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1. Introduction 

Spacecraft control suffers from inter-axis coupling regardless of control methodology due to 
the physics that dominate their motion. Feedback control is used to robustly reject 
disturbances, but is complicated by this coupling. Other sources of disturbances include 
zero-virtual references associated with cascaded control loop topology, back-emf associate 
with inner loop electronics, poorly modeled or un-modeled dynamics, and external 
disturbances (e.g. magnetic, aerodynamic, etc.). As pointing requirements have become 
more stringent to accomplish missions in space, decoupling dynamic disturbance torques is 
an attractive solution provided by the physics-based control design methodology. 
Promising approaches include elimination of virtual-zero references, manipulated input 
decoupling, which can be augmented with disturbance input decoupling supported by 
sensor replacement. This chapter introduces these methods of physics-based control. Physics 
based control is a method that seeks to significantly incorporate the dominant physics of the 
problem to be controlled into the control design. Some components of the methods include 
elimination of zero-virtual reference, observers for sensor replacements, manipulated input 
decoupling, and disturbance-input estimation and decoupling. In addition, it will be shown 
that cross-axis coupling inherent in the governing dynamics can be eliminated by 
decoupling a normal part of the physics-based control. Physics-based controls methods 
produce a idealized feedforward control based on the system dynamics that is easily 
augmented with adaptive techniques to both improve performance and assist on-orbit 
system identification. 

2. Physics-based controls 

2.1 Zero-virtual references 

Zero-virtual references are implicit with cascaded control loops. When inner loops reference 

signals are not designed otherwise, the cascaded topology results in zero-references, where 

the inner loop states are naturally zero-seeking. It is generally understood that if any control 

system demands a positive or negative rate, the inner position loop (seeking zero) would 

essentially be fighting the rate loop, since a positive or negative rate command with 

quiescent initial conditions dictates non-zero position command. Elimination of the zero-

virtual reference may be accomplished by using analytic expressions for both position and 

rate eliminating the nested, cascaded topology. Using analytic expressions for both position 

and rate commands implies the utilization of commands that both correspond to achieving 
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the same desired end state, essentially eliminating the conflict between the position and rate 

commands inherit in the cascaded topology.  

2.2 Manipulated Input Decoupling (MID) 

Manipulated input is the actual variable that can be modified by a control design. Very often 
in academic settings control u is the goal of a design, but in reality a voltage command is 
sent to a control actuator, and this voltage command should be referred to as the true 
manipulated input. The importance of this distinction lies in the fact that electronics may not 
properly replicated the desired control u, unless the control designer has accounted for 
internal disturbance factors like the resistive effects of back-emf (inherit in any electronic 
device where current is generated and modified in the presence of a magnetic field). The 
manipulated input signal should be designed to decouple these effects.  

2.3 Sensor replacement 

Due to simplicity of the approach, observer-based augmentation of motion control systems is 
becoming a ubiquitous method to increase system performance [4], [8], [11], [12]. The use of 
observers also permits (in some cases) elimination of hardware associated with sensors, or 
alternatively may be used as a redundant method to obtain state feedback. Velocity sensors 
may be eliminated using speed observers based on position measurement without. Estimation 
methods such as Gopinath-styled observers and Luenberger-styled Observers are robust to 
parameter variation and sensor noise. Both position and velocity estimates may be used for 
state feedback eliminating the effects of sensor noise on the state feedback controller. 
Luenberger-styled and Gopinath-styled observer topologies will be compared. Luenberger-
styled observers (henceforth simply referred to as Luenberger observers) are a simple method 
to estimate velocity given position measurements that will prove superior to Gopinath-styled 
observers (which remain a viable candidate for sensor replacement). Additionally, the 
Luenberger observer may be used to provide estimates of external system disturbances, since 
the observer mimics the order of the actual systems dynamic equations of motion. When used 
the Luenberger disturbance observer bestows robustness to system parameter variations.  

Often used terminology from current literature [11], [12] is maintained in here where the 
modification of the signal chosen as the disturbance estimate establishes a “modified” 
Luenberger observer. The modified Luenberger observer as referred in the cited literature is 
clearly superior (with respect to disturbance estimation) to the nominal Luenberger 
observer, so it is assumed to be the baseline Luenberger observer for disturbance estimation. 
Recent efforts [12], [14] seeking to improve estimation performance augments the 
architecture with a second, identical Luenberger observer. The two observers are tuned to 
estimate velocity and external disturbances respectively. The approach improves estimation 
accuracy and system performance, but still suffers from estimation lag, motivating these 
more recent improved methods eliminating estimation lag. Methods to improve estimation 
performance will be presented. Together with estimation improvement, motion control will 
be enhanced with disturbance input decoupling (which also aids estimation performance).  

2.4 Disturbance Input Decoupling (DID) 

Augmentation of speed observers with a command feedforward path permits near-zero lag 
estimation, even in a single-observer topology. Elimination of estimation lag improves 
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estimation accuracy which subsequently improves the performance of the motion controller. 
Augmentation of the motion controller with disturbance input decoupling extends the 
bandwidth of nearly-zero lag estimation considerably again even in a single-observer 
topology. The estimates from the observer are frequently used for state feedback eliminating 
the requirements for both velocity sensors and position measurement smoothing. Adding 
command feedforward to the observer establishes nearly-zero lag estimation with good 
accuracy. Furthermore, augmenting the motion controller with disturbance input 
decoupling improves motion control.  

2.5 Idealized feedforward control based on predominant physics 

Decoupling the cross-motion motivates an idealized feedforward control. Section 7 of this 
chapter will introduce a feedforward control for accomplishing commanded trajectories that 
is designed using the predominant physics and decouples the particular solution to the 
differential equation of motion that results from the commanded trajectory.  

2.5.1 Cross-axis motion decoupling 

Newton’s Law is commonly known: the sum of forces acting on a body is proportional to its 
resultant acceleration, and the constant of proportionality is the body’s mass. This applies to 
all three axes of motion for 3-dimensional space, so the law can also be stated as “the 
summed force vector [3x1] acting on a body is proportional to its resultant acceleration 
vector [3x1], and the constant of proportionality is the body’s mass matrix [3x3]”. One 
crucial point is that this basic law of physics applies only in an inertial frame that is not in 
motion itself. A similar law may be stated for rotational motion just as we have stated 
Newton’s Law for translational motion. The rotational motion law is often referred to as 
Newton-Euler, and it may be paraphrased as: “the summed torque vector [3x1] acting on a 
body is proportional to its resultant angular acceleration vector [3x1], and the constant of 
proportionality is the body’s mass inertia matrix [3x3].” Newton-Euler also only applies in a 
non-moving, inertial frame. The equations needed to express the spacecraft’s rotational 
motion are valid relative to the inertial frame and may be expressed in inertia. The motion 
measurement relative to the inertial frame is taken from onboard sensors expressed in a 
body fixed frame. The resulting cross product that accounts for relative motion of the body 
frame contains the key cross coupled terms often casually referred to as “roll-yaw coupling” 
for example in the case of a spacecraft whose inertia matrix produced relatively pronounced 
coupling between the roll and yaw axes. Decoupling the cross-product nonlinearities 
eliminates undesired motion. 

