, respectively. 
The travelling-wave equation of the input optical light (Agrawal & Olsson, 1989) is, 

 int
( , ) 1 ( , )

( ) ( , )  
  

 g

P z t P z t
g P z t

z v t
  (7) 

where the power P is a function of time t and position z along the active waveguide (z-axis) 

of the SOA. int is the internal loss in the active region. Eq. (7) only represents the positive 

direction propagation of the input light, since the facet reflection of the SOA (below 10-4) is 

usually ignorable (Dutta & Wang, 2006). 

For the propagation of the ASE power inside the amplifier, a bi-directional model presented 

in (Talli & Adams, 2003) is adopted, where the ASE is described by its total power while 

neglecting its spectral dependency. Equivalent coupling efficiency ase, equivalent 

wavelength ase, and equivalent gain coefficient gase, are used in the calculation, for the 

reason of computational efficiency. 
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( , ) ( , )1

( ) ( , )
  

 

 
 

    
 

ase ase
ase ase ase sp

g ase

P z t P z t hc
g P z t R

z v t
  (8) 

where an additional term in the RHS, comparing to (7), is used to account for the 

spontaneous emission (SE) coupled into the effective waveguide. Rsp = BN2 is the SE rate. 

“+” stands for the co-propagating direction with the input light, while “-” represents the 

counter-propagating direction. 

Carrier density variations not only affect the gain, but also change the phase of the input 

optical signal. Associated with the gain dynamics through Kramers-Kronig relations, the 

phase shift (Mecozzi & Mørk, 1997) of the optical beam due to the SOA nonlinearity can be 

expressed as, 

 , 0
( , ) 1 ( , ) 1

2

     
         SHBN l T h n

g

z t z t
g g

z v t
  (9) 

where N and T is the -factors (also known as linewidth enhancement factor) for the band-
filling and CH process, respectively. The subscript nSHB = 0 means the SHB impact on the 
phase shift is ignored here. 
It should be mentioned that, many physical effects of the SOA, including two-photon 

absorption (TPA), ultrafast nonlinear refraction (UNR), free-carrier absorption (FCA) and 

group velocity dispersion (GVD), are neglected in our SOA model. Ultrafast processes such 

as TPA, FCA and UNR are ignored reasonably, because these effects become important only 

when pulse energy is stronger than 1 pJ (Yang et al., 2003), while the pulse energy used in 

our simulation is generally lower than 0.1 pJ. GVD is also neglected, since the Gaussian 

pump pulsewidth (full width at half maximum, FWHM) in the paper is assumed to be 2~3 

ps, which means that the spectral detuning from the central frequency is less than a few THz 

(Mecozzi & Mørk, 1997). 

2.2 Numerical method 

In order to solve the model numerically, we divide the SOA into Nz sections of equal length 

in the optical active waveguide, thus having a section length of z = L/Nz, and choose a 

corresponding time resolution of t = z/ng. Nz should be large enough to have a good 

numerical approximation. 
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Fig. 2. A schematic sketch of the ith section of the SOA. 

Fig. 2 shows a sketch of the ith section in the SOA, where i=1,2,…, Nz and j=1,2,…,Nt. Nz and 
Nt are the total number of the SOA sections and time steps respectively (Connelly, 2001). 
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Optical powers and ASE propagating in the positive and negative directions are 
calculated at the boundaries of each section, while the total carrier density and local 
carrier changes caused by the CH and SHB processes are considered at the center of each 

section. When the time interval t is small enough, the left hand side (LHS) of (1) can be 
approximated by, 

 
1( , ) ( , ) ( , )


 


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i j i j i jN z t N z t N z t

t t
  (10) 

Thus, basing upon the carrier density and the photon densities at the previous time step, we 

have, 
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where a linear interpolation is employed to estimate the photon densities of the input optical 

beam, co-propagating and counter-propagating ASEs at the center of each section. Similar 

method can be applied to (2) and (3), to calculate the local carrier density variations due to 

CH and SHB processes.  

