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1. Introduction 

This chapter provides a tutorial on the fundamental concept of Parallel factor (PARAFAC) 
analysis and a practical example of its application. PARAFAC, which attains clarity and 
simplicity in sorting out convoluted information of highly complex chemical systems, is a 
powerful and versatile tool for the detailed analysis of multi-way data, which is a dataset 
represented as a multidimensional array. Its intriguing idea to condense the essence of the 
information present in the multi-way data into a very compact matrix representation 
referred to as scores and loadings has gained considerable popularity among scientists in 
many different areas of research activities. 

The basic idea of PARAFAC is so flexible and general that its application is not limited to a 
particular field of spectroscopy confined to a specific electromagnetic probe. Examples of 
the application include fluorescence (Christensen et al., 2005; Rinnan et al., 2005), IR (Wu et 
al., 2003), NMR (Bro et al., 2010), UV (Ebrahimi et al., 2008; Van Benthem et al., 2011) and 
mass spectroscopy (Amigo et al., 2008). The first part of this chapter covers the theoretical 
background of trilinear decomposition of three-way data by PARAFAC with comparison to 
bilinear decomposition of two-way data by Principal component analysis (PCA).  

In the second part of this chapter, an illustrative example of PARAFAC analysis for three-
way data obtained in an actual laboratory experiment is presented to show how PARAFAC 
trilinear model can be constructed and analyzed to derive in-depth understanding of the 
system from the data. Thermal deformation of several types of poly lactic acid (PLA) 
nanocomposites undergoing grass-to-rubber transition is probed by cross-polarization 
magic-angle (CP-MAS) NMR spectroscopy. Namely, sets of temperature-dependent NMR 
spectra are measured under varying clay content in the PLA nanocomposite samples. While 
temperature strongly affects molecular dynamics of PLA, the clay content in the samples 
also influences the molecular mobility. Thus, NMR spectra in this study become a three-way 
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dataset described as a function of both temperature and clay content. Details of the effects of 
the temperature and clay content on the physical state of nanocomposite are elucidated by 
using PARAFAC trilinear model. 

2. PARAFAC 

2.1 Multi-way data 

So, what does a multi-way data look like? It is insightful first to note the data structures of 
two-way and three-way data. Schematic descriptions of two-way and three-way data based 
on external perturbation(s) are shown in Fig. 1. In a general spectroscopic measurement, 
external perturbations are applied to the system of interest to induce the response to the 
stimuli. Characteristic response of the system is presented in the form of spectrum. For 
example, when the thermal behaviour of a sample is studied by a spectroscopic method, 
such as IR, Raman and NMR, the sample is heated up to undergo thermal deformation and 
its molecular level variation induced by the stimulus is captured at each spectral variable, 
e.g. wavenumber. The spectral dataset thus obtained will be represented as a two-way array 
with the (i,j)th element denoting the spectral intensity value at the ith temperature and the 
jth wavenumber. 
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Fig. 1. Schematic illustration of two-way and three-way data. 

Now, let us consider another experiment with one more perturbation. As described above, 
stimulation of a single sample ends up with two-way data array. But what if we still have 
some more samples, whose properties (e.g. concentration) are different? We will repeat a 
similar experiment for every single sample. This generates multiple two-way data. Thus, the 
entire dataset eventually becomes a stuck of the multiple two-way data like a cube, which 
contains two dimensions concerning applied two perturbations. Such spectral dataset is 
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described as a three-way array with the (i,j,k)th element denoting the spectral intensity value 
at the ith concentration, the jth temperature, and the kth wavenumber. For example, the 
samples will show the variation of their molecular structure depending on the temperature. 
This may be also influenced by the change in the concentration. Thus the spectral intensities 
of the samples are potentially influenced by the temperature as well as concentration. 