2.6 Reference trajectory 

A reference trajectory is introduced in section 9.2 to improve performance still further. The 
main motivation is that a controller should recognize that the plant is not (cannot) 
instantaneously achieve the commanded trajectory. Time is required for motion to occur, so 
when it is desired to maneuver more rapidly, a reference trajectory may be used.  

2.7 Adaptive control and system identification 

Taken together, an idealized feedforward control (designed using the dynamics of the 
system) together with a classical feedback controller and a reference trajectory lead to the 
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ability to introduce adaptive control schemes that can learn a spacecraft’s new physical 
parameters and adjust the control signal to accommodate things like fuel sloshing and 
spacecraft damage. 

3. Equations of motion 

Newton’s Law is commonly known: the sum of forces acting on a body is proportional to its 

resultant acceleration, and the constant of proportionality is the body’s mass. This applies to 

all three axes of motion for 3-dimensional space, so the law can also be stated as “the 

summed force vector [3x1] acting on a body is proportional to its resultant acceleration 

vector [3x1], and the constant of proportionality is the body’s mass matrix [3x3]”. One 

crucial point is that this basic law of physics applies only in an inertial frame that is not in 

motion itself. A similar law may be stated for rotational motion just as we have stated 

Newton’s Law for translational motion.  

The rotational motion law is often referred to as Newton-Euler, and it may be paraphrased 

as: “the summed torque vector [3x1] acting on a body is proportional to its resultant angular 

acceleration vector [3x1], and the constant of proportionality is the body’s mass inertia 

matrix [3x3].” Newton-Euler also only applies in a non-moving, inertial frame. The 

equations needed to express the spacecraft’s rotational motion are valid relative to the 

inertial frame (indicated by subscript “B/i” often assumed) and may be expressed in inertia. 

The motion measurement relative to the inertial frame is taken from onboard sensors 

expressed in a body fixed frame  

 HሬሬԦሶ  =	൜ୢ۶ሬሬԦୢ୲ ൠ୧=	൜ୢ۶ሬሬԦୢ୲ ൠ୆ + ሼ૑ሬሬሬԦሽ୆/୧ × ൛۶ሬሬԦൟ୆where ൛۶ሬሬԦൟ୆ = [۸] ∙ ሼ૑ሬሬሬԦሽ୆/୧ (1) 

 ∑൛TሬሬԦൟ୆/୧ → ሼ࣎ሽ஻ = ሼ۶ሽሶ = [۸]ሼ૑ሶ ሽ + ሼ૑ሽ × [۸]ሼ૑ሽ (2) 

Note the cross product that accounts for relative motion of the body frame contains the key 

cross coupled terms often casually referred to as “roll-yaw coupling” for example in the case 

of a spacecraft whose inertia matrix produced relatively pronounced coupling between the 

roll and yaw axes. Decoupling the cross-product nonlinearities eliminates undesired motion 

and makes the equation more similar to the basic Newton’s Law in an inertial reference 

frame. Decoupling the cross-product may be done in feedforward or feedback fashion, but 

should account for both the homogenous solution to the governing differential equation 

(response to initial conditions) and also the particular solution (response to the command 

input). Well-behaved, decoupled dynamics would behave with simple double-integrator 

dynamics, so the mathematical expressions of force dynamics and torque dynamics would 

look similar.  

4. Virtual-zero references and mid 

Spacecraft torque-actuators contain electronic that often contain other force or torque 

motors. Control moment gyroscopes for example are said to exhibit “torque magnification” 

since a small amount of torque applied to the gimbal motor produces a resultant large 

spacecraft torque. Motors associated with electronics are cascaded inner-loops, and they are 
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often paid less attention in the control design [9], [11]. Such cascaded inner loops often 

reduce the overall system bandwidth due to zero-virtual references. Lacking designed 

references, the cascaded inner loops seek zero. Design engineers should consider 

eliminating zero-virtual reference and decoupling the cascaded electronics to increase 

overall system performance. Consider four voice-coil force actuators (as an example), and 

pay particular attention to the fact that force output is coupled due to back-emf and 

armature resistance which physically desire to seek a virtual-zero reference. In accordance 

with the definition of MID in section 2.4, the goal is to design the voltage signal that 

accounts for the predominant physics (both electrical and physical motion). The 

manipulated input is a voltage signal (e.g E*(s)), not control signal u.  

  

Fig. 1. LEFT: DC servo drive (cascaded current loop). RIGHT: Voice coil actuator. Note the 

presence of cross coupled armature resistance and back-emf. 

An initial goal is to regulate i(t) to regulate fem, (since i(t) and fem are identical variables for 

this class of machines) to get well-behaved dynamics for the motion states. Since velocity-

dependent back-emf complicates the electrical dynamics (it is cross-coupled state feedback), 

feedback decoupling was implemented. Especially since Ke and Kf are often quite high, 

back-emf can be quite a factor if not dealt with. Note that positive feedback for K෡ୣ 

approximately nulls Ke. Next, the effects of voice-coil resistance Rp were decoupled with 

feedback decoupling (i.e. decouple the effects of the armature resistance). Neither of these 

activities (decoupling back-emf and armature resistance) improves dynamics stiffness rather 

they yield well behaved force modulators. As a matter of fact, decoupling back-emf results 

in system inertia being the only remaining system disturbance rejection property. 

   

 
୍ሺୱሻ୍∗ሺୱሻ = ୖ౗୐౦ୱାୖ౗ାୖ౦ → ୖ౗୐౦ୱାୖ౗ฬ෡ୖ౦→ୖ౦  (3) 

Fig. 2. Decoupling armature resistance. 
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Fig. 3. Well-behaved voice coil actuator. 

Figure 4 is a simplified block diagram that displays the back-emf and armature resistance 
decoupling (driven to near-zero). Mason’s rule analysis (similar to the one done for 
decoupling armature resistance in Figure 2) demonstrates that decoupling yields unity gain 
current regulators. 

Notice this remains strictly true as the armature resistance estimation is accurate. In reality, 
it is okay if it is not strictly true. The goal is to reduce the effects of armature resistance to 
allow the active resistance to dominate yielding well-behaved current regulators (i.e. within 
the regulators bandwidth, the behavior is nearly exactly as desired). Since these are the 
cascaded low energy states that feed the high energy motion states, the active resistance was 
tuned to a high bandwidth, 100 Hz (resulting value of Ra=4). 

 

Fig. 4. Decoupling of armature resistance and back-emf. 

Placing the force actuators into the equations of motion yields the following block diagram. 
After decoupling back-emf and armature resistance, the simplified block diagram reveals 
the now-dominant active resistance that may be tuned for system performance. The 
equivalent full-form displayed in block diagram form below.  

Neglecting armature resistance and back-emf decoupling, the resultant dynamic stiffness is: 

  (4) 

The effects of decoupling may be observed on dynamic stiffness by setting an terms to zero 
to expose the individual effects of each loop on disturbance rejection. 
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Fig. 5. Voice-coil state block diagram with virtual-zero reference. 