The first term in the LHS of (7), describes the optical power propagating along the z-axis of 

the SOA, and experiencing an exponential amplification by a factor of (g - int), as shown in 

the RHS, which can be assumed constant in a sufficiently small interval z. The second term 

in the LHS, however, accounts for the optical power variation during the travelling time 

period in the section, which can be included using values obtained at last time step 

(Bischoff, 2004). Therefore, a solution of (7) is, 

   1 1 1 int( , ) ( , )exp ( , )     i j i j i jP z t P z t gN z t z   (12) 

subjected to boundary condition, 

 1( , ) ( )j in jP z t P t   (13) 

where Pin(tj) denotes the input optical power at tj. 
Similar solutions can be given for the co-propagating and the counter-propagating ASEs, as 

described in (8), 
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where 1 int( ( , ), )    ase i j aseg g N z t , and subjected to boundary conditions respectively, 

 1( , ) 0 ase jP z t   (15a) 
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 -
1( , ) 0 ase Nz jP z t   (15b) 

where the facet reflection is neglected.  

2.3 Simulation procedure 

So far, we have presented a detailed model of a single SOA. The simulation of the cascaded-

SOA-switch can be completed by the following calculation procedure, where we use the 

case of 2 SOAs (turbo-switch) as the example: 

1. Calculate the steady state of SOA1, and obtain the initial state of the carrier densities, 

ASE in each section, which will be used as initial conditions in following calculations. In 

the case of the steady state, the RHS of (1)-(3) should equal to zero, which implies that 

the carrier densities in each section will keep unchanging if the input does not change. 

A numerical algorithm from (Connelly, 2001) is adopted here to give a good 

convergence. 

2. Calculate the response of SOA1 and get the output, by applying a proper input optical 

signal like a pump pulse or a pseudo-random binary sequence (PRBS) modulated pump 

pulse train, in addition to the probe CW beam. Firstly, according to initial conditions at 

time step t1 obtained from step 1), carrier densities N(zi, t2) can be calculated by using 

(11), so does nCH(zi, t2), nSHB (zi, t2), and the optical signal and ASE power in each section 

at the time step t2 from (12-15). Thereby, all necessary quantities of SOA1 at time step t2 

are obtained, which can be treated as initial conditions to further calculations of the next 

time step. As the iteration completes, the N and P at each section and each time step can 

be obtained, which gives the output of the SOA1, P(zNz+1, tj). 

3. Filter out the pump pulse or PRBS, and only allow the modulated CW signal to enter 

the SOA2. 

4. Repeat step 1) to get the initial steady conditions of SOA2 firstly. It should be 

mentioned that, under this circumstance the amplified CW after SOA1 has to be used as 

the input to SOA2 to obtain the initial carrier densities and ASE levels in each section of 

SOA2. 

5. Repeat step 2) using the modulated CW signal from the output of SOA1, as the input to 

SOA2. Calculate the output of SOA2, which is the final output of the turbo-switch. 

3. Simulation results  

The parameters used in our model are list in Table I. Two identical SOAs are applied in all 

the turbo-switch simulation, as implemented in the reported experiments. The SOAs are 0.7 

mm long, which have a relatively high gain and short carrier lifetime, as well as an 

acceptable noise figure. A 200 mA bias current is consistently used unless specifically 

described. A 100% of the injected current utilization is supposed in the model. In the 

following simulations, the input CW and pump pulse are at wavelengths of 1560 and 1550 

nm respectively, and the pulsewidth is 3 ps (FWHM) if not otherwise specified. 

A steady state numerical algorithm presented in (Connelly, 2001) is used to obtain the SOA 

gain saturation characteristics, as illustrated in Fig. 3, where the wavelength of the CW input 

beam is 1560 nm. It is shown that, the small-signal gain of the amplifier is 25 dB, while the 

saturation output power is 12 dBm. 
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Symbol Description Value 

L Length of active region 0.7 mm 

 Cross section area of active region 0.2 m2 

 Confinement factor 0.45 
I Injected / Bias current of the SOA 200 mA 
A Linear recombination coef. 21×108 /s 
B Bimolecular recombination coef. 10×10-16 m3/s 
C Auger recombination coef. 35×10-41 m6/s 
vg Group velocity in the active region 8.5×107 m/s 
N0 Transparency carrier density 0.65×1024 /m3 
a0 Differential gain 3.13×10-20 m2 
a  Gain model coef. 1.2 
b0 Gain model coef. 3.17×10-32 m4 
b1 Gain model coef. 0 

p0 Wavelength at peak 1575 nm 

z0 Wavelength at transparency 1625 nm 

z0 Gain model coef. -2.5×10-33 m4 

CH Temperature relaxation time 700×10-15 s 

SHB Carrier-carrier scattering time 70×10-15 s 

CH Gain compression factor due to CH 1×10-23 m3 

SHB Gain compression factor due to SHB 0.5×10-23 m3 

int Internal loss 5000 

ase Equivalent SE coupling factor 3.65×10-4 

ase Equivalent ASE wavelength 1550 nm 

N -factor due to band-filling 8.0 

T -factor due to CH 1.0 

Table 1. SOA parameters used in the simulation 
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Fig. 3. Gain as a function of output power of a single SOA. 
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3.1 Gain and phase dynamics of turbo-switches 