2.2 PARAFAC model 

It is possible to condense the essence of the information present in multi-way data into a 
very compact matrix representation referred to as scores and loadings. The basic hypothesis 
of factor analysis techniques is that the improved proxy of the original data matrix can be 
reconstructed from only a limited number of significant factors. Thus, while the score and 
loading matrices contain only a small number of factors, it effectively carries all the 
necessary information about spectral features and, eventually, it becomes possible to sorting 
out the convoluted information content of highly complex chemical systems. The detailed 
analysis of such matrices potentially brings useful insight into building a mechanistic model 
for understanding complex phenomena studied by spectroscopic method. 

Principal component analysis (PCA) is mathematical decomposition of two-way data in 
terms of the orthogonal set of dominant factors, i.e., eigenvectors (Smilde et al., 2004; 
Shinzawa et al., 2010). Two-way data decomposition by PCA results in yielding two matrices 
called scores and loadings which complementarily represent the entire features broadly 
distributed in the two-way data as follows, 

  t
PCAX TP E  (1) 

where T and P are PCA score and loading matrices consisting of r vectors, respectively. The 
rank r corresponds to the number of principal components representing the significant 
portion of the information contained within the data matrix X. The selection of r is 
somewhat arbitrary. It is usually set to be a number, as small as possible but sufficiently 
large enough such that there are no obvious spectral features found in the residual matrix 
EPCA. The residual matrix EPCA is the portion of the original data, which is not accounted for 
by the first r principal components used for the data representation. The two matrices T and 
P complementally represent the entire features broadly distributed in X. Namely, T holds 
abstract information concerning the relationship among the samples and P contains 
summary of variable, e.g. wavenumber which provides chemically or physically meaningful 
interpretation to the pattern observed in T. For example, PCA of the two-way data based on 
temperature-dependent spectra provides T describing similar or dissimilar thermal 
behaviour of the sample during the perturbation period and corresponding P represent 
information on key molecular structure associated with such similar or dissimilar thermal 
behaviour of the sample. 

For even more data, PARAFAC is used to decompose a multi-way data and Fig. 2 illustrates 
graphical representation of PARAFAC operation to decompose a three-way data into score 
and loading vectors. PARAFAC is utilized to decompose the multi-way data into a linear 
combination of score and loading matrices (Smilde et al., 2004; Bro, 2004). The information 
on behavior induced by the perturbations is effectively described by score vectors and 
corresponding loading vectors provide chemically or physically meaningful interpretation 
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Fig. 2. Schematic illustration of PARAFAC trilinear model. 

to the patterns observed in the scores of the PARAFAC trilinear model. Namely, by using 
PARAFAC operation, I×J×K array matrix X can be expressed in terms of a product of score 
and loading matrices, A, B, and C, and a residual matrix E as follows 

 ( ) ( )I JK I JK   tX A(C B) E  (2) 

where (I × JK) refers to the way that the multi-way array is unfolded. The notation   

means Khatri-Rao product which operate Kronecker product   on partitioned matrices 

defined as 

 [ ]F F    1 1 2 2C B c b c b c b  (3) 

In PARAFAC analysis, the set of matrices A, B and C are usually obtained by iteratively 

solving alternating least-squares (ALS) problems ( )min I JK   t

A,B,C
X A(C B)  over A for fixed 

B and C, as well as the minimization over B or C in the similar matrix operation manner 
under appropriate model constraints, such as the non-negativity of concentration and 
spectral intensity (Bro & de Jong, 1997; Bro & Sidiropoulos, 1998). General procedure of 
PARAFAC becomes as follows, 

Initialize B and C to obtain Z as  

  Z C B  (4) 

A is given by 
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 (I JK)  tA X Z(Z Z)  (5) 

where the superscript + means the Moore-Penrose inverse. Then update Z as 

  Z C A  (6) 

B is obtained as 

 (J IK)  tB X Z(Z Z)  (7) 

Update Z as 

  Z B A  (8) 

C is given by 

 (K IJ)  tC X Z(Z Z)  (9) 

If the residual between the original X and reconstructed X by Eq. 2 is greater than error 
criteria, one repeats Eqs. (4)-(9) until convergence. 

