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1. Introduction

Biomarker selection represents a key step in bioinformatic data processing pipelines; examples
range from DNA microarrays (Tusher et al., 2001; Yousef et al., 2009) to proteomics (Araki
et al., 2010; Oh et al., 2011) to metabolomics (Chadeau-Hyam et al., 2010). Meaningful
biological interpretation is greatly aided by identification of a “short-list” of features –
biomarkers – characterizing the main differences between several states in a biological system.
In a two-class setting the biomarkers are those variables (metabolites, proteins, genes ...) that
allow discrimination between the classes. A class or group tag can be used to distinguish
many situations: it can be used to discriminate between treated and non-treated samples, to
mark different varieties of the same organism, etcetera. In the following, we will – for clarity
– restrict the discussion to metabolomics, and the variables will constitute concentration
levels of metabolites, but similar arguments hold mutatis mutandis for other -omics sciences,
such as proteomics and transcriptomics, where the variables correspond to protein levels or
expression levels, respectively.

There are several reasons why the selection of biomarker short-lists can be beneficial:

• Predictive purposes: using only a small number of biomarkers in predictive class modeling
in general leads to better, i.e., more robust and more accurate predictions.

• Interpretative purposes: it makes sense to first concentrate on those metabolites that
show clear differences in levels in the different classes, since our knowledge of metabolic
networks in many cases is only scratching the surface.

• Discovery purposes: the complete characterization of unknown compounds identified in
untargeted experiments is time- and resource-consuming. The primary focus should thus
be placed on a carefully selected group of “unknowns” to be characterized at structural
and functional level.

Two fundamentally different statistical approaches to biomarker selection are possible. With
the first, experimental data can be used to construct multivariate statistical models of
increasing complexity and predictive power – well-known examples are Partial Least Square
Discriminant Analysis (PLS-DA) (Barker & Rayens, 2003; Kemsley, 1996; Szymanska et al.,
2011) or Principal Component Linear Discriminant Analysis (PC-LDA) (Smit et al., 2007; Werf
et al., 2006). Inspection of the model coefficients then should point to those variables that
are important for class discrimination. As an alternative, univariate statistical tests can be
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applied to individual variables, treating each one independent of the others and indicating
which of them show significant differences between groups (see, e.g., Guo et al. (2007);
Reiner et al. (2003); Zuber & Strimmer (2009)). Multivariate techniques are potentially more
powerful in pin-pointing weak differences because they take into account correlation among
the variables, but the models can be too much adapted to the experimental data, leading to
poor generalization capacity. Univariate approaches, in contrast, both could miss important
“weak” details and could overestimate the importance of certain variables, because correlation
between variables is not taken into account.

As for many sciences with the “omics” suffix, in metabolomics the number of experimental
variables usually greatly exceeds the number of objects, especially with the development
of new mass-spectrometry-based technologies. In MS-based metabolomics, high resolution
mass spectrometers are often coupled with high performance chromatographic techniques,
like Ultra Performance Liquid Chromatography (UPLC). In these experiments, the variables,
i.e., the metabolites, are represented by mass/retention-time combinations, and it is typical
to have numbers of features varying from several hundreds to several thousands, depending
on the experimental and analytical conditions. This increase in experimental possibilities,
however, does not correspond to a proportional increase in the number of available samples,
which can be limited by the availability of biological samples, by laboratory practice, in
particular when complex protocols are required, and also by ethical issues, when, for example,
experiments on animals have to be planned.