5. Sensor replacement: Observers 

This section of the paper evaluates the effect of observer types on two, observer-based, 

incremental motion format, state feedback motion controllers with a cascaded current loop 

applied to the dc servo drive in Fig. 1 with state feedback decoupling, but not disturbance 

input decoupling (to be performed in a later section of the paper). Luenberger and Gopinath 

observer topologies (Figure 6) will be compared [12], [14] (as taught in ME746 at the 

University of Wisconsin at Madison). Luenberger-styled observers (henceforth simply 

referred to as Luenberger observers) are a simple method to estimate velocity given position 

measurements. Additionally, the Luenberger observer may be used to provide estimates of 

external system disturbances, since the observer mimics order of actual systems dynamic 

equations of motion. When used the Luenberger disturbance observer bestows robustness to 

system parameter variations.  

 

Jp       =  0.015 x 10-3 kg m2 polar moment of inertia 

KT     =  0.14 Nm/Amp torque constant 

Ke     =  0.14 volts/rad/sec back emf constant 

Rp     =  2.6 ohms armature resistance 

Lp     =  4.3 millihenries armature inductance 

es      =  applied terminal voltage in volts  

ia       =  armature current in amperes  

mag =  electromagnetic air-gap torque (moment) = KT ia  

eb     =  induced (back emf) voltage = Ke ωm in volts  

ωm   =  load angular velocity in rad per sec  

θm    =  load angular position in rad  

Table 1. Parameter Values and Variable Definitions. 
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Fig. 6. LEFT: Luenberger-Styled Observer. RIGHT: Gopinath-Styled Velocity Observer. 

5.1 Observer gain tuning 

For desired observer eigenvalues 1=12.5, 2=50, 3=200, desired motion controller gains 
(tuned for disturbance rejection) c1=6, c2=25, c3=100, and current regulator gain i=800, 
the general form of the characteristic equation may be equated to the specific observer 
forms, controller form and current regulator form revealing gains. Tuning was directed in 
the problem statement to be identical to permit apples-to-apples comparison of effects on 
estimation accuracy. 

5.2 Luenberger tuning (actual current) 

This method uses the actual current from the actuator circuit (rather than modeled or 
predicted current) to provide the feedforward element of the observer. This position would 
normally include the actual current or control, u in typical observer designs (recalling that 
observer design is a dual process of controller design). Utilizing the reference input and 
actual circuit moment, you can produce an estimate of remaining disturbance (normally fed 
back to feedback controllers to handle).  

 C.E.= (s+1)(s+2)(s+3) =  Jp
^

s3+ bo s2s + Kso s + Kiso (5) 

 bo = Jp
^

( 1+ 2+ 3)  (6) 

 Kso =Jp
^

([1(2+ 3)+ 23] Kiso = Jp
^

( 123)  (7) 

5.3 Gopinath tuning 

 ωෝሺsሻωሺsሻ = ሺK୘ଵsଶ + K୘ଶs + K୘ଷሻ ቆJ୮sଶ൫L୮ − L෠୮൯ + J୮ሺR୮ − R෡୮ሻsK୘ + K෡୲K୲ J୮sሺL෠୮ + R෡୮ሻቇJመ୮L෠୮sଷ + ൫Jመ୮R୮ + K෡ୣKଵ൯sଶ + K෡ୣKଶs + K෡ୣKଷ  
(8)

 

Equating coefficient of ‘s’ and solve for gains:  

 (s+1)(s+2)(s+3)= Jp
^

s3 + (Jp
^

Rp
^

+Ke
^

K1)s2 + Ke
^

K2s + Ke
^

K3 (9) 
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 KT1 = 
Jp
^

Lp
^

(1+2+3)-Jp
^

Rp
^

Ke
^   (10) 

 KT3 = 
Jp
^

Lp
^

Ke
^  ( )123   (11) 

 KT2 = 

Jp
^

Lp
^

(12+3)-Jp
^

Rp( )1(2+3)+23

Ke
^   (12) 

Motion Controller:  

 (s+c1)(s+c2)(s+c3) =Jp
^

s3+ ba s2s + Ks s + Kis (13) 

Current regulator:  (s+i) = Lps+Ra  (14) 

Observer estimation frequency response functions were calculated and plotted first for ±20% 
estimated-inertia error then for the case of ±20% error in estimate of Ke=Kt (Figure 7). Notice 
first that for all cases of zero-error, both observers exactly estimate the angular velocity of 
motion. Overall, the Gopinath-styled observer (referred to as simply “Gopinath” for brevity) 
performed poorer than the Luenberger-styled observer indicating the Luenberger observer 
is less parameter-sensitive with respect to inertia, Ke, and Kt. 

 

Luenberger Gains Gopinath Gains Motion Controller Gains 

Bo Kso Kiso KT1 KT2 KT3 Bp Ks Kis Ra 
Nm/m/s Nm/m Nms rad/s Nms /A Nm/A Nms/A Nm/m/s Nm/m Nms V/A 

24.74 7772.3 465090 0.4813 238.7 14285 12.3 1924.6 55811 21.6 

Table 2. Observer Gains. 

While the Luenberger observers diverge very close to the maximum tuned bandwidth (even 
with parameter errors), the Gopinath observer diverges at a lower bandwidth when errors are 
present. Since both observers contain a current-feedforward element, you will see nearly zero-
lag properties out to the bandwidth of the feedback observer controller. Clearly, disturbances 
(in the form of modeling errors here) do not influence low frequency estimation (likely due to 
the addition of integrators in the observer controllers). The Gopinath observer was particularly 
sensitive to errors in Kt indicating its reliance on the feedforward estimation path. Notice in 
particular in Figure 7 that zero-lag estimation occurs even with inaccurate Kt (albeit with non-
zero estimation frequency response at all frequencies). 

Time-response simulations were run with identically tuned observers with a sample 

commanded trajectory (rotation angle) of *(t)=sin(10t). Iterations were run to establish the 
effects of 20% inertia underestimation and the effects of sensor noise on command tracking 
accuracy. Sensor noise was modeled as random numbers with zero-mean and unity variance.  
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Fig. 7. LEFT: Comparison of estimation accuracy frequency response functions for incorrect Jመ୮. Luenberger (blue) Gopinath (red); dotted = -20% error, solid = 0% error; dashed = +20% 

error. RIGHT: Comparison of estimation accuracy frequency response functions for 
incorrect Kt=Ke. Luenberger (blue) Gopinath (red); dotted = -20% error, solid = 0% error; 
dashed = +20% error. 

Figure 9 reveals the methodology for apples-to-apples comparison of effects on command 
tracking. Manual switches were used to evaluate a given case with the results displayed in 
Figure 7 and Figure 8. General conclusions may be drawn. Feedback control handles 
incorrectly estimated just fine, especially since inertia has nothing to do with the feedback 
control strategy (lacking a feedforward strategy). Using the Luenberger observer performs 
nearly as well if actual (t) is used for estimation, while it does not perform as well when 
*(t) is used for estimation. This is intuitive, since *(t) does not include the errors and noises 

associate with the process, while (t) includes these errors and noises. In all cases examined, 
the Gopinath-styled observer was inferior, which reinforces the earlier revelation of  

   

Fig. 8. LEFT: Frequency Response Functions for the motion control system. RIGHT: Estimation 

errors for Jመ୮ = 0.8Jp and =0, 2=1 sensor noise. Black solid line is Luenberger with (s) input; 

Green dotted line is Luenberger with *(s) input; red solid line is Gopinath with a(s) input; 

blue dotted line is Gopinath with *(s) input. 
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Fig. 9. SIMULINK model for error comparison Disturbance Input Decoupling (DID). 

parameter sensitivity (in the discussion of the estimation frequency response functions). In 

addition to examining the effects on command tracking accuracy, estimation accuracy was 

plotted from the simulations to confirm the indications garnered from the discussion of 

figures 1 & 2 (estimation accuracy frequency response functions, FRFs). The single case of 

20% inertia underestimation with zero-mean and unity variance sensor noise confirmed that 

the enhanced Luenberger-styled observer provided superior estimates compared to the 

Gopinath styled observer for this sinusoidal commanded trajectory.  

