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1. Introduction 

Powder injection molding (PIM) has been shown itself to be a successful shaping technique 

for producing complex-shaped ceramic, metal or cermet parts. The process starts with 

preparing a high solid loading suspension, where ceramic or metal powder is mixed with a 

thermoplastic material. At high temperature the suspension is fluid and can be injected into 

molds by applying a pressure. Inside the mold the suspension takes the shape of the mold 

and then cools below the melting point of the thermoplastic material and solidifies into a 

green body. After the molding cycle the green body consists of solid particles held together 

by the thermoplasic phase, which serves as a binder.  

The challenging and time-consuming operation in the powder-injection molding process is 
removing the binder from the green bodies prior to the sintering, without causing any 
deformation or cracks. The debinding process is difficult because green bodies contain 
relatively large amount of poorly volatile binder in the solid state, i.e. below the melting point. 
Debinding is usually achieved by slowly heating the green bodies, causing the binder to 
decompose and vaporize. This is the thermal debinding process. The difficulties are especially 
severe in low-pressure injection molding, since in this case the binder does not contain a 
backbone polymer that would hold the particles firmly in place during the debinding. Low-
pressure injection molding (LPIM) is a variant of injection molding where relatively low 
pressures are used, typically less than 0.7 MPa, and the pressure is applied using compressed 
air instead of a screw (like in the more common high-pressure variant). The liquid medium in 
the feedstock is a low-melting-point wax, which is crucial for the low viscosity of the molten 
feedstock. The advantages of LPIM, in comparison with other ceramic injection techniques, 
include the lower cost of the molds, less die wear and less expensive and simpler equipment 
for the injection molding (Zorzi et al., 2003; Cetinel et al., 2010; Loebbecke et al., 2009; Gorjan et 
al., 2010). The method has also been shown to be appropriate for the shaping of 
microcomponents (Cetinel et al., 2010; Bauer & Knitter, 2002; Wang et al., 2008). 

However, an effective way of reducing the formation of defects in the process of binder 
removal exists. That is, to introduce an additional debinding step – debinding in a wicking 
embedment (Curry, 1975; German, 1987; Wei, 1989; Liu, 1999; Bao & Evans, 1991; German, 
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1990) or wick-debinding. A wicking agent can be in the form of a porous solid substrate 
plate or in the form of a loose powder or granulate. The granular form offers a gentle 
physical support for samples, regardless of their shape, and thus prevents certain flaws, 
such as distortion and cracking. The capillary extraction is uniform over the entire surface of 
the green body, which ensures that debinded parts also have, as much as possible, a uniform 
structure after the wick-debinding. A solid plate does not offer so many benefits; however it 
has one advantage over the granular form of wicking agent, i.e., there are fewer practical 
problems when handling the compacts after the debinding. The wick-debinded parts do not 
have to be cleaned and are simply transferred to the sintering furnace.  

 

Fig. 1. Wick-debinding on a porous plate. The molten binder is extracted from the green 
body into the porous supporting plate.  

 

Fig. 2. Wick-debinding in a embedment of porous powder or granulate. The molten binder 
is extracted in all directions from the green body.  

The wicking embedment can be utilized with great success in either the high- or the low-
pressure injection molding. However, its use is more beneficial in the low-pressure variant, 
where the debinding is a more delicate operation. 

2. Fundamentals 

The basic principle of wick-debinding is the phenomenon called capillarity, which is a 

spontaneous flow of liquid into small pores. This effect occurs because of the attractive 

forces between the liquid and the solid surface of the pores and the surface tension of the 

liquid. The attraction of the liquid to the surface causes the adhesion of the liquid and the 

solid, which results in the liquid wetting the surface. The wetting is characterized by a 

wetting angle, which depends on the interactions between the liquid phase, the solid phase 

www.intechopen.com



Wick Debinding – An Effective Way 
of Solving Problems in the Debinding Process of Powder Injection Molding 

 

91 

and the atmosphere. The smaller the wetting angle the better is the wetting and the liquid 

easily spreads over the surface. 

 

Fig. 3. Sketch of a droplet of liquid on a solid surface showcasing the wetting phenomenon, 
characterized by the wetting angle (Φ). When a liquid wets a surface it spreads over it.  

