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1. Introduction 

Calcium (Ca2+)-activated potassium (K+) channels are activated by the synergistic action of 

voltage as well as by Ca2+ which links these channels to cell metabolism. Because of their 

high level of functional diversity the channels are widely expressed in a remarkable amount 

of different cells from bacteria to men and found in a great variety of tissues such as sensory, 

muscle, vascular or the brain. The channels are among the most frequently studied K+ 

channels giving rise to an impressive amount of knowledge about their structure and 

function. The idea of a Ca2+-activated conductance was born in 1958 during studies on 

erythrocytes by Gardos (1958) who showed that metabolically deprived cells in the presence 

of internal Ca2+ augment the permeability of the cell plasma membrane to K+ ions. The 

finding was further elaborated by direct injection of Ca2+ ions into mollusc neurons 

(Meech & Standen 1975; Gorman & Hermann 1979) which supported the idea of a Ca2+- 

and voltage dependent membrane K+ conductance and showed that it is also present in 

excitable cells. Up to present Ca2+-activated K+ conductances were and still are studied in 

great detail concerning their biophysical, physiological, pathophysiological, 

pharmacological, structural and functional properties (for early and recent reviews see 

Meech 1978; Hermann & Hartung 1983; Latorre et al.. 1989; Kaczorowski et al. 1996; 

Gribkoff, et al. 2001;  Jiang et al., 2001; Weiger et al. 2002; Calderone 2002; Jiang et al., 

2002) Maher & Kuchel 2003; Salkoff et al. 2006; Pluznick & Sansom 2006; Cui et al. 2009; 

Wu et al. 2010; Lee & Cui 2010; Grimm & Sansom 2010; Hill et al. 2010; Berkefeld et al. 

2010; Cui 2010). In the first sections of this chapter after we briefly describe techniques to 

record BK channels we review some properties of BK channels which appeared important 

in the context of our further presentations.  

Ethanol is produced by the cell metabolism and is generally known as one of the most 
ancient and most ubiquitous psychoactive drugs consumed by humans. There are myriads 
of publications on the effects of alcohol on body functions, behavior, social interactions or 
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cancer genesis. Research progressed rapidly in the field and scientists are vividly collecting 
data on the effects of alcohol and we experience growing understanding on the cellular level 
of some processes involved, however, many of its molecular mechanisms of action still 
remain elusive. We will review some aspects of the effects of ethanol as well as acetaldehyde 
- its first metabolite – on BK channels.  

Polyamines (putrescine, spermidine and spermine), are simple molecules present in all 
eucaryotic cells. They have a wide array of functions from modulating ion channels, 
involvement in apoptosis and carcinogenicity and are required in cell proliferation and 
development. The Ca2+-activated K+ conductance was among the first to be reported being 
modulated by polyamines. We will briefly review the latest development in the field and 
cover the molecular mechanisms on polyamine interaction with BK channels.  

Hydrogen sulfide (H2S) is the third gasotransmitter discovered in brain next to nitric oxide 
and carbon monoxide. While H2S is already well known to modulate ion channels, it was 
only recently discovered to also modulate BK channels. In the last section of this chapter we 
will briefly focus on this relatively new field in BK channel physiology. 

2. Technical aspects of BK channel recordings 

Due to their huge conductivity of 100 - 300 pikoSiemens (pS) BK channels are easily visible 
and discernible from other ion channels in single channel recordings. Since BK channels are 
well known to be asymmetric, i.e. drugs may act from the intracellular but not from the 
extracellular side, it is important to investigate BK channels in the inside out as well as in the 
outside out patch clamp mode. Choosing a model such as Chinese hamster ovarian (CHO) 
cells transfected with BK channels, inside out patches will allow to record macroscopic 
currents instead of single channels due to the huge number of channels expressed in a patch 
which add up to a macroscopic current. A good model for outside out single channel 
recordings are in our hands the GH3/GH4 cell lines from rat pituitary tumor cells. BK 
channels can be recorded in two different solution settings: a) a solution system which 
recalls the physiological situation with 3 - 5 milliMolar (mM) KCl in the extracellular bath 
and 100 - 145 mM KCl at the intracellular side, or b) in a more biophysical approach where a 
symmetric solution system with equal amounts of potassium (100 - 150 mM KCl) at either 
side of the membrane is used. The latter approach has been adopted by many researchers 
reported in the more recent literature. Since BK channels are Ca2+ sensitive a great deal of 
attention has to be paid to the Ca2+ concentration in the solution facing the intracellular side. 
Ca2+ has to be buffered and the resulting so called “free Ca2+ concentration” needs to be 
carefully adjusted according to the demands of the experiment. The Ca2+ concentration in a 
Ca2+ buffered solution reported as free Ca2+ contains only a fraction of the total Ca2+. 
Depending on the buffer used the free Ca2+ concentration can be calculated using an online 
calculator (http://www.stanford.edu/~cpatton/webmaxcS.htm). Other Ca2+ buffering 
substances like magnesium or ATP have to be taken into account in these calculations. The 
best practice, however, is to finally measure the free Ca2+ concentration in the ready to use 
prepared solution with a Ca2+ sensitive electrode. At very low intracellular Ca2+ 
concentrations (below 1 microMolar (µM) free Ca2+) and to remove potential other metal ion 
contaminants, solutions shall be passed over a Chelex 100 (BioRad) ion exchange column, 
prior to adding Ca2+ buffers and divalent ions (Erxleben et al. 2002). Low Ca2+ 
concentrations are in a range below 1 µM, while high Ca2+ concentrations for the BK 
channels are in a range of 10 - 100 µM free Ca2+, depending on the type of BK Channel used. 
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The free Ca2+ concentration employed also determines the buffer to be used. BAPTA and 
EGTA are the best choice for low free Ca2+ concentration while HEDTA would be chosen for 
higher Ca2+ concentrations (Patton et al. 2004). It is good advice not to use these buffer 
systems at the edge of their buffer capacity since any additional Ca2+, which may result for 
instance in whole cell recordings from Ca2+ influx by activation of Ca2+ channels, may not be 
buffered anymore and hence alter BK channel activity. Also higher concentrations of the 
Ca2+ buffer substance used like 10 mM are more favourable than low concentrations to make 
the system more stable. In addition small mistakes in balancing the salts for the solution or a 
sloppy adjustment of the pH can have serious consequences for the buffer range. Therefore 
great care has to be taken in the preparation of solutions and a freshly calibrated pH meter 
may help to adjust the free Ca2+ concentrations precisely. Ca2+ buffers can be of the fast type 
using BAPTA or of the slow type using EGTA. Fast buffers have the advantage that any 
input of additional Ca2+ from Ca2+ channels or a release of internal Ca2+ will not be sensed 
by the channel. Slow buffers like EGTA may be exceeded by the fast appearance of high 
amounts of Ca2+ but keep the overall Ca2+ concentration constant. For more information 
which Ca2+ buffer to use and how to calculate the free Ca2+ concentration see (Bers et al. 
2010; Patton et al. 2004). 

BK channels are located frequently in clusters in the cell membrane. This makes it 
sometimes almost impossible to obtain a patch with just a single channel. A way to work 
around this and to minimize the number of channels is to decrease the orifice of the tip of 
the patch electrode which increases the patch pipette resistance up to 5 - 6 MegaOhm. 
Indication that only one channel is in the patch, which is important for instance for kinetic 
analysis, can be obtained by increasing the Ca2+ concentration in the solution or by 
increasing the voltage to positive values and make sure that only one channel is observed. A 
good starting point to record single BK channels is to use a free Ca2+ concentration of 1 µM 
at a voltage of +30 mV. Submillimolar concentrations of tetraethylammonium (TEA) may be 
used as a low cost drug to block BK channels in initial experiments. To further specify the 
channel specific BK channel blockers such as iberiotoxin or paxilline shall be used. 