One suggestion for improved command tracking is to remove feedback decoupling as done 

here replacing it with feedforward decoupling permitting the disturbance torque to excite the 

decoupling. One other thing: Note the maximum phase lag of 90 degrees. Such a maximum 

would be expected in a system with a command feedforward control scheme. Since the 

feedforward path would remain nearly zero-lag, the 90-degree phase lag would be 

creditable to Shannon’s sampling-limit theory. Since there is no command feedforward 

control in this scheme, the lack of a maximum phase shift of 180 degrees (for a double 

integrator plant) is puzzling. 

Observer tuning (not the current loop tuning) determines the maximum frequency for 

nearly zero-lag accurate estimation. Since the commanded and actual current are nearly 

identical (also with zero lag) out to the higher current loop bandwidth, it was expected that the 

effects of commanded versus actual current are mitigated by feedback decoupling (i.e. we 
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exceed the observer bandwidths before there is an appreciable difference in commanded 

versus actual current).  

Actually, the Luenberger observer was sensitive to output noise associate with actual 
current. The noisier actual current signal does not pass through a smoothing integrator 
before going directly into the plant dynamics. On other hand, the Gopinath observer 
compares the estimated and actual/commanded current (i.e. current estimation error) 
through a smoothing integrator in the observer controller and also passes a portion through 
a separate smoothing integrator associate with angular rate estimation. Thus, the Gopinath-
styled observer was insensitive to commanded versus measured current due to feedback 
decoupling. The Luenberger observer may be made less sensitive to the difference between 
commanded and actual current (and other system noises and errors) by using the actual 
rotation angle as input to the observer (Figure 4 and Table 2). As a matter of fact, this 
iteration resulted in the best performance for the evaluated case of sinusoidal sensor noise 
demonstrating the least mean error. 

RECOMMENDATION: Use enhanced Luenberger-styled observers with actual (s). 

6. Disturbance Input Decoupling (DID) 

This paragraph reformulates the dual observer-based DID system in Yoon, 2007, consistent 
with physics-based control methods and furthermore evaluates opportunities in the 
proposed structure, [1]-[7]. Physics-based methods recommend 1) disturbance input 
decoupling followed by 2) state feedback decoupling of system cross-coupling, then 3) 
elimination of virtual zero references, and then finally adding active state feedback with full 
state references. Note the observer structure in Yoon, 2007 is different where we have added 
command feedforward (reference [1]) shown in Figure 6 & Figure 10. The [Yoon] paper 
evaluates the controlled dynamics of a magnetic levitation machine, whose dynamics are 
similar to a free-floating spacecraft when the cross-product has been decoupled (noting the 
spacecraft is suspended by gravity while the mag-lev system uses controlled magnetic field 
instead. Nonetheless, the physics-based decoupling principles remain the same. The main 
goal of DID is to formally identify the disturbance online, then use feedback to decouple the 
effects of disturbance input. Although the decoupling signal is actually the disturbance 
identified at the immediately previous timestep, using this value is far superior than simply 
treating disturbances as unknown quantities. The disturbance moment Md(s) is estimated in 

the observer in the feedforward element ܯ෡em(s).  

Emphasize velocity estimation for state feedback of motion controllers. The improvements 
achieve near-zero lag, accurate velocity estimation are displayed and zoomed in Figure 12 
for clarity. The larger scale reveals the advantages over the most recently proposed 
improved methods. High-frequency roll-off is drastically improved by addition of 
command feedforward (of the true manipulated input) to the Luenberger observer. 
Additional inclusion of disturbance input decoupling in the motion control system 
improves velocity estimates in the observer, essentially eliminating roll-off and estimation 
lag. This later claim is more clearly displayed in the zoomed response plot in Figure 12.  

The cascaded control topology should be eliminated adding full command references. 

Command feedforward control should be added. The electro-dynamics should not be 

ignored in the analysis. It causes the illusion that force is the manipulated input as opposed  
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Fig. 10. Decoupled motion control w/DID & Luenberger observer with command feedforward.  

to current (the true manipulated input) resulting in lower bandwidth. Neglecting the 
electrodynamics results in an analysis that is inadequately reinforces the experiments. Yoon 
refers to “disturbances forces generated by the current controller” to explain the difference 
between experimentation and analysis. Decoupling the electro-dynamics will improve 
performance even without full command references. Without manipulated input 
decoupling (MID), you have an implied zero-reference command for current. Assuming an 
inductor motor’s electronics, decoupling Ke should dramatically increase disturbance 
rejection isolating the electrical system. The paper utilizes a dual observer to permit 
individual tuning for disparate purposes (DID and velocity estimation), but then implies 
using identical observer gains! That makes no sense. Instead of using identical gains, 
eliminate one of the observers to simplify the algorithmic complexity. Alternatively, utilize 
different gains optimized respectively for velocity and disturbance estimation. A first step 
for comparison requires repetition of the Yoon paper results. Equations (3), (4), and (5) in the 
Yoon paper are plotted in Figure 11, which should duplicate figure (5) in the Yoon paper.  

 

Fig. 11. LEFT: Nominal response comparison: Solid-black line is Luenberger observer; Blue-
dashed line is Modified Luenberger observer; Red-dotted line is no compensation. RIGHT: 
Response comparison: Solid-black line is Luenberger observer; Red-dotted line is Modified 
Luenberger observer; Blue-dashed line is Dual Observer. 
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Note the slightly different result was achieved only in the case of modified observer (not the 
proposed dual-observer method).  

Next, equations (6), (7), and (8) in Yoon, 2007 [12] were plotted in Figure 11, which 
duplicates Yoon’s figure 6. Again, notice a slight difference this time with the estimation 
FRF of the basic Luenberger observer. According to the paper’s plots in figure 6, the 
modified observer estimates more poorly than the nominal observer by dramatically 
overestimating velocity. This clearly indicates a labeling-error in the paper’s figure. Also, the 
Luenberger observer does not estimate well within the observer bandwidth, so my results 
displayed here seems more credible. The difference is negligible considering the 
performance to be gained using physics-based reformulation. 
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The reformulation (Figure 10) results in the estimation FRF with DID and command 

feedforward is displayed Figure 12. Immediately notice that addition of the command 

feedforward to the modified Luenberger observer yields nearly-zero lag estimates, far 

superior to Yoon, 2007  (which omitted the command feedforward path in what they call an 

observer). It is a premise of the physics-based methodology that the title “observer” implies 

nearly-zero lag estimation, so one might argue that the Yoon paper really utilizes a state 

filter rather than a state observer. 