An interesting phenomenon occurs when the liquid is inside a small pore. When the liquid 
wets the surface of a small pore at a certain angle (Φ), the surface becomes concavely curved 
as is sketched in Fig 4. Any curved liquid surface causes a pressure difference across the 
interface (ΔPc = PV - PL) between the liquid and the surrounding atmosphere.  

 

Fig. 4. The liquid, that wets the surface, inside a small, cyllindrical pore  forms a concave 
spherical surface that causes a pressure difference between the liquid phase. 

The equilibrium pressure difference is described by the Laplace-Young equation: 

 
1 2

1 1
 

     
 

c L VP P P
R R

 (1) 

where ΔPc [Pa] is the pressure difference between the liquid phase and the air phase, γ 
[N/m] is the surface tension, and R1 and R2 are the principal radii of curvature. As the 
capillary surface is concave towards the atmosphere, the liquid pressure is lower than that 
of the atmosphere, possibly reaching negative values, which is called a tensile stress inside 
the liquid (Bouzid et al., 2011). 

In the case of a small, cylindrically shaped, pore channel the surface of the liquid is 
symmetrical and R1 = R2 = R . On small scales gravity is not strong enough to significantly 
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influence the shape of the liquid surface so the surface has a spherical shape. If the wetting 
angle is considered the curvature in the small, tube-shaped, pore channel can be reasoned 
from Fig. 4: 

 
 2 cos




d
R  (2) 

Combining equations (1) and (2) we obtain a correlation between the capillary pressure, the 
wetting angle and the pore diameter:  

 
 4 cos 

 cP
d

 (3) 

From equation 3 it is clear, that the capillary pressure is inversely proportional to the pore 
diameter. Because the capillary pressure is larger for smaller pores, the liquid is forced to 
move from the larger to the smaller pores. So in the equilibrium state the liquid would fill 
the smallest pores of the system. The main idea of wick-debinding is to get a green body, 
heated to the temperature where the binder is molten, in contact with a material that has 
finer pores than the pores of the green body. Capillarity would then cause the binder to 
move from the green body into the material in the contact.  

The wetting angle must be quite small for practical use. If the surface is not wetted by the 

liquid (Φ > 90°) then cos(Φ) has a negative value, which means that the capillary pressure 

would be opposite and the liquid would  not enter the porous media. 

In any case, in a real system the porous media consist of pores of different sizes and shapes. 
Even for a green body made of packed monosized spherical particles there are voids of 
different sizes and shapes. However, real powders are composed of particles that are 
different in size and shape, which leads to an even more complex pore structure and a wider 
size distribution of pores. A labyrinth of interconnected voids is present in the green body 
and also in the wicking agent. Because of the complexity of real systems, the equation (3) is 
difficult to use directly. However, in real systems it has been experimentally observed that 
the liquid enters a porous body with a front (Bao & Evans, 1991; Somasundram, 2008) and a 
single value of characteristic capillary pressure at the front can be successfully used.  

Another important thing to consider in the debinding is the kinetics of the process. It is 

important, from a practical point of view, that the process is reasonably fast. The kinetics of 

wick-debinding, besides capillary pressure, also depends on the resistance to flow through 

the porous media. Each individual channel has a certain resistance - a viscous drag that 

limits the velocity at which the liquid is flowing through.  

The motion of liquid substances is generally described by the Navier-Stoker equations, 
which arise from applying Newton's second law to fluid motion. However, these equations 
are too complicated for practical use in describing debinding phenomena since the shape of 
the liquid surface would present boundary conditions that are too complex. However, with 
the development of computer software for liquid mechanics and because of the constant 
increase in computer power it is possible that accurate simulations of debinding will be 
developed in the future. Nevertheless, a simplified theoretical approach in dealing with the 
phenomena of debinding has produced satisfactory results.  
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The flow through an idealized single, long, circular, pore channel is described by the Hagen-

Poiseuille equation (4), which is also an exact solution of the Navier-Stokes equations with 

certain assumptions, such as steady state, axisymmetric flow with no radial and swirl 

components of velocity. 

 
2

32



d P

q
L

 (4) 

where q [m/s] is the flux or flow per area, ΔP [Pa] is the pressure difference between the 

ends of the pore channel, μ [Pa s] is the viscosity and L [m] is the length of the pore channel. 