The initial estimates for B and C is important to obtain sufficient minimization of the error 
criteria (Shinzawa et al., 2007, 2008a & 2008b). Although ALS algorithm usually offers an 
eventual convergence to the optimal solution with a sufficiently large number of iterations, 
it sometimes reaches the suboptimal local minimum (Jiang et al., 2003 & 2004). 
Unfortunately, such local convergence does not usually offer a global minimum, but it may 
just be stuck in a local minimum, producing insufficient solution. The major cause of the 
suboptimal local convergence may be a poor initial estimation. One possible solution for this 
problem is to select proper initial estimate which is less sensitive to the presence of a local 
minimum, e.g. via signaler value decomposition (Bro & de Jong, 1997; Bro & Sidiropoulos, 
1998; Wang et al., 2006; Awa et al., 2008). 

3. Example 

3.1 PLA nanocomposite 

A pertinent example for PARAFAC analysis based on NMR spectra of PLA nanocomposites 
is provided here to show how certain useful information can be effectively extracted from an 
actual laboratory experiment. 

Fig. 3 shows the molecular structure of PLA. PLA polymer is made up of many long chains 
consisting of the repeat unit shown in the figure. PLA is derived from renewable resources, 
such as corn starch via fermentation and it is biodegradable under the right conditions, such 
as the presence of oxygen (Tsuji et al., 2010). Thus, PLA is a possible candidate of a new class 
of renewable polymers as a substitute for the petrochemical polymers. However, the 
physical properties of PLA are inadequate for the replacement of conventional commodity 
plastics in many applications. 

Nanocomposite is a technique to improve the physical strength, thermal resistance and gas 
barrier by the dispersion of nanoclay into the polymer (Katti et al., 2006). The improvement 
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of such polymer properties by using nanocomposite is one of the primary areas of interest 
due to its potential applications. The polymer nanocomposites are generally formed by the 
addition of a small amount of nanoclay dispersion.  

 
Fig. 3. Molecular structure of PLA. 

Fig. 4 shows a schematic illustration of polymer nanocomposite. A typical form of the 
nanocomposite is intercalated nanocomposite, in which the unit cells of clay structure are 
expanded by the insertion of polymer into the interlayer spacing, while the periodicity of 
clay crystal structure is maintained. Most commonly, montmorillonite (MMT) is used as clay 
due to its highly expansive characteristic (Suguna Lakshmi et al., 2008; Cervantes-Uc et al., 
2009). The MMT unit cell is composed of aluminum octahedra sandwiched between two 
silica tetrahedra with the unit cell dimension of about 1 nm in thickness. For facilitating 
better miscibility of hydrophobic polymer with the clay and increasing the spacing of the 
interlayer clay gallery, it is often treated with organic modifiers which are generally long 
carbon chain compounds with alkylammonium or alkylphosphonium cations. 

Polymer Organoclay Intercalated 

nanocomposite
PolymerPolymer OrganoclayOrganoclay Intercalated 

nanocomposite

Intercalated 

nanocomposite  
Fig. 4. Schematic illustration of polymer nanocomposite. 

PLA nanocomposite samples used in this study were prepared with PLA (Teramac®, 
Unitika) and organically modified clay (S-BEN W®, Hojun). The samples were put into a 
Labo-plastomill consisting of a 30C150 kneader and an R100 mixer (Toyo Seiki Seisaku-sho, 
Ltd., Tokyo) to melt-blend at 190 °C and 50 rpm for about 10 minutes. Pellets thus obtained 
were pressed into 0.2 mm thick sheet sandwiched between two thick Teflon® films by a hot 
press at 190 °C.  

Fig. 5 represents the effect of nanocomposite on PLA probed by Thermomechanical analysis 
(TMA). TMA is a technique to monitor the physical deformation of object under a constant 
load, while varying the temperature. For example, in this case, the elongation of the PLA 
nanocomposite samples (clay content = 0, 5 and 15 wt%) were measured by imposing a 9.8 
mN load, while varying the temperature from 35 to 140 °C at a rate of 10 °C per a minute. 
The elongation of the samples starts when the temperature reaches glass transition 
temperature (Tg) of PLA, i.e. approximately 60 °C (Zhang et al., 2010). Then it gradually 
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increases with the increase of temperature and it finally reached constant levels at the close 
of the observation period, indicating that the observed plastic deformation is closely related 
to glass-to-rubber transition of the amorphous component of PLA. It is also noted that the 
samples results in the different levels of elongation depending on the clay content. For 
example, the neat PLA sample shows 14.4 % of elongation. In contrast, the PLA-
nanocomposite including 15 wt % of clay ends up with 9.1 % of elongation. The leveling off 
of the elongation indicates the formation of a network structure due to the presence of 
physical crosslinks created by the crystalline domain.  