The results using the physics-based methodology are clearly superior despite relative 

algorithmic simplicity. Adding the command feedforward permits accurate, near-zero lag 

estimation of velocity without a velocity sensor. Furthermore, disturbance input decoupling 

increases system robustness and permits accurate estimation inaccuracy even when 

unknown disturbances are present. Certainly, accounting for the electrodynamics should 

always be done rather than neglecting them as “system noise” as done in Yoon, 2007.  

Figure 12 displays a Solid-blue line is Modified Luenberger observer with command 
feedforward; Red-dashed line is Modified Luenberger observer with command feedforward 
and disturbance input decoupling. RIGHT: Observer Improvements estimation comparison: 
Dotted-black line from the Yoon paper (using dual observers). Solid-blue line is Modified 
Luenberger observer with command feedforward; Red-dashed line is Modified Luenberger 
observer with command feedforward and disturbance input decoupling; Dashed-black line 
is Dual Observers. 

   

Fig. 12. LEFT: Observer Improvements estimation comparison. 

7. Physics-based methods for idealized feedforward control 

Feedforward control is a basic starting point for spacecraft rotational maneuver control. 
Assuming a rigid body spacecraft model in the presence of no disturbances and known 
inertia [J], an open loop (essentially feedforward) command should exactly accomplish the 
commanded maneuver. When disturbances are present, feedback is typically utilized to 
insure command tracking. Additionally, if the spacecraft inertia [J] is unknown, the open 
command will not yield tracking. Consider a spacecraft that is actually much heavier about 

-0.5

0

0.5

1

M
a
g
n
it
u
d
e
 (

d
B

)

10
2

10
3

10
4

-2

0

2

4

6

P
h
a
s
e
 (

d
e
g
)

Frequency  (rad/sec)

-10

-5

0

M
a

g
n

it
u

d
e

 (
d

B
)

10
1

10
2

10
3

10
4

10
5

-90

-45

0

P
h

a
s
e

 (
d

e
g

)

Frequency  (rad/sec)

www.intechopen.com



 
Advances in Spacecraft Systems and Orbit Determination 44

it’s yaw axis than anticipated in the assumed model. The same open loop command torque 
would yield less rotational motion for heavier spacecraft. Similarly, if the spacecraft were 
much lighter than modeled, the open loop command torque would result in excess rotation 
of the lighter spacecraft. Observe in Figure 13, a rigid spacecraft simulator (TASS2 at Naval 
Postgraduate School) has been modeled in SIMULINK. An open loop feedforward 
command has been formulated to produce 10 seconds of regulation followed by a 30o yaw-
only rotation in 10 seconds, followed by another 10 seconds of regulation at the new 
attitude. The assumed inertia matrix is not diagonal, so coupled dynamics are accounted for 
in the feedforward command.  

 

Fig. 13. SIMULINK model of TASS2 Spacecraft Simulator at Naval Postgraduate School. 

With no disturbances and a known, correct model, the open loop feedforward command can 
effectively perform the maneuver.  

 [۸]୫୭ୢୣ୪ୣୢ = [۸]୮୰ୣ୴୧୭୳ୱ୪୷	ୣୱ୲୧୫ୟ୲ୣୢ=[۸]୤ୣୣୢ୤୭୰୵ୟ୰ୢ=൥ͳͳͻ.ͳʹͷͻ −ͳͷ.͹͸͹ͺ −͸.ͷͶͺ͸−ͳͷ.͹͸͹ͺ ͳͷͲ.͸͸ͳͷ ʹʹ.͵ͳ͸Ͷ−͸.ͷͶͺ͸ ʹʹ.͵ͳ͸Ͷ ͳͲ͸.Ͳʹͺͺ൩ (20) 

Recall in the real world systems are not always as we model them, disturbances are 

presence, and our sensor measurements of the maneuver will also be quite noisy. 

Nonetheless, the idealized case is a useful place to start, as it gives us confidence that our 

model has been correctly coded. Proof is easily provided by sending an acceleration 

command (scaled by the inertia) to the spacecraft model to verify the identical acceleration is 

produced (Figure 14). We have not yet added noise, disturbances, or modeling errors, so 

exact following should be anticipated. Next, we will alter the inertia [J] of TASS2. This is 

real-world, since the spacecraft has recently received its optical payload, so the yaw inertia  

  

Fig. 14. LEFT: Feedforward input and resultant TASS2 acceleration (note zero error). 
RIGHT: Open Loop Feedforward TASS2 Maneuver Simulation. 
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components have increased significantly. Using the previous experimentally determined 
inertia [J] in the feedforward command should result in difficulties meeting the open loop 
pointing command.  

Notice in Figure 14 the maneuver is not correctly executed using the identical feedforward 

command for the assumed, modeled TASS2. The current inertia matrix has not been 

experimentally determined, so inertia components were varied arbitrarily (making sure to 

increase yaw inertia dramatically). This new inertia was used in the spacecraft model, but is 

presumed to be unknown. Thus, the previous modeled open loop feedforward command is 

used and proven to ineffective. Options to improve system performance include feedback, 

and adapting the feedforward command to eliminate the tracking error. Since adaptive 

control is more difficult, we will first examine feedback control with the identical models 

and maneuver.  

8. Feedback control 

Feedback control components multiply a gain to the tracking error components in each of the 

3-axes. When multiplying gains to the tracking error itself, the control is referred to as 

proportional control (or P-control). When multiplying gains to the tracking error integral, the 

control is referred to as integral control (or I-control). Finally, when multiplying gains to the 

tracking error rate (derivative), the control is referred to as derivative control (or D-control). 

Summing multiple gained control signals results in combinations such as: PI, PD, PID, etc. PD 

control is extremely common for Hamiltonian systems, as it is easily veritably a stable control. 

PD control was augmented to the previous case of feedforward control with inertia modeling 

errors (Figure 15) dramatically improving performance, while not restoring the ideal case.  

 

Fig. 15. Demonstration of Feedback Control Effectiveness. 

It is clear that feedback control augmentation is a powerful tool to eliminate real world 

factors like modeling errors. An identical comparison was performed with gravity gradient 

disturbances associated with an unbalanced TASS2. The comparison is not presented here 

for brevity’s sake, but the results were qualitatively identical.  
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While feedback appears extremely effective to accomplish the overall tracking maneuver, 
some missions require faster, more accurate tracking with less error. Such missions often 
consider augmenting the feedforward-feedback control scheme by adding adaptive control 
to either signal.  

9. Adaptive control 

Adaptive control techniques typically adapt control inputs based upon errors tracking 
commanded trajectories and/or estimation errors. Direct adaptive control techniques 
typically directly adapt the control signal to eliminate tracking errors without estimation of 
unknown system parameters. Indirect adaptive control techniques indirectly adapt the 
control signal by modifying estimates of unknown system parameters. The adaptation rule 
is derived using a proof that demonstrates the rapid elimination of tracking errors (the real 
objective). The proof must also demonstrate stability, since the closed loop system is highly 
nonlinear with the adaptive control included. Two fields of application of adaptive control 
is robotic manipulators and spacecraft maneuvers utilizing both approaches [15], [16], [17].  