The gain dynamics of a single SOA and turbo-switch is plotted in Fig. 4. The input CW 
power is 0 dBm, while the pump pulse energy (single shot) is 100 fJ.  
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Fig. 4. Normalized gain of a single SOA, the SOA2 in TS, 2 cascaded SOAs with no filter 
between them, and the TS. TS: turbo-switch. 

An obvious reduction of the gain recovery time is shown in the turbo-switch gain curve, 
comparing to the single SOA case, from about 100 ps to 20 ps, which is four times shorter than 
a single SOA. The simulation result is consistent with the corresponding experimental results 
presented in (Giller et al., 2006a). To get a better understand of the operating mechanism of 
turbo-switch, it is essential to know the gain response of SOA2, as plotted in Fig. 4. It is shown 
that, the gain curve of SOA2 has a completely different dynamics if compared with a single 
SOA. The gain of SOA2 increases firstly as the decrease of modulated CW input, and then 
starts to fall slowly back to the initial gain level. As a consequence, the slow recovery tail of the 
single SOA is somehow compensated, thus making the overall gain recovery of turbo-switch 
several times faster than that of a single SOA mechanism of turbo-switch, it is essential to 
know the gain response of SOA2, as plotted in Fig. 4. It is shown that, the gain curve of SOA2 
has a completely different dynamics if compared with a single SOA. The gain of SOA2 
increases firstly as the decrease of modulated CW input, and then starts to fall slowly back to 
the initial gain level. As a consequence, the slow recovery tail of the single SOA is somehow 
compensated, thus making the overall gain recovery of turbo-switch several times faster than 
that of a single SOA. 
On the other hand, the phase dynamics curves are plotted in Fig. 5. It is shown that, turbo-
switch also reduces the phase full recovery time from 100 ps to ~20 ps, about four times 
shorter than the case of a single SOA. It should be noted that the ultrafast effect of the SOA 
has much less impact on the phase change (Giller et al., 2006b), thus the phase recovery is 
mainly attributed to the inter-band processes, which makes it slightly different from the 
gain curve. To summarize, the turbo-switch scheme has shortened the overall gain/phase 
response time to a large scale compared with the case of a single SOA and has the capability 
of improving the overall operation speed of the switch to higher bit-rates.  
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Fig. 5. Normalized phase dynamics of a single SOA, the SOA2 in TS, 2 cascaded SOAs with 
no filter between them, and the TS. TS: turbo-switch. 

Moreover, our simulation shows that filtering the pump pulses before the SOA2 in turbo-

switch scheme does further reduce the gain/phase recovery time, when compared to the 

case of no filter between two SOAs (dash-dotted gain/phase curves in Fig. 4), as presented 

in (Marcenas et al., 1995). In the latter case, the pump was entered into two cascaded SOAs 

along with the probe CW beam, which can also be regarded as a single long SOA with a 

double length of the active waveguide. 

3.2 Pattern-effect mitigation of turbo-switches 

As a result of the shorter gain/phase recovery time in turbo-switch, the pattern effect 

associated with the slow recovery is supposed to be mitigated. It should be noted that, along 

with the faster gain response of the turbo-switch, an overshoot in the gain/phase curve can 

also be clearly observed. However, the overshoot level can be controlled by adjusting the 

average input optical power to the SOA2. To verify the mitigation of the pattern effect, a 

variable optical attenuator (VOA) is experimentally applied before SOA2 in the turbo-switch 

configuration to optimize the output pattern of the turbo-switch (Giller et al., 2006c).  