3. Ca
2+

 activated K
+
 channels 

Ca2+-activated K+ channels channels are found in a great variety of excitable and non-
excitable cells. The channels are broadly divided into three subfamilies mainly defined by 
their biophysical and pharmacological properties (Wei et al., 2005). In this chapter we will 
focus on the big (large or maxi conductance) K+ channels (BK) which are also termed KCa1.1 
or KCNM (gene name). The channels are also known as Slo1 channels - for “Slowpoke”, a 
gene that was first cloned from the fruit fly Drosophila (Atkinson et al. 1991) and has since 
been cloned from a variety of organisms (Adelman et al. 1992; Salkoff et al., 2006). The 
channels are activated usually by both metal ions (Ca2+/Mg2+) and by membrane voltage 
synergistically, but can also be activated by either Ca2+/Mg2+ or by voltage alone. In the 
absence of Ca2+ the channels require extremely large depolarization for activation (+100 to 
+200 mV). Some details of BK channels which bear relevance to the following section on 
ethanol/acetaldehyde, polyamines and H2S are highlighted below. 

3.1 BK channel properties 

BK channels have a tetrameric structure with four independent alpha (ǂ)-subunits 
containing the functional channel pore. The ǂ-subunit subunit is a large protein of about 
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1,200 amino acids. Each BK channel ǂ-subunit consists of a total of seven transmembrane 
segments with a unique S0 segment that precedes the usually six transmembrane segments 
(S1-S6). The total of seven segments (S0-S6) renders the N-terminus (amino terminal) at the 
extracellular side of the membrane (Meera et al., 1997). Multiple splice variants of the ǂ-
subunit have been identified resulting in a great variety of channel properties in various cell 
types (Fodor & Aldrich, 2009). The segments S1-S6 are conserved as in other voltage-
dependent K+ channels. BK channels consist of charged voltage sensing transmembrane 
segments (S1-S4) where charges appear to be functionally distributed (Ma et al. 2006; 
Aggarwal & MacKinnon 1996; Seoh et al., 1996). The S0 segment specific to BK channels 
appears to be involved in movements of the voltage sensor (Liu et al., 2008), and seems to be 
required for functional interaction of ǂ-subunits and the accessory ǃ-subunits as well as for 
insertion of the channels into the plasma membrane (Wallner et al. 1996; Morrow et al. 2006; 
Liu et al., 2008). 

The pore forming segments (S5-S6) of each ǂ-subunit have an amino acid sequence at the 
selectivity filter (glycine-tyrosine-glycine - GYG) which is also found in many other types of 
K+ channels. The carboxyl (C) terminal tail comprises about two thirds of the ǂ-subunit 
protein. In this region interactions take place with various channel modulating proteins 
including protein kinases and phosphatases (Wei et al., 1994; Schreiber & Salkoff 1997). It 
further includes a negatively charged Ca2+ binding region, the so called Ca2+ bowl (Wei et 
al., 1994; Schreiber & Salkoff 1997; Jiang et al. 2001) and a double negative charged region 
which is sensitive for Mg2+ as well as for Ca2+, the so called RCK-domain (regulatory 
domain of K+ conductance). In addition the biophysical functions of BK channels can be 
altered by interaction with auxiliary beta (ǃ)-subunits. Tissue specificity is in part achieved 
by four different types of ǃ-subunits (ǃ1- ǃ4) which associate with the ǂ-subunit. ǃ4 for 
instance is primarily expressed in the brain (Weiger et al., 2000) while the others are mainly 
found in the periphery (Torres et al. 2007). In addition to the ǃ-subunits so called Slo 
binding proteins (Slob) have been identified which bind to and modulate Slo channels 
(Schopperle et al., 1998). Beside the complex pattern of channel gating by voltage, Ca2+ and 
ǃ-subunits, other modulatory factors influence BK channel activity, like pH, the redox state 
or phosphoryation of the channel protein. Furthermore, gasotransmitters, like nitric oxide 
(NO) causing nitrosylation, carbon monoxide (CO) conveying carboxylation and H2S 
imparting sulfuration may modulate channel activity (Wu & Wang 2005; Leffler et al., 2006; 
Kemp et al., 2009; Hou et al. 2009; Félétou 2009; Hu et al., 2011). 

Through alternative splicing the pore forming ǂ-subunit contains at its C-terminus a 
cysteine-rich 59-amino-acid insert between RCK1 and the Ca2+ bowl called stress-axis 
regulated exon (STREX). STREX exon expression is suppressed in hypophysectomized 
animals, whereas STREX exon expression is initiated by the stress-axis adrenocorticotropic 
hormone (Xie & McCobb 1998). Patch clamp recordings revealed that STREX causes BK 
channels to activate at more negative potentials and enhances activation and decreases 
deactivation which leads to increased repetitive firing of action potentials. STREX can be 
artificially induced by growing cells in phenol red which causes a significant increase in 
channel sensitivity to inhibition by oxidation but also to Ca2+ (Hall & Armstrong 2000). 
Coassembly of STREX/ǃ1-subunits, however, could only be stimulated with a truncated N-
terminus variation present which has physiological impact of channel regulation by Ca2+, 
oxidation, and phosphorylation. ǃ4-subunits together with the STREX insert alter BK 
channel biophysical properties in unexpected ways (Petrik & Brenner 2007). Individually ǃ4 
or the STREX insert promote channel opening by slowing deactivation at high Ca2+.  
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BK channels have the largest single-channel conductance of all K+ channels. The ideas why 
the conductance of these channels may be so large despite their high selectivity for K+ can be 
summarized as followed: a) a negatively charged ring structure at the inner face of the 
channel which by electrostatic attraction of K+ to the entrance approximately doubles the 
current amplitude (Brelidze et al. 2003; Nimigean et al. 2003;  Zhang et al., 2006; Carvacho et 
al., 2008), b) a voluminous inner cavity with an excess of negatively charged amino acids 
near the selectivity filter which traps K+ and facilitates their entrance into the selectivity 
filter (Brelidze & Magleby 2005; Li & Aldrich 2004), and c) a ring of four negative charges at 
the extracellular mouth of the channel (Haug et al., 2004), which pulls K+ from the channel. 
The exact mechanism by which the high conductance of these channels is accomplished is 
still not fully understood in particular the contribution of the later two mechanisms to 
channel conductance have to be tested rigorously. 

The dual modulation of BK channels by membrane voltage and by intracellular Ca2+ makes 

this channel to act as a molecular integrator of electrical events at the plasma membrane and 

intracellular signaling via Ca2+. Since Ca2+ is involved in a multitude of cellular signaling 

processes this also provides a link to cell metabolism and gene activation. BK channels are 

widely distributed in brain and are often concentrated in neuronal cell bodies and nerve 

terminals (Knaus et al., 1996; Wanner et al., 1999). They facilitate membrane repolarization 

during action potential discharge and this way participate in the regulation of 

neurotransmitter release (Gho & Ganetzky 1992; Bielefeldt & Jackson 1994). BK channels 

play also a major role in relaxation of smooth muscles in the bladder, penis/clitoris or lung. 

The activity of BK channels therefore plays an essential role in controlling action potential 

discharge activity, hormone secretion or vasoconstriction (Weiger et al. 2002). The outward 

K+ flux conducted by the BK channel moves the membrane potential in the hyperpolarizing 

direction suppressing activation of other voltage-dependent channels permeable to Ca2+- or 

sodium. This provides a negative feedback for voltage-gated Ca2+ channels and hence 

prevents the accumulation of intracellular Ca2+. Such a negative feedback system was 

already described for endogenous discharge activity in Aplysia pacemaker neurons (Gorman 

et al. 1981; Gorman et al. 1982).  