While some adaptive techniques concentrate on adaptation of the feedback control, others 
have been suggested to modify a feedforward control command retaining a typical feedback 
controller, such as Proportional-Derivative (PD). Adaptation of the feedforward signal has 
been suggested in the inertial reference frame [18], [19], but the resulting regression model 
requires several pages to express for 3-dimensional spacecraft rotational maneuvers. The 
regression matrix of “knowns” is required in the control calculation, so this approach is 
computationally inappropriate for spacecraft rotational maneuvers. Subsequently, the 
identical approach was suggested for implementation in the body reference frame [20]. The 
method was demonstrated for slip translation of the space shuttle. This method appears 
promising for practical utilization in 3-dimensional spacecraft rotational maneuvers. A 
derivation of the Slotine-Fossen approach is derived for 3-dimensional spacecraft rotational 
maneuvers next, then implementation permits evaluation of the effectiveness of the 
approach in the context of the previous results for classical feedforward-feedback control of 
the TASS2 plant with modeling errors.  

9.1 Adaptive feedforward command derivation 

The equation of motion may be written by various methods (Newton-Euler, Lagrange, 
Kane’s, momentum, etc.) as follows: [۸]ሼqሷ ሽ஻ + [۱]ሼqሶ ሽ஻ = ሼ߬ሽ஻ where [J] is the inertia matrix, 
[C] is the Coriolis matrix representing the cross-coupling dynamics,  is the sum of external 
torques and q is the body coordinates (quaternion, Euler angles, etc.). The body coordinates 
may be transformed to inertial coordinates via the transformation matrix [S] per the 
following: ሼxሶ ሽ௜ = ஻ଶ௜ሼqሶ[܁] ሽ஻. Similarly, we may define a reference trajectory in the body 
coordinates: ሼxሶ ୰ሽ௜ = ஻ଶ௜ሼqሶ[܁] ୰ሽ஻. Rewriting the transformation and differentiating:  ሼqሶ ୰ሽ஻ = ଵሼxሶି[܁] ୰ሽ௜ → ሼݍሷ௥ሽ஻ = ሷ௥ሽ௜ݔଵሼି[܁] − ሶ[܁]ଵି[܁] ଵሼxሶି[܁] ୰ሽ௜. This may be substitute into the 
equation of motion allowing us to express the equation of motion in terms of the reference 
trajectory.  

  (21) 

  (22) 
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x x x1 1 1 1[ ] [ ] [ ][ ] [ ]            J S S S S C S  

           r r Bi i
x x1 1 1 1[ ] [ ] [ ][ ] [ ]         J S J S S S C S 
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Pre-multiplying by [܁]்[܁]ି் = ͳ allows us to understand [Slotine]’s original approach in 
reference [19]: 

  (23) 

(24) 

  (25) 

Slotine uses the linear regression model to define an equivalent system based on parameter 
estimates: 

  Φ∗ሺx, xሶ , xሶ ୰, xሷ ୰ሻΘ = Φ∗ሺx, xሶ , xሶ ୰, xሷ ୰ሻᇣᇧᇧᇧᇤᇧᇧᇧᇥ୩୬୭୵୬ୱ Θ෡ณ୳୬୩୬୭୵୬ୱ+ error.  (26) 

The estimates Θ෡are adapted using an adaption rule that makes the closed loop system stable. 
The regression model is then used in the control, which is where the complication arises. 
The Φ∗ሺx, xሶ , xሶ ୰, xሷ ୰ሻ matrix of “knowns” occupies several pages and is used at each time step to 
formulate the adapted control signal making the method computationally impractical. 
[Fossen] on the other hand formulates the regression model in the body coordinates 
eliminated the complications seen above with the numerous multiplications with the 
coordinate transformation matrix [S]. Picking up from [Slotine]’s method above, we can 
simply express the regression model including the transformation matrix:   

   (27) 

noting theΦሺx, xሶ , xሶ ୰, xሷ ୰ሻ matrix of “knowns” has no asterisk.  Preface [Slotine]’s mathematical 
trick (pre-multiplication) above:  

 .  (28) 

Continuing here yields [Fossen]’s substantial simplification through the following 3 steps:   
Solve the earlier defined transformation equations for xሶ ୰	&	xሷ ୰: 

  (29) 

  (30) 

Substitute into  instead of pre-

multiplying.   
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Reduce this to linear regression form: 

  (32) 

  (33) 

  (34) 

All that remains now is to multiply this out long-hand and regroup the terms into the linear 

regression model: Φ∗ሺx, xሶ , xሶ ୰, xሷ ୰ሻΘ = Φ∗ሺx, xሶ , xሶ ୰, xሷ ୰ሻᇣᇧᇧᇧᇤᇧᇧᇧᇥ୩୬୭୵୬ୱ Θ෡ณ୳୬୩୬୭୵୬ୱ + error. In order to do this, we 

must define the reference trajectory. The modifications to the overall feedforward control 

strategy may be embodied in these two venues:  1) estimate/adapt estimates of inertia in the 

regression model above, and 2) choose a reference trajectory that addresses system lead/lag 

when applying the assumed control to a spacecraft with modeling errors, disturbances and 

noise.  

9.2 Reference trajectory 

Define the reference trajectory such that the control helps the spacecraft “catch up” to the 

commanded trajectory. If the spacecraft is actually heavier than modeled, it needs a little 

extra control to achieve tracking than will be provided by classical feedforward control. If 

the spacecraft is actually lighter than modeled, the control must be reduced so as not to 

overshoot the commanded trajectory. Consider defining the reference trajectory as follows:  

ሷ௥ݍ  = ሷௗݍ − ሶݍሺߣ − ሶ௥ݍ ሶௗሻ andݍ = ሶௗݍ − ݍሺߣ −  ௗሻ (35)ݍ

Note we have scaled the reference acceleration and velocity to add/subtract the velocity and 

position error respectively scaled by a positive definite constant, . This should help the 

feedforward control component regardless of indirect adaption. Accordingly, subsequent 

sections will evaluate the effectiveness of the reference trajectory by itself and the also the 

indirect adaption/estimation by itself as well. First, let’s conclude the derivation by 

multiplying out the linear regression form so that the reader can have the simple equation 

for spacecraft rotational maneuvers.  