Although such observation effectively detects the macroscopic changes in the mechanical 
properties caused by the presence of clay particles, additional fundamental molecular level 
understanding of the reinforcement mechanism is also desired. Spectroscopic method 
should become an important tool to probe the phenomena at the molecular level. 
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Fig. 5. Physical property of PLA samples proved by TMA.  

3.2 PALAFAC analysis of NMR spectra of PLA nomocomposites 

The temperature-dependent NMR spectra of the PLA samples collected under the varying 
temperature from 20 to 80 °C are shown in Fig. 6. Cross polarization-magic angle spinning 
(CP-MAS) NMR experiments were carried out on a Varian 400 NMR system spectrometer 
operated at 100.56 MHz for 13C resonance with a cross polarization contact time of 2 ms 
(Fawcett, 1996). A zirconium oxide rotor of 4 mm diameter was used to acquire the NMR 
spectra at a spinning rate of 15 kHz. Each sample was packed into a 4 mm cylinder-type 
MAS rotor. A set of temperature-dependent NMR spectra were obtained under varying 
ambient temperature from 20 to 80 °C at every 20 °C step. The heating rate was 
approximately 10 °C per an hour. 

Samples of semicrystalline polymers prepared from their melt possess complex 
supermolecular structure consisting of crystalline lamellae embedded in an amorphous 
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matrix (Wunderlich, 1980). PLA essentially undergoes highly convoluted transition process, 
when temperature and its constitution are altered. These transitions include the melting of 
ordered molecular segments, as well as the grass-to-rubber transition and other relaxation of 
process of the amorphous component (Zhang et al., 2005; Meaurio et al., 2006).  
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Fig. 6. Temperature-dependent CP-MAS NMR spectra of neat PLA and PLA nanocomposite 
samples. 

The CP-MAS technique is ideal for the observation of 13C spectra of solid samples. Since the 
local environment of a chemical group in solids are generally rigid, this leads to further 
considerations for crystallography or, more generally, molecular packing (Fawcett, 1996). 
The CPMAS NMR study of semicrystalline PLA samples is often complicated by the 
presence of overlapped contributions from coexisting crystalline and amorphous. For 
example, the unimodal peak observed around 69.5 ppm is assignable to CH structure which 
represents mobility of the main chain of the PLA (Tsuji et al., 2010; Kister et al., 1998). It is 
noted that the peak intensity gradually decreases with the increase of the temperature. This 
may be explained as the decrease in the cross polarization efficiency by the change in the 
molecular dynamics during the heating. Thus, the variation of the spectral intensity here 
reflects the structural alternation of PLA induced by the temperature.  

More importantly, careful comparison of the samples reveals that the main feature of the 
NMR spectra of the three samples looks somewhat different. For example, the temperature-
dependent NMR spectra of the PLA nanocomposite including 15 wt% clay provides specific 
three peaks at 70.5, 69.5 and 68.4, indicating the presence of the crystalline structure in the 
sample (Tsuji et al., 2010; Kister et al., 1998). When the sample has no clay in the system, 
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these crystalline peaks are disappeared and compensated by the development of seemingly 
unimodal peak probably assigned to the amorphous of PLA (Tsuji et al., 2010; Kister et al., 
1998). This indicates that the presence of the clay substantially influences supermolecular 
structure of the PLA. Consequently, it is very likely that the change in the spectral feature of 
the three-way data is closely related to temperature and clay content of the system. Thus, in 
turn, the fully detailed analysis of the data provides an interesting opportunity to probe the 
nature of the PLA nanocomposite by elucidating the variation of the NMR spectral intensity 
induced by the each perturbation with PARAFAC trilinear decomposition. 
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Fig. 7. Score vectors in score matrix A representing thermal behaviours of amorphous and 
crystalline components in PLA samples. 