The smaller the pore, the larger the viscous drag. This generally means that small pores 

present a high resistance to flow. Again, like in the case of using equation (3), the Hagen-

Pouseille equation is due to the extremely complex shapes of pore channels in real systems, 

inappropriate for calculations, but nevertheless it demonstrates that despite the high 

capillary pressures, liquid transport through small pores can  be slow. However, regardless 

of the complexity of pore channels, the flow of a liquid through porous material can be 

successfully described by a simple equation called the Darcy's law: 

 



 
K P

q  (5) 

where q [m3/ (m2 s)] is the volumetric flux, K [m2] is the parameter called permeability, η [Pa 

s] is the viscosity and P [Pa] is the pressure gradient. 

The law was formulated in the 19th century by the French engineer Henry Darcy based on 

the results of water flow through sand (Richardson & Harker, 2002). It is a constitutive 

equation with a similar meaning for fluid flow as Ohm's law for the electricity and Fourier's 

law for the conductive heat transfer. Darcy's law has been experimentally confirmed on 

many different material combinations and is considered well proven. It has also been 

derived from the Navier-Stokes equations.  

The permeability (K) is a characteristic parameter of a porous substance that depends on the 

size, shape and interconnectedness of the individual pore channels and on the fractional 

porosity. The complex shape of pore channels makes a permeability difficult to calculate or 

predict from basic principles.  

Many empirical equations have been used to determine the permeability from basic 
powder-compact properties, such as particle diameter (d), specific surface (S) and fractional 
porosity (E). Some of them are listed below (Bao & Evans, 1991; German, 1987):  
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2.422

190
 

   
 

E
K

S
 (8) 

These permeability correlations have been tuned for a forced flow through the porous 

material, i.e. , the flow of liquid that is pushed through the material by applying an external 

pressure. However, the permeability can be significantly different in the case of capillary 

extraction, where the liquid is sucked out of green body by capillary forces.  

The wicking agent must extract the liquefied binder from the green body, which is itself a 

porous body. If the molten binder is removed from the green compact then a new surface 

must be formed in the interior of that compact. This new surface, which initially appears in 

larger pores, causes a capillary pressure in the opposite direction and resists extraction. A 

competition for the binder emerges between the two porous media. Only the smaller pores 

of the wicking agent might have a capillary suction that is strong enough to exceed the 

capillary pressure of the green body. The liquid then travels into the wicking agent only 

through these pores. In contrast, if the liquid were to be forced by the external pressure 

through the wicking agent it would travel mostly through larger pores, which present a 

smaller resistance. 

The measured permeability, or that calculated from equations 6-8, could be significantly 

higher than in the case of capillary extraction. This means, that conventional methods of 

measuring permeability, such as measuring the forced gas flow through a sample of a 

porous material, cannot be used to determine the permeability for the capillary-extraction 

phenomenon. The mismatch between the forced flow and the capillary-extraction 

permeability is especially large in the granular form of the wicking agent. A characteristic 

case for porous material in the form of large granules with a fine porosity is schematically 

presented in Fig 5. If the fluid is forced through such a material the permeability would 

appear much larger than if this granulate was extracting the liquid from another porous 

material, for which a strong capillary pressure is required. 

 

Fig. 5. In the capillary extraction the liquid flows only through smaller pores inside the 
granulae, wheras in the case of liquid flow forced by external pressure the majority of flow 
would be between the granulae. 
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Besides the kinetics of the capillary-extraction process it is crucial that the powder compact 

of green body retains its shape after the process has been completed and no flaws are 

introduced. One of the most critical moments in the process is the point when the binder 

melts. At this stage the compact becomes quite weak and soft. This is especially critical in 

the case of low-pressure injection molding, where only one component binder i.e., paraffin 

wax, is used. It is because of a characteristic known as the yield stress that the green body 

retains its shape. The suspension behaves like a rigid body below the yield stress and flows 

like a liquid above the yield stress. The yield stress is mostly governed by the particle size, 

shape, solid content and the inter-particle forces.  

However, a large yield stress is undesirable for the molding step, since it results in a low 

moldability of the suspension (German, 1990). Suspensions with a high yield stress must 

have high powder content, which also increases viscosity, which is again undesirable in the 

molding step (German, 2003).  