There is a vast body of evidence to show that BK channels are also modulated by a 
antagonistic cycle of protein kinases/phosphatases as well as by G-proteins (Toro et al. 1990; 

Reinhart et al., 1991; Chung et al., 1991; Wei et al., 1994; Bielefeldt & Jackson 1994; Schreiber 
& Salkoff 1997; Schubert & Nelson 2001; Zhou et al., 2010; Tian et al., 2004; Xia et al., 1998). 

Channels remain functionally associated to kinase/phosphatase and G-proteins even after 
isolation and reconstitution into lipid bilayer membranes. Furthermore, BK channels are 

directly activated by internal GTP or GTPǄS (a non-hydrolysable GTP analogue) in the 
presence of Mg2+, characteristic for a G-protein mediated mechanism (Toro et al. 1990). 

Modulation of channels by kinases/phosphatases is involved in physiological processes 
such as transmitter release, hormone secretion or muscle contraction (Levitan 1994; Schubert 

& Nelson 2001; Newton & Messing 2006; Dai et al. 2009). In many cases BK channels and 
kinases/phosphatases are arranged in “nano-domains”, and are constitutively attached to 

the channel proteins. The kinases themselves are regulated by substrate availability (ATP, 
GTP, phosphoinositoldiphosphat (PIP2), by spatial factors (closeness of kinase to the channel 

within the membrane, association to the channel via specific binding sites) or by hydrolysis 
via phosphodiesterases. 
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The activity of BK channels is modulated by the redox state of critical cysteine sulfhydryl 
groups of the channel protein or an associated regulatory protein involving free thiols and 
disulfides (DiChiara & Reinhart 1997; Wang et al., 1997; Gong et al., 2000; Tang et al., 2001). 
Cysteine residues known for their responsibility of redox modulation are usually located at 
the cytoplasmic side of the channel. Under reducing conditions the channel activity is 
augmented as shown in different cell types (DiChiara & Reinhart 1997; Gong et al., 2000;  
Wang et al., 1997), whereas inclusion of the STREX insert makes the channels extremely 
sensitive to inhibition by oxidation (Erxleben et al., 2002). 

BK channel activity is also influenced by their lipid surrounding. This has been studied by 

insertion of the channels into artificial lipid bilayer membranes. For example the probability 

of channel opening (Po) was significantly greater in phosphatidylethanolamine (PE) 

compared to phosphatidylserine (PS) at the same Ca2+ concentration and voltage 

(Moczydlowski et al., 1985). Also bilayer thickness and specific lipids such as 

sphingomyelin, which cluster in micro-domains have been identified as a critical factors that 

modulate BK channel conductance (reviewed in Yuan et al. 2004). Beside lipids cholesterol is 

a major component of cell membranes in animals. BK channels are generally inhibited by 

accessory cholesterol in native as well as in reconstituted cell membranes by shortening 

mean open and extending mean closed times. Depletion of membrane cholesterol results in 

an increase of channel open probability (Bolotina et al., 1989; Chang et al., 1995b; Crowley et 

al. 2003; Lin et al., 2006; Bukiya et al., 2008). 

4. BK channels - and ethanol/acetaldehyde 

Ethanol (CH3-CH2OH) is a product of cell metabolism and can affect all living organisms 

from bacteria to men where it has a multitude of effects at the cellular level. For almost a 

century it was generally accepted that many of the pharmacological actions of ethanol result 

from nonspecific interactions with cellular membranes causing a „disordering“ (fluidizing) 

effect. This was thought to alter membrane ionic conductances based on the „lipid theory of 

alcohol action“ by Meyer and Overton (in Lynch 2008). Later, it was found that 

physiological concentrations of ethanol produced rather small disordering membrane effects 

and Franks & Lieb (1987) pointed out that a change in temperature of less than 1°C is 

sufficient to mimic the effects of anesthetics on lipid bilayers. During the last decades it 

became clear that ethanol directly acts on proteins such as receptors and ion channels 

located in the plasma membrane or at intracellular signalling molecules. Experimental 

evidence revealed that some effects of ethanol are due to specific actions including most 

ligand-gated ion channels, such as glutamate-, -aminobutyric acid- (GABA) (Lobo & 

Harris 2008), dopamine- (Di Chiara & Imperato 1986), 5-hydroxytryptamine-, or 

acetylcholine-, opioid-, (Di Chiara et al. 1996; Herz 1997; Gianoulakis 2009), adenosine-, 

ATP- (Asatryan et al., 2011; Ostrovskaya et al., 2011), or TRP receptors (Benedikt et al., 

2007), as well as voltage-gated ion channels, such as K+, Na+, and in particular Ca2+ 

channels (Gonzales & Hoffman 1991; Crews et al., 1996b; Dopico et al. 1996; Jakab et al. 

1997; Horishita & Harris 2008; Dopico & Lovinger 2009; Kerschbaum & Hermann 1997). 

Ethanol was also found to interact with signal-transduction mechanisms including G-

proteins and protein kinases (Messing et al. 1991; Lahnsteiner & Hermann 1995; Newton 

& Ron 2007; Martin 2010; Kelm et al. 2011).  
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Ca2+ activated K+ channels are among those channels being directly modulated by ethanol 
(in Dopico et al., 1999; Brodie et al., 2007; Mulholland et al., 2009; Dopico & Lovinger 2009; 
Treistman & Martin 2009;  Martin et al., 2010). Activation of K+ channels drives the 
membrane potential in hyperpolarizing direction which led to the speculation that these 
channels may be involved in the sedative action of ethanol (Nicoll & Madison, 1982). 
However, many of the early studies on the ethanol effects used very high ethanol 
concentrations far above the lethal dose in humans. For instance extracellular application of 
500 - 2500 mM ethanol to cat trigeminal neurons caused a short burst of action potentials 
which was followed by hyperpolarization. This was interpreted as an ethanol-induced Ca2+ 
inward current that activated a Ca2+-dependent electrogenic K+-pump (Baranyi & Chase 
1984). Studies at more relevant pharmacological concentrations showed that 20 mM ethanol 
(this equals the legal blood concentration in many countries) enhances the Ca2+-dependent 
after-hyperpolarization, but not the Ca2+-independent after-hyperpolarization in rat 
hippocampus CA1 cells (Carlen et al., 1982). Similar findings were reported in other studies 
for hippocampus CA3 neurons, granule cells and cerebellar Purkinje cells (Niesen et al., 
1988). Initial evidence of an increase in a Ca2+ activated K+ conductance by ethanol came 
from experiments on identified mollusc (Helix) neurons (Madsen & Edeson 1990). First 
studies showing the involvement of Ca2+ activated K+ channels as a target of ethanol were 
presented in parallel by Dopico et al., (1996) and by Jakab et al., (1997). Ethanol augmented 
BK channel activity of isolated neuro-hypophyseal synaptic nerve terminals (Dopico et al. 
1996) and increased BK channel open probability of rat pituitary tumor cells (Jakab et al. 1997). 
The increase in channel activity was considered as a result of modification of channel gating 
induced by ethanol acting on the channel protein or at some signalling mediator. The 
reduction of neuropeptide release (vasopressin, oxytocin) by ethanol from neuro-hypophyseal 
terminals was explained by inhibition of voltage-dependent Ca2+ channels (Wang et al., 1991) 
and it was speculated that the decrease in circulating vasopressin levels is involved in the 
generation of diuresis, a frequently observed phenomenon after alcohol ingestion. 