Fig. 7, 8 and 9 show results obtained from A, B and C matrices derived from PARAFAC 
analysis of the three-way NMR spectral data collected under varying temperature and clay 
content, respectively. Two major factors are indicated here, reflecting the fact that there are 
two species present in the system. One of the important benefits derived from PARAFAC 
decomposition of the multi-way data is the ability to rationally clarify the effect of the 
applied perturbations. For example, the matrix A represents abstract information on the 
temperature-induced behavior of the PLA under the influence of the clay content. In 
contrast, the matrix C holds essential information on the spectral intensity variation induced 
by the addition of the clay under the influence of the temperature. The matrix B contains 
loading vectors which provides chemical or physical interpretation to the patterns observed 
in the score matrices A and C. 

It is noted that the loading vector of the first component of the matrix B (Fig. 8) resembles 
the spectral feature of the amorphous component of PLA. The loading vector of the second 
component of the matrix B shows characteristic three peaks assignable to crystalline 
component of the PLA. Thus it is most likely that the second factor represents thermal 
behaviours of the crystalline components in PLA samples. 

Once the assignments for the loading vectors are established, it becomes possible to provide 
chemically meaningful interpretation to the score matrices A and C representing the 
dynamic behaviour of the components induced by the perturbations. For example, the score 
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vector of the first factor in the matrix A represents the temperature-induced behaviour of 
the amorphous component of the PLA. On the other hand the score vector of the second 
factor means that of the crystalline component of the PLA. It is noted the score vector of the 
amorphous components exhibits obvious decrease with the temperature and such decrease 
becomes significant when the temperature exceeds its Tg. In contrast, the change in the score 
value of the crystalline component is small, indicating no major variation during the heating 
process.  
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Fig. 8. Loading vectors in score matrix B representing thermal behaviours of amorphous and 
crystalline components in PLA samples. 

The predominant variation of the amorphous component in the temperature region is 
explained as its glass-to-rubber transition. The change induced in the temperature region is 
associated with the Micro-Brownian motion of the PLA polymer segment. At a low 
temperature the amorphous regions of a polymer are in the glassy state. In this state the 
molecules are frozen on place. They may be able to vibrate slightly, but do not have any 
segmental motion. When the polymer is heated up to reach its Tg, the molecules can start to 
wiggle around to become rubbery state. Such segmental motion predominantly occurs in 
amorphous region of PLA while such motion is strongly restricted in systematically folded 
crystalline lamellae structure. Thus, it is very likely the observed change of the amorphous is 
related to glass-to-rubber transition of the amorphous component. 

Now it is important to point out again that the predominant elongation in the TMA 
occurred around Tg. This elongation behaviour agrees well with the thermal behaviour of 
the amorphous component observed in the score matrix A. It thus suggests the physical 
elongation of the samples is essentially associated with the glass-to-rubber transition mainly 
occurred in the amorphous region. 

It also becomes possible to provide the detailed interpretation to the pattern observed in the 
matrix C representing the clay-induced behaviours of amorphous and crystalline 
components in the PLA samples. The gradual decrease of the score of the first factor can be 
explained as the decrease of the amorphous component and the change in the sore of the 
first factor corresponds to the increase in the crystalline component by the addition of the  
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Fig. 9. Score vectors in score matrix C representing clay-induced behaviours of amorphous 
and crystalline components in PLA samples. 

clay. It seems that the decrease in the amorphous is compensated by the development of the 
crystalline structure. In other words, the clay increases the frequency of the spontaneous 
nucleation of the PLA crystals. 