All these constraints produce small sample sets, presenting serious challenges for the statistical
analysis, mainly because there is simply not enough information to model the natural
biological variability. The situation is critical for multivariate approaches where the
parameters of the statistical model need to be optimized (e.g., the number of components
in a PLS-DA model). For this purpose, the classical approach is to use sub-sampling in
combination with estimates of predictive power, like crossvalidation (Stone, 1974). In extreme
conditions, i.e., really small sample sizes, this sub-sampling can give rise to inconsistent
sub-models and tuning in the classical way becomes virtually impossible. In Hanczar et al.
(2010), as an example, conclusions are focussed on ROC-based statistics (see below), but they
are equally relevant for classical error estimates like the root-mean-square error of prediction,
RMSEP) multivariate techniques can be still applied to the full data set, but it is not possible
to assess the reliability of the biomarker selection pipeline, even if it is still reasonable to
think that the biomarkers are strongly contributing to the statistical model. In these situations,
univariate methods seem the best solution, also considering the presence of several strategies
able to determine cut-off values in t-test based techniques (e.g., thresholding of p values
subjected to some form of multiple testing correction (Benjamini & Hochberg, 1995; Noble,
2009; Reiner et al., 2003)). Regardless of the statistical strategy, for the “biomarkers” extracted
in these conditions there is no obvious validation possible in the statistical sense; however, the
results of the experiments are extremely important in the hypothesis generation phase to plan
more informative investigations.

Interestingly, there is no literature on the effect of sample size on biomarker identification in
the “omics” sciences, and the objective of this contribution is to fill this gap. We focus on a
two-class problem, and in particular on small data sets. In our approach, real class differences
have been introduced by spiking apple extracts with selected compounds, analyzing them
using UPLC-TOF mass spectrometry, and comparing the feature lists to those of unspiked
apple extracts. Using these data we are able to run a comparison between two multivariate
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Metabolic Biomarker Identification with Few Samples 3

methods (PLS-DA and PC-LDA) and the univariate t-test, leading to at least a rough estimate
of how consistent biomarker discovery can be when small sample sizes are considered. In
particular, we compare the effect of sample size reduction on multivariate and univariate
models on the basis of Receiver Operating Characteristics (ROC) (Brown & Davis, 2005).

2. Material and methods

2.1 Biomarker Identification

There are many strategies for identifying differentially expressed variables in two-class
situations – a recent overview can be found in Saeys et al. (2007). A general approach is to
construct a model with good predictive properties, and to see which variables are important in
such a model. Given the low sample-to-variable ratio, however, one can not expect to be able
to fit very complicated models, and in many cases a linear model is the best one can do (Hastie
et al., 2001). The oldest, and most well-known technique is Linear Discriminant Analysis
(LDA, McLachlan (2004)). One formulation of this technique, dating back to R.A. Fisher, is to
find a linear combination of variables a that maximizes the ratio of the between-groups sums
of squares, B, and the within-groups sums of squares W :

a
T

Ba/a
T

Wa (1)

That is, a is the direction that maximizes the separation between the classes, both by having
compact classes (a small within-groups variance) and by having the class centers far apart (a
large between-groups variance). Large values in a indicate which variables are important in
the discrimination. Another formulation is to calculate the Mahalanobis distance of a new
sample x to the class centers µi:

d(x, i) = (x − µi)
T

Σ
−1 (x − µi) (2)

The new sample is then assigned to the class of the closest center. This approach is equivalent
to Fisher’s criterion for two classes (but not for more than two classes). In this equation, Σ is
the (estimated) pooled covariance matrix of the classes. If the Mahalanobis distance to each
class center is calculated using the individual class covariance matrices, the result is Quadratic
Discriminant Analysis (QDA), which as the name suggests, no longer leads to linear class
boundaries. A final formulation is to use regression using indicator variables for the class.
In a two-class situation one can use, e.g., the values of −1 and 1 for the two classes; positive
predictions will be assigned to class one, and negative predictions to class −1. In many other
cases, 0 and 1 are used, and the class threshold is put at 0.5. When there are more than two
classes, one can use a separate column in the dependent variable for every class – if a sample
belongs to that class the column should contain 1, else 0. Again, the size of the regression
coefficients indicates which of the variables contribute most to the discrimination.