4.1 Ethanol - BK channels – and cellular signalling 

Ethanol/drugs and cellular signaling is covered extensively in several reviews (McIntire 
2010; Ron & Messing 2011; Newton & Messing 2006; Harris et al. 2008; Chao & Nestler 2004; 
Newton & Ron 2007; Hoffman & Tabakoff 1990). In GH3 pituitary tumor cells the ethanol-
induced potentiation of channel activity was prevented in the presence of PKC inhibitors 
and phosphatase inhibitors augmented the effect whereas blockade of phospholipase C was 
not able to prevent BK channel activation (Jakab et al. 1997). Taken together the experiments 
suggested a PKC-mediated phosphorylation and stimulation of the channels. PKC 
involvement in acute and chronic ethanol action has been summarized by Stubbs & Slater 
(1999) and Brodie et al., (2007). Using transgenic mice two PKC isoenzymes have been 
identified that mediate opposing behavioural effects of ethanol (Newton & Ron 2007). 
Deletion of PKCǄ produced mice with high ethanol drinking phenotype requiring a high 
level of ethanol to reach intoxication - maybe similar to humans at risk to acquire 
alcoholism. On the other hand, deletion of PKCε produced animals with a low ethanol 
intake which were more sensitive to acute effects of ethanol - perhaps modelling humans 
with a low risk of developing alcoholism. The authors conclude that drugs interfering with 
different PKC isoforms may be beneficial in treating alcoholism. Ethanol has also been 
reported in cultured hippocampal neurons to transiently elevate intracellular Ca2+ by a Ca2+-
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induced Ca2+ release mechanism from internal stores by involvement of PKC activation 
(Mironov & Hermann 1996). Concomitant Ca2+ elevations in the cell soma as well as in 
dendrites were observed which appears important considering the effects of ethanol in the 
modulation of synaptic BK channels (Dopico et al. 1996). Ethanol activation of PKC was 
mimicked by application of the actin depolymerising drugs cytochalasin B and D suggesting 
that in intact cells cytoskeleton rearrangements may also contribute to Ca2+ liberation from 
internal pools (Mironov & Hermann 1996). This notion of an interaction of ion channels and 
the actin cytoskeleton is in concert with findings of BK channels in lipid rafts where they co-
localize with the actin cytoskeleton (Brainard et al., 2005). Disruption or stabilization of actin 
increased or decreased BK channel activity, respectively. A similar finding of an ethanol 
increased elevation of intracellular Ca2+ was reported for GH4/C1 pituitary tumor cells 
which appeared to result from Ca2+ influx as well as liberation of Ca2+ from internal stores 
(Sato et al., 1990; Jakab et al., 2006). The ethanol initiated increase of internal Ca2+, therefore, 
may be an additional factor to the activation of BK channels. Activation of BK channels is 
known to also derive from stretch activation of the cell membrane (Gasull et al., 2003; 
Kawakubo et al., 1999). Ethanol has been found to induce cell swelling even under 
isoosmotic conditions evoking transmitter and hormone secretion (Jakab et al., 2006). 
However, BK channels were reported to be stretch activated but insensitive to cell volume 
changes (Grunnet et al., 2002; Hammami et al., 2009) which makes it more likely that Ca2+ 
influx induced by ethanol activates BK channels but not cell swelling.  

Experiments with cloned BK channels from mouse brain (mslo ǂ-subunits) expressed in 

oocytes suggested that auxiliary subunits were not required for the action of ethanol 

(Dopico et al. 1998). Ethanol reversibly increased mslo activity in excised patches with a 

potency (EC50 = 24 mM) similar to native channels. Using this system it was concluded that 

the ethanol effect is unlikely to be mediated by second-messengers or G-proteins favouring 

a direct interaction of ethanol with the ǂ-subunit of BK channels. Since BK channel 

activation by an increase of intracellular Ca2+ was reduced it was hypothesized that ethanol 

and intracellular Ca2+ act as agonists (Dopico et al. 1998). In further experiments BK 

channels were incorporated into artificial lipid bilayers to avoid complexities as from native 

cell membranes such as cytoplasmic constituents or complex membrane lipid composition. 

Even under these minimum conditions ethanol increased the activity of BK channels with a 

decrease of mean closed time or increase of mean open time, whereas channel conductance 

was not affected (Chu et al., 1998; Crowley et al.2005).  

Recently the site of ethanol action at the BK channel protein has been targeted. A single 

mutation of threonine to valine (T107V) in the non-conserved S0-S1 linker loop has been 

identified to modify bovine BK channel (bslo) responses to acute ethanol exposure (Liu et al., 

2006). Ethanol increased bslo T107V channel activity caused by augmenting frequency of 

channel openings. In addition, incremental phosphorylation at T107 by Ca2+/calmodulin-

dependent protein kinase II (CaMKII) progressively increased channel activity which 

depending on the state of phosphorylation was gradually inhibited by ethanol. Therefore, 

phosphorylation at T107 is considered as a “molecular dimmer switch” that via post-

translational protein modification imposes tolerance to BK channels. It still remains to be 

seen where and how exactly ethanol impacts the channel structure to exert its effect and 

how tolerance is achieved. In intact cells the situation may be more complicated again since 

channels may be in different phosphorylated/dephorphorylated states and ethanol may 
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also affect intracellular signalling systems. BK channels have been found to cluster into 

nano-domains including ǂ-, ǃ-subunits with Ca2+/Mg2+-binding sites and attachments of 

slob protein(s), as well as kinases and phosphatases. Isolation of channels and insertion into 

lipid bilayers therefore does not preclude the possibility that other constituents of the 

channel also respond to ethanol or to second messenger mediated interaction.  

4.2 Ethanol – and membrane lipids 

Although modern studies have produced a large amount of experimental evidence that 
ethanol directly affects proteins the lipid theory is not obviated by those findings. Indeed 
the lipid environment is an important modulator of channel properties. Ethanol action on 
channels is influenced by the composition of the native cell membrane which may differ in 
different cell types. The lipid composition and changes in the lipids environment by ethanol 
which interacts with lipids may modulate channel activity. Prolonged exposure to ethanol 
alters the lipid composition of membranes (Taraschi et al., 1991). Recent studies show that 
the lipid environment impacts BK channel function and is involved in causing acute 
tolerance to ethanol. BK channels reconstituted into lipid bilayers exhibit increased open 
probability by ethanol similar to native channels but the baseline characteristics of the 
channels differed depending on the lipid composition (Chu et al., 1998). BK channel activity 
induced by ethanol was dependent on the size and shape of the phospholipids independent 
of their charges (Crowley et al. 2005). Altering the thickness of the bilayer into which BK 
channels from HEK cells (human embryonic kidney cells) were inserted changed the ethanol 
response from potentiation in thin bilayers to inhibition in thick bilayers which correlated 
with mean closed time of the channels (Yuan et al., 2008). As mechanism for the biphasic 
channel modulation was proposed that forces of lateral stress within the lipid bilayer 
combine with hydrophobic mismatch to the channel gating spring structure (Yuan et al., 
2007). It appears conceivable therefore that molecules such as cholesterol or alcohol inserted 
into the membrane bilayer may change its thickness and affect gating of BK channels. In fact 
elevation of membrane cholesterol decreased channel open probability (Bregestovski et al. 
1989; Bolotina et al., 1989) and antagonized the potentiating effect of ethanol on BK channels 
(Crowley et al. 2003). Depletion of cholesterol resulted in activation of BK channels, an 
increase of BK current density and reduced firing of action potentials (Lam et al., 2004; Lin 
et al., 2006). Furthermore, the effect of ethanol as well as cholesterol was greatly reduced in 
the absence of phosphatidylserine in the bilayer membrane stressing the complexity of lipid 
impact on BK channel activity. This is of special interest since brain cholesterol in mice (Chin 
et al. 1978) or cerebellar granula cells is elevated after exposure to alcohol (Omodeo-Salé et 
al., 1995). Ethanol also reduced the asymmetric distribution of cholesterol between the 
cytofacial (higher cholesterol) and exofacial leaflet of the lipid bilayer (Wood et al., 1990). 
Cholesterol by itself concentration dependently moved BK channels into the closed state 
(Chang et al., 1995a) and hence appears to override the augmenting effect of ethanol. 
Furthermore, basal channel activity and its potentiation by ethanol in bilayers containing 
phosphatidylcholine are not as forceful as in those containing phosphatidylserine (PS). In 
natural membranes PS is abundant in the inner leaflet of the cell membrane and serves as an 
anchor for membrane-associated signalling molecules that regulate ion channel activity. PS 
is involved in Ca2+-dependent PKC translocation to the cell membrane being a well-known 
modulator for both basal BK channel activity (Schubert & Nelson, 2001) as well as for 
ethanol potentiation of BK channels (Jakab et al., 1997). It is conceivable therefore that the 
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presence of PS in cell membranes is specifically required for ethanol to modulate BK channel 
function given the links that exist between this phospholipid and signalling molecules 
(Crowley et al., 2005). 