Fortunately, the yield stress of the molded green body can be significantly larger than the 

yield stress of the suspension before molding. This is because the particles rearrange during 

molding and solidification into a denser configuration - a consequence of the shrinkage of 

the binder after solidification. An increased attractive inter-particle interaction occurs in the 

denser form (Dakskobler & Kosmač, 2009). Ideally the process does not reverse during re-

melting. If the inter-particle forces are high enough, then the particle arrangement will not 

change; instead the expanding binder will be exuded from the body, while the particle 

arrangement remains intact. A series of photographs of a LPIM sample, taken with an 

optical microscope during heating from below to above the melting temperature of the 

binder, is shown in Fig. 6.  

A molten paraffin binder exudes out of the green body. This happens without any 

disruption of the powder skeleton. 

The extent of the exudation effect depends on the amount of low-melting point wax in the 
body. During the melting the volume of the wax increases by 15%. The effect is most 
pronounced in the low-pressure injection molding where the amount of wax is large – 
around 60 vol%. In high-pressure molding the amount of wax is around 10% – 30%.The 
large amount of wax is an important factor that explains why in LPIM extreme difficulties 
are encountered when a wicking agent is not used. In the HPIM process the yield strength 
during melting does not pose that big a problem, because the additional high-melting point 
polymer ensures that the particles are held in position. It has been shown that the yield 
stress of molded parts can also increase with the storage time after the molding (Novak et 
al., 2000; Cetinel et al., 2010). 

Water from a humid environment can penetrate the green body and interfere with the 

bonds between surfactant molecules and the surface of the particles. The strength of the 

inter-particle forces increases, which leads to a significant increase in the yield strength. This 

effect can be made even faster, if the molded bodies are soaked in water (Novak et al., 2000). 

Wicking embedment offers another benefit. It guarantiees a gentle physical support for the 

parts. If the debinding takes place on a hard substrate there is danger that certain flaws will 

occur, as schematically presented in the sketch in Fig. 7. The suspended parts of the green  
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Fig. 6. Exudation of the paraffin-wax binder during heating above the melting point of the 
paraffin, as observed with optical microscope. The photograph a) shows the state before the 
melting, b) shows the first molten paraffin exuding from the green body, c) shows the 
situation 1 minute after the b) and d) shows state 10 min after the b).  

 

 
 

Fig. 7. Green bodies with a complex shape can pose difficulties if they are debinded on a 
solid substrate. Small areas on which the green body rests on the substrate (1 and 2) can be 
deformed due to the large compressive stress. Suspended parts of the body can bend due to 
gravity or even crack at the point where the tensile stress is the highest (3). The wicking 
embedment can successfully reduce these flaws, since the support pressure is well spread 
over the green body's surface. 
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body could bend or crack and point pressure areas where the green body rests on the solid 

substrate can deform. 

3. Overview of theoretical work 

Because of the complexity of the capillary system in the porous green body and the wicking 

agent the accurate and general theoretical model is difficult to obtain. Since the systems can 

be quite different, the extraction can also show different behaviour. The existing theoretical 

models predict different behaviors during the debinding and many even contradict each 

other. The basis of all models is Darcy's law and some form of capillary-pressure 

description. One of the first to theoretically describe the process of wick debinding for 

injection-molded samples was German (German, 1987), who in 1987 proposed a model, 

where he assumed that the binder is extracted from a molded compact as a continuous body 

in liquid form, leaving behind a binder-free region.  

A partially debinded compact should, therefore, have a characteristic binder distribution 

with a binder-saturated region near the contact with the wicking powder and a region with 

no binder on the other side. A sharp border between these regions should be present – a 

sign of the trailing front of the molten binder. This model is simple and has frequently been 

used as a basis for research in wick debinding. Monte-Carlo simulations of binder removal 

based on German’s assumptions have also been conducted (Shih & Houring, 2001; Lin & 

Houring, 2005). These simulations focused on binder penetration in the wicking embedment 

and examined the case where pieces are not completely surrounded by the embedment.  

However, German’s model has been criticized, on the basis of experimental data. 

Contradicting this model, many researchers observed that the binder is uniformly 

distributed inside the body at all stages of the debinding process (Liu, 1999; Bao & Evans, 

1991; Vetter et al., 1994; Kim et al., 1999; Somasundram, 2008). There is also the question of 

how the air can enter behind the trailing front into the binder-free region if the molded 

pieces are completely surrounded by the wick (Somasundram, 2008). Furthermore, the 

debinding rate does not correspond well with some experiments (Vetter et al., 1994). It has 

also been observed that the permeability in a wick embedment can have important effects 

and can be a limiting factor, rather than the flow through a sample, as was suggested in 

German’s model [Vetter et al., 1994; Somasundram, 2008]. With more precise examinations 

of the binder-removal rate it has been confirmed that wick-debinding must take place via 

more than a single mechanism.  