The simulation results of the turbo-switch gain dynamics under a single shot of 3 ps pump 

pulse are presented in Fig. 6, as a function of power levels before SOA2, which are in good 

agreement with the experimental results (see Fig. 6(b)) presented in (Giller et al., 2006c). In 

the simulation, the input CW power to SOA1 is 0 dBm and pump pulse energy is 100 fJ. It is 

shown that, when reducing the input power to SOA2, the recovery time becomes longer, 

and the level of the overshoot is lower. When the input power becomes low enough to make 

SOA2 unsaturated, the overall turbo-switch gain response will exhibit similar to that of a 

single SOA. So there is an optimum input power level for SOA2 in order to achieve the 

optimum effective recovery time at a specific data bit-rate.  
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Fig. 6. Normalized gain dynamics of turbo-switch with a VOA before SOA2. (a).Simulation, 
where the optical power input to SOA2 varies from 14 to -26 dBm, by -4 dB each step.  
(b). Experimental result, where the optical power input to SOA2 varies from 5.8 to -10.2 dBm 
by a step of -2 dB (Giller et al., 2006c). 

To show the pattern effect of turbo-switch, the output patterns of a CW probe beam 

modulated by a 40 Gb/s PRBS pump pulse train are presented in Fig. 7(a)-(c), where three 

different input power levels are chosen before SOA2: -26, -11, and 14 dBm. The input CW 

power before SOA1 is 0 dBm and the pump pulse energy is 2 fJ. 

 

 

Fig. 7. Modulated CW output patterns from the TS, with a PRBS pump pulse train at 40 Gb/s. 
(a)-(c) Simulation, where, the optical power input to SOA2 in simulation are -26, -11 and 14 
dBm respectively from top to bottom. (d)-(f). Experimental results (Giller et al., 2006c). 

It is shown in Fig. 7 that, the simulation results are in good agreement with the experimental 
measurements (see Fig. 7(d)-(f)) presented in (Giller et al., 2006c) for all three cases. 
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Consequently, there is an optimum optical power level that could mitigate the pattern effect 
at a specific bit-rate. For instance, in this case, the optimum power to SOA2 should be -11 
dBm, as shown in Fig. 7(b), where the pattern effect is mitigated.  
On the contrary, the simulated modulation curves in Fig. 7(a) and 7(c) both experience a 
worse trend (constantly lower or higher) under a sequence of consecutive marks (ones) or 
spaces (zeros). This implies that, the unsaturated (-26 dBm), saturated (-11 dBm) and over-
saturated (14 dBm) input power level to SOA2 has an important impact on the overall 
performance of turbo-switch. For instance, in the case of the modulated CW power of -26 
dBm, the SOA2 cannot be saturated, and the overall recovery time is not shortened, turbo-
switch behaviors similarly to a single SOA, as shown in Fig. 7(a). 

4. Applications of turbo-switch 

The turbo-switches are supposed to be applied in the all-optical signal processing in order to 
enhance the operation speed. The turbo-switches have been employed as the all-optical AND 
gate (wavelength conversion) and XOR gate, whose operation speeds have been increased up 
to 160 Gb/s and 85 Gb/s respectively. In this section, we will demonstrate the details of the 
high-speed operation of the turbo-switches, from both theoretical and experimental aspects. 

4.1 High-speed AND gate beyond 160 Gb/s 

The simulation results of the AND gate at 160 Gb/s will be given in Section 4.1.1, while the 
corresponding experimental results (i.e., wavelength conversion) at 170 Gb/s will be 
presented in Section 4.1.2. 

4.1.1 Simulation of AND gate based on turbo-switch 

A simulation was carried out to evaluate the 160 Gb/s all-optical wavelength conversion 
using a turbo-switch and a delayed interferometer (DI). The setup is shown in Fig. 8(a), 
where a polarization maintaining fiber (PMF) and a polarizer are used to form a DI (Reid et  
 

 

Fig. 8. All optical wavelength conversion using a turbo-switch. (a) Setup; (b) 160 Gb/s 
simulation results. The blue/ red curves are the TE/TM polarized components. Note that 
polarization controllers are not plotted for simplicity. 
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al., 2008). The DI utilizes the differential cross phase modulation (XPM) effect of the SOA to 

achieve the polarity-maintaining wavelength conversion. The PMF is used to introduce a 

delay between the TE / TM components of the probe, thus introducing a differential phase 

shift between the two orthogonal components. On the other hand, the polarizer acts as an 

interfering device to extract phase difference between the two components, which is the 

wavelength-converted output. 