4.3 BK channels – ethanol and behaviour 

BK channels play a pivotal role in behavioural responses to ethanol. Ethanol applied to the 
nematode Caenorhabditis elegans at human intoxicating concentrations dose-dependently and 
reversibly cause impairment of locomotion and egg-laying (Davies et al., 2003). Using BK 
channel knock outs the slo-1 mutants were highly resistant to ethanol in behavioural assays. 
Behaviour of slo-1 gain-of-function mutants again resembled those of ethanol-intoxicated 
animals as they show behavioural responses like in-coordination and a loss of social inhibition. 
Selective expression revealed that only sol-1 in neurons but not in muscle rescued ethanol 
sensitivity. Investigation of excised BK channels showed that channel open probability was 
increased by ethanol as shown in previous single BK channel studies (Dopico et al. 1996; Jakab 
et al. 1997). In a molecular model for ethanol intoxication increased BK channel activity 
increases action potential repolarization and/or causes membrane hyperpolarization which 
shuts down Ca2+ channels and reduces transmitter release at synaptic terminals (Crowder, 
2004). The experiments clearly demonstrate that mutation of a single gene affects ethanol 
sensitivity, although this is most probably not the only mechanism involved and it remains 
interesting to further monitor extensions of these findings to higher animals or to humans. 
Martin, et al. (2008) recently examined the generation of action potentials in brain spiny 
neurons using whole cell patch clamp recordings. They found that the number of action 
potentials evoked by current injection was increased in ǃ4-subunit knockout mice compared to 
wild type under the influence of ethanol. However, the role of BK channels on the membrane 
resting potential was not investigated. 

4.4 BK channels – and ethanol tolerance 

Tolerance is generally defined as reduction or loss of response to a drug over time or after 
repeated exposure which may involve ion channels, receptors and/or gene expression 
(Chandler et al. 1998; Chao & Nestler 2004; Atkinson 2009; Treistman & Martin 2009). 
Tolerance in the nervous system is associated with down-regulation of excitatory receptors, 
such as NMDA-, nicotinic acetylcholine receptors or voltage dependent Ca2+ channels. It is 
also accompanied with up-regulation of inhibitory channels such as GABAA, glycine or 
serotonin receptors (Harris et al.2008). Different types of tolerance may be categorized into: 
a) acute tolerance – which is a time-dependent type of tolerance that occurs during drug 
exposure in a time frame of seconds to minutes, b) rapid tolerance – occurs after a single 
usually high dosage drug experience, and c) chronic tolerance, which takes place after 
prolonged, repeated, identical, low dose drug exposures in a time frame of hours, days or 
weeks (Berger et al. 2004; Treistman & Martin 2009; McIntire 2010; Cowmeadow et al. 2005). 
Eventually drug tolerance may lead to increased consumption and addiction defined as 
compulsive drug-seeking and drug-taking behaviour (Chao & Nestler 2004). 

In the early studies using excised single BK channel recordings from GH3 cells it was found 
that the potentiating effect after ethanol exposure rapidly declined. Within minutes both, 
mean open time and open probability of channels returned to control values (Jakab et al. 
1997). In contrast, BK channel activity from synaptic terminals after application of ethanol 
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remained elevated over minutes (Dopico et al. 1996). BK channels of rat hypothalamic-
neurohypophysial terminals also become rapidly tolerant to ethanol including two 
components: decreased ethanol potentiation (short term within minutes) and decreased 
channel density (long term >24 hours) (Pietrzykowski et al., 2004). These two types of 
tolerance appear to reflect different mechanisms: a) decreased BK potentiation by ethanol 
and, b) down-regulation of BK channels and reduction of channel clustering associated with 
internalization of channels as suggested from immunolabeling. In the Drosophila nervous 
system a null mutation of the slowpoke gene completely eliminated rapid tolerance to 
ethanol (Cowmeadow et al. 2005). Ethanol increased slowpoke expression in the nervous 
system coincident with the induction of ethanol tolerance (Cowmeadow et al., 2006). Since 
an increase of slowpoke expression is also caused by cold, by CO2 sedation (Ghezzi et al., 
2010) or by heat-shock promoters (Cowmeadow et al., 2006) it was suggested that this is a 
more common mechanism for acquisition of tolerance. Interestingly the Drosophila slowpoke 
gene appears to contain a binding site for CREB (cyclic-AMP response element binding 
protein) which has been implicated in learning and memory and hence may also be 
involved in the ethanol response (Cowmeadow et al., 2006) and possibly in the memory 
deficits after excessive alcohol intake. Further experimentation into the molecular 
mechanism of tolerance using single channel recoding revealed that only after expression of 
the somatic BK ǂ-subunit together with the brain specific ǃ4-subunit ethanol dose-
dependently increased the open probability of channels and decreased the duration of 
action potentials whereas BK ǂ-subunit together with the ß1-subunit expressed in dendrites 
was insensitive to ethanol (Martin et al., 2004; Martin et al., 2008) 

Human BK channels (hslo) are also potentiated by alcohol being dependent on the presence of 
auxiliary ǃ-subunits (Feinberg-Zadek & Treistman 2007). BK channel activity containing only 
the ǂ-subunit were substantially increased by ethanol, together with the ǃ4-subunit the 
channel mean open time was also increased but to a lesser extent and channel activity was 
unaffected in the presence of ǃ1-subunit. After prolonged ethanol exposure (24 h) down 
regulation of the BK current containing only hslo or hslo+ǃ4 was observed - but not with ǃ1 
(Feinberg-Zadek, et al. 2008). Moreover, neuronal BK channels from wild-type mice expressing 
ǂ- and ǃ4-subunits show little tolerance whereas BK channels from ǃ4 knockout (KO) mice 
also exhibit acute tolerance to ethanol. Studies at the behavioural level revealed that ǃ4-KO 
mice drink more compared to wild-type companions (Martin et al., 2008). The authors point 
out that because subunit expression - in particular ǃ4 - differs between many cells types, i.e. in 
neurons and even in neuronal compartments this could determine variations in individual 
alcohol responses such as tolerance which may lead to abuse and alcoholism.  

Ethanol, via an epigenetic mechanism involving microRNA, induces alternative splicing and 

mediates rapid reorganization of BK ǂ-isoforms (Pietrzykowski et al., 2008). This leads to 

destruction of a subset of BK ǂ-subunits but persistence of ethanol-insensitive, mainly 

STREX BK channels. Acute molecular tolerance to ethanol was found to be a function of 

exposure time and once initiated tolerance persists in the absence of the drug (Velázquez-

Marrero et al., 2011). During prolonged ethanol exposure (6 hours, but not at 1 or 3 hours) 

mRNA levels of the ethanol-insensitive STREX isoform were increased and transition to the 

biophysical properties of BK-STREX channels occurred.   

Chronic tolerance to alcohol is observed in rats that have been maintained on an ethanol-
containing diet for 3 to 4 weeks (Knott et al., 2002). On the cellular level it was found that 
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long-term ethanol exposure leads to a compensatory change in the expression of two 
channels acting as functional dyads: L-type Ca2+ channels current density increased, 
whereas BK current decreased but BK channels also became less sensitive to ethanol.  