PARAFAC trilinear model of the three-way NMR data of the PLA nanocomposites reveals 
that the crystalline and amorphous structures of the PLA nanocomposites undergo different 
transition under the heating. Namely, the change in the micro-Brownian motion of the 
polymer segments mainly occurs in the amorphous region. In addition, the different 
variations between the crystalline and amorphous component suggest the different effects of 
the presence of clay particles on them, i.e. nucleating effect of the clay. The decrease in the 
amorphous portion should result in the reduction of the structure undergoing the glass-to-
rubber transition. Such variation of the crystallinity agrees well with the decreased 
elongation observed in the TMA. For example, in Fig. 5, the level of the elongation starting 
around Tg clearly decreases with the inclusion of the clay. 

This hypothesis is also clearly supported with corresponding transmission electron 
microscope (TEM) images and differential scanning calorimetry (DSC) results of the PLA 
nanocomposite sample. Fig. 10 represents the TEM images of the PLA nanocomposite 
sample including 15 wt% clay. For example, in Fig. 10(a), one can see that the clay is broadly 
distributed over the PLA matrix. On the other hand, Fig. 10(b) reveals that some parts of the 
interlayer gallery is obviously extended, suggesting the insertion of the PLA polymer into 
the clay layers, namely intercalation.  

DSC curves of the PLA samples, represented in Fig. 11, clearly show the presence of glass 
transition temperature around 60 °C. It is important to point out that this glass-to-rubber 
transition of amorphous component agrees well with the change in the elongation observed 
in the TMA. More importantly, the samples also provide obvious crystallization peak 
around 110 °C. The crystallization peak shows gradual increase by the inclusion of the clay 
content, suggesting quantitative increase in the amount of the crystalline structure. Thus, it  
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Fig. 10. TEM images of PLA nanocomposite sample. 

is very likely that the clay works as the nucleating agent to increase the frequency of the 
spontaneous nucleation of the PLA crystals. 

All the results put together, it provides overall picture of the system. When the clay is 
dispersed in the PLA matrix, the PLA polymer located at interlayer or around surface layer 
of the clay develops crystalline structure more frequently. The generation of the crystalline 
structure of PLA is compensated by the decrease of the amorphous content. This should 
decrease the structural portion substantially undergoing glass-to-rubber transition above Tg. 
Thus, in turn, it restricts the elongation of the samples during the heating process under a 
certain level of load. Consequently, it is demonstrated that PARAFAC analysis of the three-
way data of the PLA nanocomposite samples effectively elucidates the mechanisms of the 
improvement of the mechanical property by the clay. By carrying out detailed band position 
shift analysis of the three way data of the temperature- and clay- dependent NMR spectra of 
the PLA samples, it becomes possible to extract chemically meaningful information 
concerning the variation of the crystalline structure closely associated with the 
nanocomposite system. 
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Fig. 11. DSC curves of neat PLA and PLA nanocomposite samples. 

3. Conclusion 

The basic background of PARAFAC and its practical example based on the temperature-
dependent NMR spectra of the PLA nanocomposite samples are presented. The central 
concept of PARAFA decomposition of multi-way data lies in the fact that it can condense 
the essence of the information present in the multi-way data into a very compact matrix 
representation referred to as scores and loadings. Thus, while the score and loading matrices 
contain only a small number of factors, it effectively carries all the necessary information 
about spectral features and leads to sorting out the convoluted information content of highly 
complex chemical systems. 

The effect of PLA nanocomposite is studied by the PARAFAC analysis of the temperature-
dependent NMR spectra of several PLA nanocomposite samples including different clay 
contents. The PARAFAC analysis for the three-way data of the PLA nanocomposites 
revealed that the crystalline and amorphous structures of the PLA nanocomposites 
substantially undergo different transition under the heating. Namely, the change in the 
micro-Brownian motion of the polymer segments mainly occurs in the amorphous region 
when the PLA samples are heated up to their Tg. It also revealed that clay potentially works 
as nucleating effect of the clay. Namely, it increases the frequency of the spontaneous 
nucleation of the PLA crystals. Thus, in turn, the change in the population of the rigid 
crystalline and rubbery amorphous provides the improvement of the physical property. 
Consequently, it is possible to derive in-depth understanding of the PLA nanocomposites. 
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