Fig. 8(b) presents the 160 Gb/s wavelength-converted output trace and the corresponding 

eye diagram. The average powers of the CW and the pump are 10 and 3 dBm respectively, 

while the wavelengths of the CW and pump are 1560 and 1550 nm respectively. The input 

PRBS data has a length of 27-1. The PMF gives a differential delay of 2 ps. It is shown that 

the turbo-switch configuration expedites the recovery of the intensity and phase, which 

helps to mitigate the patterning of the output. The clearly opening eye diagram of the 

output shows the feasibility of the wavelength conversion at 160 Gb/s. More specifically, 

the well-known Q factor, defined for instance in (Agrawal, 2002), for the output signal is 6.8, 

which corresponds to the bit error rate (BER) of 6.9×10-12. 

4.1.2 Experiment of AND gate based on turbo-switch 

The wavelength conversion incorporating a turbo-switch was experimentally verified using 

the setup shown in Fig. 9(a), at ~85 and 170 Gb/s. The wavelength converter had the 

configuration of the DI. In a DI, CW light is amplitude and phase modulated in SOA1 by the 

action of the data pulse stream, and is then split into ‘fast’ and ‘slow’ components that travel 

along the two axes of a length of PM fiber. The two components experience a differential 

delay, t (3ps, in our experiment). The phase difference between them results in a 

polarization rotation when they interfere at the polarizer, and hence switching of the CW 

beam occurs, with a non-inverted output. The wavelength-converted output was de-

multiplexed down to 42.6 Gb/s using MZ modulators.  
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Fig. 9. 170 Gb/s wavelength conversion using DI configuration incorporating a turbo-
switch. (a). The setup; (b). BER curves demultiplexed to 42.6 Gb/s for back-to-back and 
wavelength-converted signals at 85 and 170 Gb/s (Manning et al., 2006). 
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Fig. 9(b) shows the BER curves for the 42.6 Gb/s channels for wavelength conversion at 85 
and 170 Gb/s. We observed no power penalty at 85 Gb/s, and a 3 dB penalty at 170 Gb/s, 
which we believe was due to the pulse width of the converted channels of 3 ps being slightly 

too long for 170 Gb/s data, and implied that our differential delay t is non-optimal. The 
measured OSNR was 40 dB, referred to a 0.1 nm noise bandwidth. 
 

 

Fig. 10. Principle of dual-UNI XOR logic gate (PM: polarization maintaining fiber; PC: 
polarization controller) 

4.2 High-speed XOR gate based on turbo-switch 

Section 4.2.1 gives operation principle of the 85 Gb/s XOR gate, while the experimental 
results including eye diagram and the spectrum of the output are present in Section 4.2.2. 

4.2.1 Principle of all-optical XOR gate 

All-optical XOR logic is regarded as one of the fundamental logic gates in signal processing, 
which plays an important role in applications such as bit pattern recognition (Webb et al., 
2009), pseudorandom bit sequence (PRBS) generation, parity checking and optical 
computing. A high-speed all-optical XOR gate has potential applications for on-the-fly 
digital serial processing of optical signals, for example, in packet header recognition, error 
detection and coding/decoding. In addition, the XOR function has been used recently as a 
wavelength converter and regenerator for signals in a differential phase shift keying (DPSK) 
format (Sartorius et al., 2006; Kang et al., 2005). 
The scheme of the XOR logic gate is shown in Fig. 10. Two ultrafast nonlinear interferometer 
(UNI) elements are cascaded to allow two data pulse streams A and B to be input into SOAs 
1 and 2 respectively as control pulses. The input probe pulses are launched into a 
polarization-maintaining (PM) fiber with equal intensities on the fast and slow fiber axes, 
which are coupled to the TM and TE axes of SOA1 respectively. As a result, the TE pulse 
lags the TM pulse by Δt. The control pulse A is introduced between the two probe pulse 
components before they are input into SOA1, in which it induces a π-radian phase shift 
experienced by the TE pulse alone. The probe pulses are then injected into another PM fiber 
with a differential delay of -2Δt. The fast and slow axes of this PM fiber are orthogonal to 
those of the first section, resulting in a reversal of the delay between TE and TM pulses so 
that the TE pulse is now Δt ahead of the TM pulse. The control pulse B is then introduced 
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between the TE and TM probe pulses before entering SOA2 where now the induced -
radian phase shift affects only the TM pulse. The third PM fiber, with differential delay, Δt, 

resynchronizes the TE and TM probe pulses in time. A -radian phase shift between TE and 