Ethanol and other drugs such as benzyl alcohol, a common sedative, induces neural 
expression of the slo gene and the production of rapid tolerance (Cowmeadow et al. 2005; 
Ghezzi et al., 2004). The drugs increased expression of the slo gene, enhanced neuronal 
excitation by reducing the refractory period between action potentials and augmented 
seizure susceptibility (Ghezzi et al., 2010). Mutant BK channels exhibiting increased activity 
were found in humans to cause increased excitability due to rapid repolarization of action 
potentials (Du et al., 2005). This condition can lead to epilepsy and paroxysmal movement 
disorders and alcohol appears to be responsible for initiation of dyskinesia in these 
individuals. The molecular pathway that mediates the upregulation of slo transcription in 
Drosophila using benzyl alcohol has been linked to a CREB transcription factor. Down 
regulation of a CREB repressor isoform releases other CREB activator isoforms which after 
phosphorylation bind to CRE (cyclic AMP response element) within the slo promoter region 
and induces acetylation of histones (Wang et al., 2007). This eventually stimulates specific 
promoters to increase the expression of BK channels. Increased BK availability is suggested 
to enhance neural discharge activity by shorting action potentials. Reduced Ca2+ influx via 
voltage activated channels gives rise to sedation and development of rapid tolerance (Wang 
et al., 2009). If this mechanism also applies to ethanol remains to be investigated. Tolerance 
to alcohols may also include changes in membrane lipid composition (Yuan et al., 2007).  

4.5 Ethanol – blocks BK channels 

Although in most cases ethanol is found to increase BK channels activity it has also been 
reported to act as suppressant. Rat aortic myocyte BK channels expressed in Xenopus oocytes 
are in majority inhibited by 30 - 200 mM ethanol. Coexpression of the ß1-subunit together 
with the ǂ-subunit in this tissue failed to influence ethanol action on bslo channels. The 
inhibition of BK channels in rat aortic myocytes may contribute to the direct contraction of 
aortic smooth muscle produced by acute alcohol exposure (Dopico, 2003). In supraoptic 
neuronal cell bodies ethanol failed to increase BK channel activity but increased nerve 
terminal BK channels (Dopico et al., 1999). Moreover, BK channels from vascular tissue are 
also blocked by ethanol (Walters et al. 2000; Liu et al., 2003). The reason for this difference is 
not clear but may include expression of different channel isoforms, different auxiliary 
proteins (ǃ-subunits) or different lipid composition around the channels. 

4.6 Ethanol – and transmitter/hormone secretion 

Ethanol influences the duration of action potentials by facilitating their repolarization and 
their after-hyperpolarization (Gruss et al., 2001). This negative feedback on cell excitation 
closes Ca2+ channels, shortens the duration of Ca2+ entering the cells and decreases the Ca2+ 
triggered release of hormones or neurotransmitters (reviewed in Dopico et al., 1999).Ethanol 
also directly acts on Ca2+ channels. At low concentrations (10 mM - ca. 0.5 per mille) ethanol 
has been found to reduce vasopressin release from nerve terminals isolated from rat 
neurohypophysis by inhibition of the Ca2+ current which explains the reduction in plasma 
vasopression levels (Wang et al., 1991). In hippocampal CA1 neurons ethanol at extremely 
low concentration (0.01 per mille) enhanced, but at higher concentrations (5 per mille) 
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decreased, synaptic transmission by activation of a G-protein/protein kinase C signalling 
pathway (Lahnsteiner & Hermann 1995). Voltage dependent Ca2+ currents were also 
suppressed by ethanol in invertebrate preparations (Camacho-Nasi & Treistman 1987; 
Oyama et al. 1986) by activation of a G-protein/protein kinase transduction pathway 
resulting in decreased action potential duration (Kerschbaum & Hermann 1997).   

Despite the wealth of knowledge about alcohol interaction with receptors, ion channels, 
enzymes and signaling molecules questions about its main target(s) and its binding site(s) at 
these proteins still remain. It is thought that the most likely target sites of ethanol are 
amphipathic pockets in membrane proteins like K+ channels of the inward rectifier type 
(Harris, et al. 2008; Howard, et al. 2011). Alcohol binding sites have been identified in the 
crystal structure of “alcohol dehydrogenase (ADH)” (Ramaswamy et al., 1996; Rosell et al., 
2003) and for LUSH, an odorant binding protein from Drosophila (Kruse et al., 2003). This 
may help to develop further ideas on how the ethanol binding site may look like in other 
proteins. However, little is known if ethanol directly binds to these proteins or if accessory 
ethanol-binding proteins that target the functional protein are effective. Furthermore, it 
remains to be determined to which extent and how ethanol interferes with the lipid phase of 
the membrane or the lipid-protein interaction. 

5. BK channels – and acetaldehyde 

Acetaldehyde (ACA) is the primary metabolite of ethanol oxidation and in numerous 

studies a role for it in the action of ethanol on the brain has been proposed. Indeed evidence 

is accumulating that ACA is responsible for some of the effects that so far have been 

attributed to ethanol (reviewed in Hunt 1996; Quertemont et al. 2005; Correa et al., 2011). On 

basis that ACA has been generally considered as an aversive, treatment for alcoholics with 

disulfiram (Antabus, an inhibitor of ACA metabolism) has been established and used 

clinically. However, it was also noticed that ACA has central reinforcing effects (Melis et al., 

2007; Quertemont & Tambour 2004; Rodd-Henricks et al., 2002; Quertemont & De Witte 

2001). The metabolism and regulation of ACA particularly in blood or liver occurs via 

activities of alcohol dehydrogenase (ADH), cyctochrome P450, catalase and aldehyde 

dehydrogenase. The blood concentrations of ACA after ethanol consumption was found 

extremely low (<0.5 µM) (Eriksson & Fukunaga 1993; Eriksson 2007) and together with the 

activity of the blood-brain barrier it appeared unlikely to penetrate the brain in any 

pharmacological relevant amounts. However, ACA can be produced within the brain from 

ethanol through catalase and/or cytochrome P-4502E1 which makes it more likely that 

biologically significant concentrations at least in some brain areas can be achieved 

(Karahanian et al., 2011; Correa et al., 2011; Deng & Deitrich 2008; Quertemont et al. 2005). 

There is also evidence that ACA may mediate tolerance and dependence. Nevertheless, the 

actual ACA concentrations in the brain after ethanol consumption and its rapid oxidation 

remain to be determined. Most clear cut studies on the modulation of neurotransmission by 

acetaldehyde/alcohol have been performed on the dopaminergic system (reviewed in 

Correa et al., 2011). ACA appears to modulate dopaminergic function particularly in the 

mesolimbic pathway which indicates relevance to motivational behaviour. Studies of the 

action of ACA on the cellular level, on single channels or on electrical activity are scarce. In 

smooth muscle cells it was reported that ACA inhibits voltage-dependent Ca2+ currents 

(Morales et al., 1997). Furthermore, in vitro ACA was found to enhance firing of action 
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potentials of dopaminergic neurons in the ventral tegmental area by reduction of the A-type 

K+ current and activation of a hyperpolarization-activated inward current (Melis et al., 

2007). The stimulating properties were prevented by blockade of local catalase.  