9.3 Feedforward & feedback control with reference trajectories 

Simplify  letting ݍሷ௥ = ሷௗݍ − ሶݍሺߣ − ሶ௥ݍ ሶௗሻ andݍ = ሶௗݍ − ݍሺߣ − ௗሻ and use qሷݍ ୰ = ωሷ ୰	and	qሶ ୰ = ωሶ ୰: 
 

 

 where is the skew symmetric matrix form of the momentum 

vector. Expand [J]ሼωሶ ୰ሽ − [H ×] = ሼτሽ୆: 

               r r r r B
q q q q1 1 1 1 1[ ] [ ] [ ] [ ] [ ] [ ][ ] [ ] [ ] [ ]        J S S J S S J S S S S C S S    

     rq 1 1[ ] [ ] [ ] [ ]  J J S S J S S       r B
q

0
    

C 

       r r B
q q  J C 

       r r B
q q  J C 

       r r B
   J C

         r r r B
     J J

       r r B
    J H  H
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  (36) 

  (37) 

Let θ୘ = ൛J୶୶ J୶୷ J୶୸ J୷୷ J୷୸ J୸୸ H୶ H୷ H୸ൟ and assume	J୶୷ = J୷୶, J୶୸ = J୸୶, J୷୸ = J୸୷ 

allowing us to express : 

 

 ሼτሽ = ൣΦ෡൧ሼθሽ − KୢSିଵሺxሶ − xሶ ୰ሻ  ← Use this control (38) 

Where ቄθ෠ሶ ቅ = −Γ[Φ][ଷ௫ଽ][S]ିଵሺݔሶ − ሶ௥ሻݔ = −Γ[Φ][ଷ௫ଽ]ሺݍሶ −  ሶ௥ሻ  ←use this adaption rule (39)ݍ

9.4 Adaptive feedforward effectiveness 

Especially since typical feedback control deals with modeling errors effectively, we wish to 
evaluate the effectiveness of indirect adaptive feedforward control with a rigorously 
disciplined approach. Accordingly, the examination will evaluate the individual 
effectiveness of each control component in the following paragraphs: 

 Reference trajectory without indirect adaption (feedforward, feedback, and both) 
 Indirect adaption without a scaled reference trajectory (feedforward, feedback, and both) 
 Indirect adaption with reference trajectory (previously derived application of [Fossen] 

suggested improvement to [Slotine]’s method) 

The examination is performed by manually activating switches in the SIMULINK simulation 
model to insure all aspects of the maneuver are identical with exception of the aspect being 
switched for investigation. Note the feedback control is configured as a proportional-
derivative-integral (PID) controller with the following gains:  Kp=100, Kd=300, KI=0, thus a 
PD controller. 
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It seems likely that utilization of the reference trajectory alone should improve system 

performance without the computational complications of estimation/adaption. Consider the 

reference trajectory as derived previously:	ݍሷ௥ = ሷௗݍ − ሶݍሺߣ − ሶ௥ݍ ሶௗሻ andݍ = ሶௗݍ − ݍሺߣ −  ௗሻ. Thisݍ

trajectory adds/subtracts a little extra amount (the previous integral scaled by a positive 

constant). If the system is lagging behind the desired angle for example, that lag is scaled 

and added to the reference velocity trajectory resulting in more control inputs. Since we use 

measurements to generate the reference command, it seems intuitively appropriate for 

feedback control. Nonetheless, it is implemented in feedforward, feedback, and both for 

completeness sake.  

Referencing Figure 16, note that the reference trajectory with feedforward control only with 

a correctly modeled system is not effective. This makes sense, since the feedforward control 

on a correctly modeled plant with no disturbances was previously demonstrated to perform 

well (Figure 14) while unrealistic for real world systems.  

 

 
 

Fig. 16. LEFT: Feedforward (only) control with correctly modeled inertia. RIGHT: 
Feedforward (only) control with inertia errors. 

Next, consider the reference trajectory for a system that is not well modeled. As we saw 

previously (Figure 15), open loop control when the inertia is increased results in the system 

falling short of the desired maneuver. The control is designed for a lighter spacecraft. We 

see in Figure 16 that feedforward control alone with a reference trajectory fairs no better. As 

a matter of fact, the performance is worse. Addition of feedback control seems appropriate. 

Before examining feedback control added to feedforward control, first examine feedback 

control by itself so that we may see the effects of the reference trajectory. Notice in Figure 17 

that when the model is well known (correct), feedback control works quite well, and system 

performance is dramatically improved using the reference trajectory. Again, this is intuitive 

since the control is given a little something extra to account for tracking errors. This is also 

important for us to remember when analyzing indirect adaptive control with a reference 

trajectory. Tracking performance can be improved considerably without the complications 

of inertia estimation/adaption if the system is the assumed model.  

When the model is not known, or has changed considerably from its assumed form, the 
performance improvement using the reference trajectory is not as pronounced as just seen 
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with a well known model. Figure 17 illustrates that system damping has been reduced by the 
addition of the reference trajectory. The initial response is much faster, but there is overshoot 
and oscillatory settling. Notice in this example the two plots settle in similar times, so use of 
the reference trajectory has not drastically improved or degraded system performance.  

   

Fig. 17. LEFT: Feedback (only) control with correctly modeled inertia. RIGHT: Feedback 
(only) control with inertia errors. 

Thus far, we see that the reference trajectory does not improve system performance when 

using feedforward control alone, but can improve performance with feedback control alone 

especially when the system inertia is known. Next, consider combined feedback & 

feedforward control. Figure 18 reveals expected results. Feedforward and feedback control  

with a reference trajectory is superior to using the desired trajectory when the plant model is 

known (no inertia errors). Similarly to the previous results, the reference trajectory with 

high inertia errors reduces system damping and exhibits faster response with overshoot and 

oscillatory settling. To conclude the evaluation of control with the reference trajectory 

without adaption/estimation, consider using the reference trajectory for feedback only and 

maintain the desired trajectory to formulate the feedforward control.  
 

   
 

Fig. 18. LEFT: Feedforward & Feedback control with correctly modeled inertia. RIGHT: 
Feedforward & feedback control with inertia errors. 
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Notice in Figure 18 the system performance using the reference signal for both feedback and 

feedforward. This leaves us with a good understanding of how the reference trajectory 

affects the controlled system. To generalize:   

Feedback control may be improved by utilization of a reference trajectory that adds a 

component scaled on the previous integral tracking error. When the system model is known, 

performance is improved drastically. In the example, Jzz was altered >100% and the 

reference trajectory still effectively controlled the spacecraft yaw maneuver. 

Such reference trajectories are not advisable for feedforward control. Use of the reference 

trajectory in feedforward control does not improve system performance even in 

combination with feedback control.  

Now that we have a good understanding that reference trajectories can improve system 

performance without estimation/adaption, let’s continue by examining indirect adaptive 

control without the reference trajectory.  

 
 

 
 

Fig. 19. Feedforward d & Feedback r with and without inertia errors. 

9.5 Adaption without reference trajectory 

Figure 20 displays a comparison of indirect adaptive control with and without a reference 

trajectory. In both cases, estimates are used to update a feedforward signal. The former case 

feeds the reference signal is generated by adding the scaled previous integral (scaled by a 

positive constant ) as previously discussed. The latter case sets =0 making the reference 

trajectory equal to the desired (commanded) trajectory. The figure reveals that 

adaption//estimation alone does not produce good control. The reference trajectory is a key 

piece of the control scheme’s effectiveness. This is intuitive having established the 

significance of the reference trajectory in previous sections of this study.  
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Fig. 20. LEFT: Indirect adaptive control with and without reference trajectory. RIGHT: 
Effects of scale constant  on indirect adaptive control with reference trajectory. 

9.6 Adaption with reference trajectory 

Having established adaptive feedforward control is most effective with a reference trajectory; 
the following section iterates the design scale constant, . As seen in Figure 20, lower values of 
scale constant,  result in slower controlled response. As  is increased, system response is 
faster, but oscillations are increased. Scale constant value between one and five result in good 
performance preferring a value closer to one to avoid the oscillatory response.  