TM pulses gives a polarization rotation of /2 when they recombine at the polarizer, which 
is crossed with respect to the un-rotated probe. 
When both of the control pulses A and B are present, the nonlinear phase difference 

between TE and TM will be zero (first , then -), the same result as the case when both A 
and B are absent. In the cases of either A or B alone being present, the phase shift will be ±π. 
The system is biased OFF (no output) in the absence of the control pulses. A pulse is 
generated after the polarizer only when one of A and B is present. Thus the operation of the 
device satisfies the XOR logic truth table as shown in Table 2. As with the conventional UNI 
gate, the probe pulses may be replaced by a continuous wave (CW) beam, in which case the 
output takes the form of pulses of width Δt. 
 

Data A Data B XOR 

0 0 0 
0 1 1 
1 0 1 
1 1 0 

Table 2. Truth table of XOR gate 

The transmission of control pulse A is blocked by a filter (not shown) placed before SOA2. 
SOA1 and SOA2 are therefore configured as a turbo-switch (Manning et al., 2006) and the 
effective switching speed by control pulse A is enhanced. The addition of a third SOA (also 
after a filter) to the original dual ultrafast nonlinear interferometer XOR gate (DUX) forms a 
second turbo-switch that similarly enhances the speed of switching by control pulse B. 

4.2.2 Experiment of XOR gate based on turbo-switch 

An experiment was carried out to evaluate the performance the proposed XOR scheme at 85 
Gb/s, whose experimental setup is shown in Fig. 11. A CW laser with a wavelength of 1552 
nm was employed as the probe beam instead of a pulse train, so the first PM fiber in Fig. 10 
was not required. The 3 ps, 1557 nm control pulses A and B were obtained from a 10.645 
GHz mode-locked laser The control pulse stream was optically modulated with a 27-1 
pseudo-random bit sequence (PRBS) and the pulses were passively multiplexed to 85 Gb/s 
before being injected into the SOAs 1 and 2. An optical delay-line was used to present 
different parts of the sequence to each SOA. Two variable optical attenuators (VOAs) were 
employed to adjust the control pulse energies. Another VOA was used to optimize the input 
power of the probe beam injected to SOA2. 
All the three (Kamelian) SOAs were biased at 400mA, where their unsaturated gain was 
greater than 30 dB. The differential delays of PM fibers were 11.5 ps (2Δt) and 5.75 ps (Δt) 
respectively, where Δt is one half of the bit period at 85 Gb/s. 5 nm band-pass filters blocked 
the control pulses and allowed the propagation of the probe beam. The polarization 
controllers (PC) in front of each PM fiber were adjusted to launch approximately equal 
amplitudes into the TE and TM modes. The two polarization states were also aligned with 
the TE and TM modes of the active layer at the input to SOAs 1 and 2 with further PCs. This 
was to prevent the control pulses causing polarization rotation. 
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Fig. 11. Experimental setup of 85-Gb/s XOR logic gate, where PM delay indicates a length of 
PM fiber with PCs and a filter (inset). 

The output of the XOR logic gate was monitored by a 70 GHz oscilloscope. XOR operation 

was realized at 10, 21, 42 and 85 Gb/s by adjusting the control pulse multiplexer. The 

amplitude variations in the 85 Gb/s output eye diagram (Fig. 12) were primarily due to 

imperfections in the multiplexer. The output spectrum at the same rate is shown in Fig. 13, 

where the sidebands are visible, but suppressed compared to a normal return-to-zero AND 

gate spectrum (The inset of Fig. 13). This is because the output pulses resulting from an 

A B  input are in anti-phase to those corresponding to B A . The average powers of the 

probe beam were 4 dBm before SOA1 and SOA2 and 10 dBm before SOA3. The average 

powers of control pulses A and B were 4 dBm and 3.5 dBm respectively, implying control 

pulse energies of 54 fJ and 62 fJ. 
 