In our laboratory we have investigated some of the effects of ACA on single BK channels 
from GH cells (Handlechner et al., 2008; Handlechner et al., 2011). Given the fact that the 
simultaneous presence of ACA and ethanol reflects the physiological situation in the brain 
after alcohol consumption we assumed that both molecules may either act synergistically or 
antagonistically. Hence we started to investigate the BK channel response to ethanol in the 
presence of ACA. Extracellular ethanol increased BK channel open probability as reported 
previously (Jakab et al. 1997). In the presence of intracellular ACA the ethanol related 
increment of BK channel activity was inhibited in a dose dependent manner. BK channel 
amplitudes were not affected but mean channel open time and open probability were 
significantly reduced. In contrast, extracellular ACA had no effect on ethanol induced 
channel activity. Our results reveal that ACA interferes with BK channel activity blunting 
the effect of ethanol. The action of ACA on the channel can be considered as direct and not 
through some metabolic product or adduct, activation of transmitters/hormones or gene 
expression since we use cell free recordings, ACA is always in excess and the effect is acute.  

Our findings may have consequences for the pharmacological/toxicological effects of 
ACA/ethanol on the electrical activity of cells, on nervous function and animal behaviour. 
From our findings we may speculate that ACA counteracts the effect of ethanol and may 
potentiate tolerance to ethanol. In any case, in the context of ethanol actions ACA effects 
have to be considered carefully. Further investigation shall be concerned with the 
dependence of the ACA-mediated effect at variable concentrations of free internal Ca2+, 
possible ACA interference with intracellular signaling cascades, i.e. the phosphorylation or 
redox state of the BK channels or interference with the brain specific ǃ4 subunit in the action 
of EtOH/ACA on BK channel properties. 

6. BK channels – modulation by hydrogen sulfide (H2S) 

H2S is a colorless gas and well know because of its peculiar odor of rotten eggs. It also is an 
extremely toxic gas and inhaled in higher concentrations causes coma and eventually death 
(Reiffenstein et al. 1992; Beauchamp et al., 1984). H2S is produced endogenously in many 
living cells from the amino acid L-cysteine. Three synthetic pathways in various organs have 
been described such as in vascular system, liver, kidneys and the brain (Shibuya et al., 2009; 
Ishigami et al., 2009; Stipanuk & Beck 1982; Łowicka & Bełtowski 2007). After its generation 
H2S diffuses either immediately in the surrounding milieu or is bound to and stored in 
proteins until it is released by an adequate stimulus. H2S – similar to the other 
gasotransmitters NO or CO – is water and lipid soluble and therefore also easily passes 
membranes. The physiology, pathophysiology, pharmacology of H2S particularly in the 
vascular system and brain has been reviewed in an impressive amount of recent 
publications (Wang 2011; Kimura 2011; Hu et al., 2011; Bucci & Cirino 2011; Wang 2010; Tan 
et al. 2010; Gadalla & Snyder 2010; Mustafa et al., 2009; Mancardi et al., 2009; Qu et al., 2008; 
Li & Moore 2008; Li et al., 2011; Łowicka & Bełtowski 2007; Szabó 2007; Wallace 2007; 
Wallace 2010; Lloyd 2006; Wang 2002; Boehning and Snyder 2003; Caliendo et al., 2010).  

Besides many other cellular targets H2S also acts on ion channels. In neurons an increase of 
the cytosolic Ca2+-concentration by H2S appears to be caused by activation of Ca2+ entry 
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through L-type Ca2+-channels (García-Bereguiaín et al., 2008). Modulation of pain 
processing by H2S appears to involve activation of T-type Ca2+ channels responsible for its 
pro-nociceptive effect, whereas analgesia is due to activation of KATP channels (Distrutti 
2011). In peripheral tissue, however, H2S reduces T-type Ca2+ channel activity leading to 
hyperalgesia (Kawabata et al., 2007). T-type calcium channels are also involved in pain 
processing of spinal nociceptive neurons (Maeda et al., 2009), in colon (Matsunami et al., 
2009) and in pancreas (Nishimura et al., 2009). H2S decreased the mechanical contraction of 
rat cardiomyocytes through inhibition of L-type calcium channels (Sun et al., 2008). One of 
the most well-known actions of H2S is the activation of ATP-sensitive K+ channels by which 
H2S causes vasorelaxation (Zhao & Wang 2002; Tang et al., 2005; Zhao et al., 2001; Jiang et 
al., 2010; Liang et al., 2011; Liu et al., 2011), inhibits insulin secretion (Yang et al., 2005; Wu et 
al., 2009), or protects primary cortical neurons from oxidative stress (Kimura & Kimura 
2004). However, the universal applicability of a KATP dependent action has been questioned 
(Kubo et al., 2007; Szabó 2007). In the gastrointestinal tract (human jejunum smooth muscle) 
H2S activates sodium channels in a partially redox dependent manner (Strege et al., 2011). In 
contrast to other gasotransmittes H2S appears not to act on the intracellular signaling 
pathway guanylyl cyclase (Garthwaite 2010). The interaction of H2S with ion channels has 
been reviewed by Tang et al. (2010). 

We choose GH3 cells since they are widely used as model cells to investigate BK channel 
activity in natural settings (Sitdikova et al. 2010). Sodium hydrosulfide (NaHS) was used as 
H2S donor since it can be readily handled and quantified. Our experiments showed that H2S 
dose-dependently increased single channel open probability (Popen) (Sitdikova et al. 2010). In 
our cell free, single channel recordings where Ca2+ is kept constant the increase of BK 
channel activity indicates that H2S does not act via elevation of the Ca2+ concentration. The 
fast onset of the H2S effect after application within seconds, but also the rapid decrease after 
washout of the drug, further suggests a direct effect at the channel protein. A half maximal 
effective concentration of 90 µM NaHS indicates that H2S induces BK channel activation in a 
physiological relevant concentration range. To study the effect of H2S on BK channel 
sensitivity to intracellular Ca2+ we used a range of Ca2+ concentrations at a constant 
membrane potential. The experiments show that there was no difference in H2S effects on 
BK channel activity at different cytoplasmic Ca2+ concentrations. Hence H2S appears not to 
interfere at the Ca2+binding sites of the channel. Also ß4 subunits appear to be an unlikely 
target of our BK channels since iberiotoxin rapidly blocked the current indicating that BK 
channels in GH3 cells are not accompanied by ß4-subunits. 

Redox modification is among the recognized mechanisms for cellular effects of H2S 

including NMDA receptors (Kimura & Kimura 2004; Kabil & Banerjee 2010), KATP channels 

Zhao et al., 2001; Yang et al., 2005) or T-type Ca2+-channels (Kawabata et al., 2007). We 

hypothesized that the increase of BK channel Popen may be mediated by redox modulation of 

cysteine residues. In our experiments the effect of NaHS was prevented when the reducing 

agent DTT was applied to the pipette solution accessing the cytoplasmic side of the channel. 

If channels were in the oxidized state by application of thimerosal, Popen was further 

increased by NaHS compared to the already increased thimerosal control.  

In contrast to our findings a recent report indicates that BK channels expressed in HEK293 

cells were inhibited by H2S and activated by CO (Telezhkin et al., 2009; Telezhkin et al., 

2010). In carotid body chemoreceptors, which are important to maintain oxygen homeostasis 
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by regulating ventilation, H2S caused an excitation of these cells by blocking BK channels 

which appear to play a crucial role in oxygen sensing (Li et al., 2010). In other preparations, 

however, H2S causes dilatation and hyperpolarization of vascular smooth muscle (Jackson-

Weaver et al., 2011) and activates BK channels in cultured endothelial cell (Zuidema et al., 

2010). These differences in the response to H2S are unclear but might be due to different 

tissues containing different BK channel splice variants or may be due to a different 

phosphorylation or redox state of the channels.  

BK channels mediate or modulate many physiological functions as well as patho-
physiological conditions. Future studies will have to show how H2S or H2S related 
substances may be involved and may contribute to those conditions. Techniques to 
determine H2S even at low concentrations (in the micro- to nanomolar range) in biological 
preparations which are available now will help to facilitate the investigation of H2S in 
biology and medicine (Doeller et al., 2005; Peng et al., 2011). In pharmacology the 
development of new drugs modulating H2S signaling might be rewarding in the treatment 
of diseases like high blood pressure, pain therapy or erectile dysfunction.  