10. Conclusions 

Physics based control is a method that seeks to significantly incorporate the dominant 
physics of the problem to be controlled into the control design. Some components of the 
methods include elimination of zero-virtual reference, observers for sensor replacements, 
manipulated input decoupling, and disturbance-input estimation and decoupling. As 
pointing requirements have become more stringent to accomplish military missions in 
space, decoupling dynamic disturbance torques is an attractive solution provided by the 
physics-based control design methodology. Approaches demonstrated in this paper include 
elimination of virtual-zero references, manipulated input decoupling, sensor replacement 
and disturbance input decoupling. This paper compares the performance of the physics-
based control to control methods found in the literature typically including cascaded control 
topology and neglecting factors such as back-emf. Another benefit of using the dynamics 
derived from the predominant physics of the controlled system lies in that an idealized 
feedforward results that can easily be augmented with adaptive technique to learn a better 
command while on-orbit and also assist with system identification. .  

11. References 

[1] C. J. Kempf and S. Kobayashi, “Disturbance observer and feedforward design of a high-
speed direct-drive positioning table”, IEEE Trans. On Control Systems Tech., vol. 7, 
no. 5, Sep., 1999. 

[2] Tesfaye, H. S. Lee and M. Tomizuka, “A sensitivity optimization approach to design of a 
disturbance observer in digital motion control systems”, IEEE/ASME Trans. on 
Mechatronics, vol. 5, no. 1, March, 2000. 

www.intechopen.com



 
Advances in Spacecraft Systems and Orbit Determination 54

[3] K.K. Tan, T. H. Lee, H. F. Dou, S. J. Chin, and Shao Zhao, “Precision motion control with 
disturbance observer for pulsewidth-modulated-driven permanent-magnet linear 
motors,” IEEE Trans. on Magnetics, vol. 39, no. 3, May, 2003. 

[4] C. J. Kempf and S. Kobayashi, “Disturbance observer and feedforward design of a high-
speed direct-drive positioning table”, IEEE Trans. on Control Systems Tech., vol. 7, 
no. 5, Sep., 1999. 

[5] Tesfaye, H. S. Lee and M. Tomizuka, “A sensitivity optimization approach to design of a 
disturbance observer in digital motion control systems”, IEEE/ASME Trans. on 
Mechatronics, vol. 5, no. 1, March, 2000. 

[6] K.K. Tan, T. H. Lee, H. F. Dou, S. J. Chin, and Shao Zhao, “Precision motion control with 
disturbance observer for pulsewidth-modulated-driven permanent-magnet linear 
motors,” IEEE Trans. on Magnetics, vol. 39, no. 3, May, 2003. 

[7] S. M. Yang and Y. J. Deng, “Observer-based inertia identification for auto-tuning servo 
motor-drives”, in Industry Applications Conference, vol. 2, 2005, pp. 968-972. 

[8] M. Z. Liu, T. Tsuji, and T. Hanamato, “Position control of magnetic levitation transfer 
system by pitch angle,” Journal of Power Electronics, vol. 6, no. 3, July 2006. 

[9] T. Ohmae, T. Matsuda, K. Kaniyama, and M. Tachikawa, “A microprocessor-controlled 
high-accuracy wide-range speed regulator for motor drives,” IEEE Trans. on Ind. 
Electron., vol. 29, no. 3, August, 1982. 

[10] J. K. Kim, J. W. Choi, and S. K. Sul, “High performance position control of linear 
permanent magnet synchronous motor for surface mount device in placement 
system,” in Conf. Rec. PCC-Osaka, vol. 1, 2002, pp. 37-42. 

[11] Yoo, Y. D. Yoon, S. K. Sul, M. Hisatune, and S. Morimoto, “Design of a current regulator 
with extended bandwidth for servo motor drive,” in Conf. Rec. PCC-Nagoya, 2007. 

[12] Y. D. Yoon, E. Jung, A. Yoo, and S. K. Sul, “Dual observers for the disturbance rejection 
of a motion control system,” in Conf. Rec. 42nd IAS Annual Meeting, 2007, pp. 256-
261. 

[13] Topographies taken from ME746 course notes, University of Wisconsin at Madison 
[14] S. M. Yang, Y. J. Deng, “Observer-based inertial identification for auto-tuning servo 

motor drives,” in Industry Application Conference, vol. 2, 2005, pp. 968-972. 
[15] Ahmed, J. “Asymptotic Tracking of Spacecraft Attitude Motion with Inertia 

Identification”, AIAA Journal of Guidance, Dynamics and Control, Sep-Oct 1998. 
[16] Cristi, R., “Adaptive Quaternion Feedback Regulation for Eigenaxis Rotation”, AIAA 

Journal of Guidance, Dynamics and Control, Nov-Dec 1994. 
[17] Sanya, A. “Globally Convergent Adaptive Tracking of Spacecraft Angular Velocity with 

Inertia Identification”, Proceedings of IEEE Conference of Decision and Control, 2003. 
[18] Niemeyer, G. and Slotine, J.J.E, “Performance in adaptive manipulator control”, 

Proceedings of 27th IEEE Conference on Decision and Control, Decemebr, 1988.  
[19] Slotine, J.J.E. and Benedetto, M.D.Di, “Hamiltonian Adaptive Control of Spacecraft”, 

IEEE Transactions on Automatic Control, Vol. 35, pp. 848-852, July 1990. 
[20] Fossen, T. “Comments on ‘Hamiltonian Adaptive Control of Spacecraft’ “, IEEE 

Transactions on Automatic Control, Vol. 38., No. 4, April 1993. 

www.intechopen.com



Advances in Spacecraft Systems and Orbit Determination

Edited by Dr. Rushi Ghadawala

ISBN 978-953-51-0380-6

Hard cover, 264 pages

Publisher InTech

Published online 23, March, 2012

Published in print edition March, 2012

InTech Europe

University Campus STeP Ri 

Slavka Krautzeka 83/A 

51000 Rijeka, Croatia 

Phone: +385 (51) 770 447 

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai 

No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 

Fax: +86-21-62489821

"Advances in Spacecraft Systems and Orbit Determinations", discusses the development of new technologies

and the limitations of the present technology, used for interplanetary missions. Various experts have

contributed to develop the bridge between present limitations and technology growth to overcome the

limitations. Key features of this book inform us about the orbit determination techniques based on a smooth

research based on astrophysics. The book also provides a detailed overview on Spacecraft Systems including

reliability of low-cost AOCS, sliding mode controlling and a new view on attitude controller design based on

sliding mode, with thrusters. It also provides a technological roadmap for HVAC optimization. The book also

gives an excellent overview of resolving the difficulties for interplanetary missions with the comparison of

present technologies and new advancements. Overall, this will be very much interesting book to explore the

roadmap of technological growth in spacecraft systems.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

T. A. Sands (2012). Physics-Based Control Methods, Advances in Spacecraft Systems and Orbit

Determination, Dr. Rushi Ghadawala (Ed.), ISBN: 978-953-51-0380-6, InTech, Available from:

http://www.intechopen.com/books/advances-in-spacecraft-systems-and-orbit-determination/physics-based-

control-methods



© 2012 The Author(s). Licensee IntechOpen. This is an open access article

distributed under the terms of the Creative Commons Attribution 3.0

License, which permits unrestricted use, distribution, and reproduction in

any medium, provided the original work is properly cited.