 

Fig. 12. 85 Gb/s XOR output eye diagram (5 ps/division). 
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Fig. 13. Spectrum of 85 Gb/s XOR output (resolution is 0.01 nm; the inset is the 
corresponding spectrum of an 85 Gb/s AND gate) 

5. Further improvement of the switch speed 

In the turbo-switch structure, an extra SOA2 is cascaded following the SOA1, acting as a high-

pass filter to filter out the slow response associated with the SOA carrier lifetime. In such a 

way, the overall operation speed of the turbo-switch device has been demonstrated several 

times faster than that of a single SOA. A straight-forward idea is that, if more SOAs are 

cascaded after the turbo-switch, is there any further improvement to the operation speed? 

5.1 Switch of multiple cascaded SOAs 

For the multiple cascaded SOAs, the simulations are carried out. The gain recovery time, 

overshoot level (normalized by the initial power level), and noise figure as a function of 

SOA stage are plotted in Fig. 14, where the powers of input CW probe and pump pulse to 

SOA1 are the same as Fig. 4. The noise figures of the cascaded switches are obtained using 

the equations presented in (Baney et al., 2000).  

The results are actually encouraging, since the recovery time is reduced to ~10 ps when 

three SOAs are cascaded, which implies that more SOAs after turbo-switch, faster recovery 

could be expected. However, the degree of the overshoot and noise figure also rise almost 

linearly as the numbers of SOA increases, whereas the recovery time is not reduced 

significantly any more after the stage number exceeding 5. Moreover, the ASE noise and the 

complexity of the device are also expected to increase when more SOAs are cascaded. 

Therefore a trade-off has to be considered accordingly when choosing an optimum structure 

of turbo-switch for a specific application. Nevertheless, our simulation suggests that, the 

optimum number of SOA should be in the range of 2 to 5. 
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It should be mentioned that, SOAs can be cascaded directly without any filter between them 

as presented in (Marcenac & Mecozzi, 1997), where it requires ten SOAs to achieve a speed 

of 110 Gb/s, whereas our simulation shows that the same operation speed can be achieved 

with a three-SOA-switch if a filter is implemented, as indicated in Fig.14. 
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Fig. 14. Gain recovery time, overshoot level, and noise figure as a function of the number of 
the SOA stages. 

5.2 Impact of SOA injected currents  

For all the figures presented before this subsection, the SOA currents are fixed at 200 mA. 

Since the pattern effect can be mitigated using a VOA before the SOA2, as shown in Fig. 6. 

One could consider that whether the variation of the SOA current level can introduce a 

similar effect as the VOA? The simulation is carried out by varying one of the injected 

current of the SOA1 and SOA2 in turbo-switch scheme.  

As shown in Fig. 15(a) and 15(b), the current variation curves reveal a similar effect as that 

of Fig. 6, where the nonlinearity of the SOA2 is gradually diminishing as the current keep 

decreasing, which consequently results in the overall response of turbo-switch similar to 

that of a single SOA. However, an interesting phenomenon is that, the gain dynamic is quite 

different when the current of SOA1 is reduced, as shown in Fig. 15(a). In the latter case, even 

though an overshoot is obvious when the current level is high, the full recovery time is 

generally longer than the case of Fig. 15(b). Apart from that, the gain compression induced 

by the pump pulse is smaller as well, which will potentially affect the extinction ratio (ER) of 

the output signal. To summarize, it is better to set the current level of SOA1 high, while the 

current level of SOA2 can be employed to optimize the overall gain/phase recovery time of 

the turbo-switch. 
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Fig. 15. Normalized gain dynamics of turbo-switch, by varying the injected current level of 
(a) SOA1, (b) SOA2. 

6. Conclusions 

A detailed theoretical model to simulate the gain/phase dynamics of the input optical 

signals propagating through turbo-switch has been presented. The simulation results have 

been shown in excellent agreement with experimental measurements incorporating the 

turbo-switch, in terms of CW modulation, pattern effect mitigation at 40 Gb/s, and eye 

diagram of 160 Gb/s wavelength conversion based on turbo-switch. The introduction of 

turbo-switch has the capability of increasing the overall switch speed by a factor of four if 

compared with the case of a single SOA switch, which is also confirmed by the previous 

experimental demonstration.  

Moreover, the theoretical analysis based on the SOA model suggests that, higher bit-rate 

operation can be expected, if using an extended turbo-switch structure for instance with 

three or more cascaded SOAs. In addition, optimized configurations of turbo-switch with 

the differential XPM scheme as well as the bias current of SOAs can also be implemented to 

achieve a potential higher switch speed.  
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