One clearly observable effect, for example, is a rapid decrease in the binder content at the 

beginning of the process. This has been attributed to the pressure arising from the thermal 

expansion of the binder [Somasundram, 2008, Gorjan et al., 2010]. Before the debinding 

process, molded parts contain binder in the solid state, then during the melting a large, and 

relatively sudden, expansion of the binder occurs. For example, the density of the paraffin 

drops by around 15% during melting (Gorjan et al., 2010). 

With further studies of the kinetics of capillary extraction it has been found that the molten 

binder inside the body exists in different states, a differentiation based on the position inside 

the body. It can behave as a 'mobile binder' located in the larger voids between the powder 
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particles, which can flow due to the pressure gradient caused by the wicking embedment 

and as an 'immobile binder' located on the surfaces of the particles and inside the smaller 

voids, which cannot be moved due to the capillary suction – it is too strongly bonded to the 

powder and trapped inside smaller pores (Gorjan et al., 2010). 

There can also be shrinkage during the debinding, which is inversely related to the ceramic 

volume fraction, with less shrinkage in green bodies with a high solid loading. Very little or 

no shrinkage occurs at a volume fraction of around 64% [Wright et al., 1990, Gorjan et al., 

2010]. In order to avoid a large shrinkage a green body must be made with high a green 

density. A high green density is also beneficial for the sintering process; however, a high 

solid loading is detrimental for the molding step. It is always necessary to make a certain 

compromise. 

Capillary extraction effectively removes only a part of the binder, because there is always a 
certain amount of the binder "trapped" inside the finest pores of the green body. This 
residual binder must be removed in the form of a gaseous phase. In the case of oxide 
ceramics the removal of the remaining binder can be achieved by controllably burning the 
binder. If the temperature during wick-debinding is raised above approximately 200°C then 
an organic binder starts to decompose due to oxidation reactions.  

All of the binder can be removed if the temperature is increased above approximately 600°C, 
where even carbon burns. However, when all of the binder is removed from the body, the 
body becomes extremely brittle and weak. In this state it would be impossible to remove it 
from the embedment and clean it without causing serious damage. One solution is to further 
heat the system to the temperature where first stage of sintering starts. Pre-sintered or 
'biscuit sintered' parts can then be safely removed from the embedment and since they 
contain no binder they can also be sintered without problems. However, practical problems 
can accompany this procedure. For example, if alumina parts are debinded a high 
temperature is required for the pre-sintering and at this temperature the wicking agent also 
starts to lose the fine porosity and can stick strongly to the surface of ceramic parts. 

Another, economically even more acceptable option is to heat the samples after the capillary 
extraction to the temperature where the organic binder starts to decompose and then hold the 
parts at this temperature. It has been observed that at this temperature some amount of 
paraffin wax cures into a hard, brown-colored, non-volatile resin, which remains in the parts 
and is stable at the dwell temperature of around 200°C. This curing effect drastically improves 
the strength of the samples, which increases with the dwell time (Gorjan et al., 2011).  

Parts processed in this way can be made sufficiently strong for handling without any risk of 

damage. They are also appropriate for green machining, like cutting, boring and grinding. 

Since they contain a very small amount of the binder, rapid heating inside the sintering 

furnace can be applied and the curing of the binder does not influence the strength of the 

sintered ceramic parts. 

A procedure of debinding, where the benefits of wick-debinding are fully used, has also 
been developed, while the main drawback, i.e., additional cleaning and handling operations 
are avoided. According to the patent the debinding and sintering can take place in a single 
furnace (Gorjan & Dakskobler, 2011). This can be achieved by using a high purity-carbon 
granulate, which completely burns after its role as the wicking agent is completed.  
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4. Practice 

In a practical use the wick-debinding process can offer significant benefits. Faster and safer 

debinding can be achieved in comparison with debinding a without the wicking agent. One 

of the most important factors in the debinding practice is to avoid the introduction of defects 

in green bodies. Potential defects include the loss of a compact's shape through distortion, 

warping, cracking and also the undesirable strong adhesion of the wicking powder on the 

surface of the debinded parts. 