7. BK channels – and polyamines 

The polyamines putrescine, spermidine and spermine are hydrocarbon molecules with two, 
three or four positively charged amino groups under physiological conditions. Polyamines 
are metabolized from the decarboxylation products of ornithine and S-adenosyl-methionine 
in nearly all eukaryotic cells. They are multifunctional molecules which are inevitable for 
development or cell proliferation and modulate a number of cellular targets, like DNA, 
RNA or signaling proteins, but are also involved in pathological mechanisms, like cancer 
(Igarashi and Kashiwagi 2010; Bachrach, 2005). In addition to the above mentioned functions 
polyamines play a major role in modulating a number of ion channels. In the potassium 
channel family they act as modulators of the inward rectifiers Kir, the BK, the TASK (two-
pore-domain potassium channels), the KCNQ and the delayed rectifier channels (reviewed 
in Weiger & Hermann 2009). Furthermore, AMPA and NMDA receptors as well as Ca2+ and 
sodium channels are modulated by polyamines (Huang & Moczydlowski 2001; Williams, 
1997). The ideas to test polyamines on ion channels was initially reported using mollusk 
neurons (Drouin & Hermann 1994; Drouin & Hermann 1990) and pituitary tumor GH cells 
(Weiger & Hermann 1994). Drouin & Hermann described a blocking action of polyamines 
on BK currents using whole cell two electrode voltage clamp experiments in Aplysia 
californica neurons on a K+ channel which is pharmacologically similar to BK channels. They 
found spermine injected into the cell to have a dual action: immediately after injection the 
Ca2+ activated current was blocked, whereas after a prolonged time the current was 
increased. As explanation for these phenomena it was suggested that after prolonged Ca2+ 
injection the Ca2+ buffer capacity of the cells was exhausted or/and during the time course 
of the experiments the channels became more sensitive to Ca2+ which overcame the blocking 
effect caused by spermine. When they applied spermine in high concentrations up to 10 mM 
to the extracellular side of the cells they observed no or only a minor reduction (10%) of the 
current after prolonged application (10-15 min). The interpretation given for this result was 
that spermine possibly entered the cells by a polyamine transporter and acted at the 
intracellular face of the channels. To overcome the limitations of whole cells experiments 
Weiger & Hermann (1994) used a cell free patch system investigating single BK channel 
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activity. They confirmed the blocking action of polyamines which acted in a voltage 
depended manner on the channel when applied to the intracellular face of the membrane 
but had no effect when applied extracellularly. The effect of polyamines on BK channel was 
dual: firstly, by a so called fast blocking mechanism the current amplitude was apparently 
reduced (caused by limitations of the recording system) and secondly, the open probability 
of the channel was decreased. The order of effectiveness of the various polyamines tested 
was: spermine > spermidine> putrescine. At high Ca2+ concentrations applied to the 
intracellular side polyamines were ineffective on single channel kinetics while the reduction 
of the amplitude remained. The stoichiometry of the channel block by spermine was 1:1, the 
reduction of the open probability had a 2:1 relationship. These data were in agreement with 
the whole cell recordings in Aplysia and suggested two interactions sites of BK channels 
with polyamines: namely the channel pore where the polyamine does not bind firmly but 
rather slips in and out at high frequency (flickery block, causing the reduced amplitude) as 
well as the Ca2+ sensor of the BK channel. The question why polyamines are not effective 
when applied to the outside the channel was probed with a series of diamines which 
differed in length up to 1,12 diaminododecane (Weiger et al. 1998). Diamine molecules are 
similar to polyamines in carrying a positively charged amino group at each end which is 
separated by a variable length CH-chain. Only 1,12-diaminododecane was found to act as a 
blocker from the extracellular face of the channel while diamines with a shorter chain length 
were ineffective. In silico molecular modeling revealed that 1, 12-diaminododecane and 
spermine although they have the same length the latter is more flexible and is completely 
hydrated. 1,12-diaminodocane has only small water caps at its ends, positioned over the 
charged amino groups separated by a long hydrophobic segment. It was hypothesized that 
spermine, putrescine or spermidine as well as the shorter diamines are not able to block the 
channel from the extracellular side due to energetic reasons which prevents to strip of the 
water shell in order to interact with the channel pore. 

BK channels of rabbit pulmonary smooth muscle in contrast to other cells exhibit strong 

rectification (Snetkov et al., 1996). This was attributed to the presence of spermine and 

spermidine but not putrescine in the cytoplasm. Blocking polyamine synthesis with the 

ornithine decarboxylase inhibitor DFMO (difluoromethylornithine) released BK channel 

rectification supporting the notion of a rectifying action imposed by polyamines. Similar data 

were reported for BK channels in myocytes from the saphenous branch of the rat femoral 

artery (Catacuzzeno et al., 2000). These discoveries remind to the mechanism of current 

rectification caused by polyamines at inward rectifier channels (Kir) (Fakler et al., 1995).  

A more detailed molecular explanation of how polyamines block BK channels was 

presented by Zhang et al., 2006. They found the ring of 8 negative charges at the inner 

channel mouth to be responsible for the attraction of polyamines to the channel pore. 

Mutation of these charges to neutral amino acids reduced the blocking effect of 

polyamines 90-fold and reduced rectification. In another experiment they removed the 

polyamine block by a simple competition of positive charges at the negative ring at the 

channel entrance by applying 3 M KCl. Thus under physiological condition polyamines 

are attracted to channel by the ring of negative charges as well as the negative charges in 

the channel’s pore driving them into the ion conduction pathway to block the channel 

when positive voltage is applied. 
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A study in humans suggests that BK channel block by polyamines may be a reason for the 
development of the overactive bladder syndrome (Li et al., 2009). In people with the 
syndrome high levels of polyamines were found in biopsies of the urothelium in parallel 
with a reduced or blocked BK channel activity. By preventing polyamine synthesis in these 
cells in vitro, BK channel activity could be restored to normal. This result opens a new 
window of opportunity for a possible future treatment of the disease. 

While the majority of reports indicate a block of BK channels by polyamines, they were 
found to be ineffective in blocking the channel in retinal Müller glia cells (Biedermann et al., 
1998). This result may be explained by the rather low concentration of polyamines used in 
these experiments or by a different, less sensitive splice variant of the channel being 
expressed in these cells. In summary polyamines appear to modulate BK channels by 
interacting with the channel pore from the inside of the cell membrane while they are not 
effective from the outside. They may either cause a block or rectification of the BK current. 

8. Synopsis 

BK channels are important integrators of cellular signals and hence are involved in a huge 
diversity of cellular actions and serve in initiating many cellular pathways. Here we 
summarized the action of ethanol/acetaldehyde, polyamines and hydrogen sulfide on BK 
channels – only a few of many modulators. Interestingly all these agents appear to interfere 
with quite different targets at the channel indicating its enormous plasticity. Although there 
is a vast array of input sites which modulate the channels its output is rather simple - once 
activated it hyperpolarizes the membrane potential. Since these channels use a combined 
mechanism of activation by voltage and intracellular Ca2+ concentration any of these signals 
and their minute manipulation by external factors is integrated by the channels imposing 
far-reaching effects for physiology, pathophysiology or pharmacology. These features 
makes BK channels so unique and warrants further interesting research in the future to 
discover even more interactions of this channel with its environment and its further 
modulatory action on the biology of cells. 

9. Abbreviations 

ACA = acetaldehyde; BK = maxi calcium-activated potassium channel; H2S = hydrogen 
sulfide; EtOH = ethanol; STREX = stress-axis regulated exon; PS = phosphatiylserine; CREB 
= cyclic AMP response element-binding protein; Popen = open probability 
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