For example, in a low-pressure injection-molding, shaping technique it is almost impossible 

to debind samples without using a wicking agent. In HPIM the use of wick-debinding can 

be avoided, since the green body retains its strength after the wax has been melted due to 

the presence of polymer, which binds the particles together. Also in the case of HPIM, the 

wick-debinding reduces the possibility of flaws. 

 

 

 
 

Fig. 8. Wick-debinding can significantly reduce the formation of flaws. Photograph a) shows 
the low-pressure injection molded sample, debinded without wicking embedment, while 
the photograph b) shows the sample which was debinded in the embedment of highly 
porous alumina wicking agent. 

A major practical problem of wick debinding is the danger of causing defects when the parts 

are removed from the wick embedment and cleaned afterwards. Because the debinded parts 
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can be quite fragile, a gentle and manually intensive operation is required. If the debinded 

compacts are strong, then a more robust handling such as sieving can be applied. During 

this handling the breaking of parts can occur. 

In the practice a wicking embedment must also satisfy some additional considerations 

besides having good capillary-extraction characteristics. It is the most practical if it is in the 

form of granules with a size of 50–200 μm. This size of granules ensures uniform contact 

with a green body and has, at the same time, good flowability. This flowability is crucial for 

easy handling. Smaller pores are powders tend to form dust, which is undesirable. Also, the 

granules are easier to clean from the surfaces of the parts after the debinding process. Each 

individual granule contains a very fine porosity, which is crucial for a highly efficient 

capillary extraction. 

The correct temperature regime must be used in order to achieve debinding. A slow heating 

rate must be applied in order to give the wicking agent time for extraction. Typical 

debinding cycles last from 20 hours to several days. 

The adhered wicking agent causes problems, because it would lead to a rough surface after 

the sintering. Therefore, it should be thoroughly cleaned from the debinded parts.  

 

 

Fig. 9. Alumina wicking agent in the granular form. Photograph a), taken with optical 

microscop, shows granules of the wicking agent. Photograph b), taken with scanning 

electrone microscope show the surface of one granule. It can be seen, that the granula 

contains very fine porosity, which is a condition for efficient capillary extraction.    
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Fig. 10. Comparison of the properly debinded part (left) with the deformed part (right), 
which was deformed and had granulate wicking agent adhered to the surface. The defect 
was caused when the part was embedded into a too hot wicking agent, which had not been 
cooled enough after a thermal regeneration.   

 

 
 

Fig. 11. Wick-debinded parts are loaded on a tray for the sintering process. Successfully 
wick-debinded samples contain an open porosity and are ready for a fast sintering cycle, in 
which complete burnout of the residual binder takes place. 
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After single or multiple uses the wicking agent accumulates a certain amount of organic 
phase – binder degradation products. This phase decreases the porosity of the wicking agent 
and thus its capillary-extraction ability. However, it can be regenerated by heating it to 
around 600°C, where all the organics burn. In practice, a wicking granulate with different 
amounts of residual organic phase can be used for debinding different parts. Small parts are 
debinded in the embedment, which is rich in organics, whereas the large parts are debinded 
using freshly regenerated granulate with a maximum capillary-extraction ability. As a 
result, the embedment can thus be consequently used for ever smaller parts. 

5. Conclusion 

Removing the organic binder from the powder-injection-molded parts with the use of 
highly a porous granular embedment has been shown to be an effective method. It offers 
many benefits, such as shorter debinding time due to capillary extraction. Also, it 
guarantees a gentle physical support for the parts and therefore reduces certain flaws, such 
as distortion and cracking. Wick-debinding also has an important drawback, such as the 
practical problems of cleaning the debinded bodies. These drawbacks are the reason, that 
wick debinding is avoided if possible. In the case of high pressure injection molding it is 
possible to avoid using the wick embedment because of the use of high melting point 
polymeric binders in addition to the low melting point wax.  

However in the case of low-pressure-injection molding, where the debinding process is even 
more delicate the use of wick-debinding has a firm place. Furthemore, future improvements 
in wick-debinding and the developments of novel procedures can make this highly effective 
way of removing the binder from injection-molded parts easier to apply and more 
popularize in the industry.  
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