For most applications in the “omics” fields, even the most simple multivariate techniques
such as Linear Discriminant Analysis (LDA) cannot be applied directly. From Equation 2
it is clear that an inverse of the the covariance matrix Σ needs to be calculated, which is
impossible in cases where the number of variables exceeds the number of samples. In practice,
the number of samples is nowhere near the number of variables. For QDA, the situation is
even worse: to allow a stable matrix inversion, every single class should have at least as many
samples as variables (and preferably quite a bit more). A common approach is to compress the
information in the data into a low number of latent variables (LVs), either using PCA (leading
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to PC-LDA, e.g. Smit et al. (2007); Werf et al. (2006)) or PLS (which gives PLS-DA; see Barker
& Rayens (2003); Kemsley (1996)), and to perform the discriminant analysis on the resulting
score matrices. These are not only of low dimension, but also orthogonal so that the matrix
inversion, the calculation of Σ

−1, can be performed very fast and reliably. Both for PC-LDA
and PLS-DA, the problem is more often usually cast in a regression context, where again the
response variable Y can take values of either 0 or 1. The model thus becomes:

Y = XB + E ≈ TP
T

B + E (3)

where E is the matrix of residuals. Matrix X is decomposed into a score matrix T and a loading
matrix P, both consisting of a very low number of latent variables, typically less than ten or
twenty. The coefficients for the scores, A = P

T
B, can therefore be easily be calculated in the

normal way of least-squares regression:

A = (TT
T)−1

T
T

Y (4)

which by premultiplication with P lead to estimates for the overall regression coefficients B:

B = PA (5)

These equations are the same for both PLS-DA and PC-LDA. The difference lies in the
decomposition of X. In PC-LDA, T and P correspond to the scores and loadings, respectively,
from PCA. That is, the class of the samples is completely ignored, and the only criterion is to
capture as much variance as possible from X. In PLS-DA, on the other hand, the scores and
loadings are taken from a PLS model and the decomposition of X does take into account class
information: the first PLS components by definition explain more, often much more, variance
of Y than the first PCA components.

Both methods, PC-LDA as well as PLS-DA, are usually very sensitive to the choice of the
number of LVs. Taking too few LVs will lead to bad predictions since important information is
missed. Taking too many, the model will be too flexible and will show a phenomenon known
as overtraining: it is more or less learning all the examples in the training set by heart but is
not able to generalize and to make good predictions for new, unseen samples. As discussed,
the assessment of the optimal number of LVs is neigh impossible with small sample sets. In
the case under consideration, the extent of this effect is investigated by constructing several
models with increasing numbers of LVs. Using real and simulated data sets (see below),
models with 1–4, 6, and 8 LVs, respectively, are compared.

A simplification of statistical modeling can be obtained by ignoring all possible correlations
between variables and assuming a diagonal covariance matrix, which leads to diagonal
discriminant analysis (DDA). It can be shown that using the latter for feature selection
corresponds to examining regular t-statistics (Zuber & Strimmer, 2009), and this is the
approach we will take in this paper. For each variable, the difference between the class means
x̄1i and x̄2i is transformed into a z-score by dividing by the appropriate standard deviation
estimate si:

zi = |x̄1i − x̄2i|/si (6)

Using the appropriate number of degrees of freedom, these z-scores can be transformed into
p values, which have the usual interpretation of the probability under the null hypothesis
of encountering an observation with a value that is at least as extreme. In biomarker
identification, p values can be used to sort the variables in order of importance and it is also
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possible to decide a cut-off value to identify variables which show “significant” differences
from the null hypothesis.

Generally speaking, the absolute size of coefficients is taken as a measure for the likelihood of
being a true marker: the variable with the largest coefficient, in a PLS-DA model for example,
is the first biomarker candidate, the second largest the second candidate, and so on. Note that
this approach assumes that all variables have been standardized, i.e., scaled to mean zero and
unit variance. This is often done in metabolomics to prevent dominance of highly abundant
metabolites. Statistics from a t-test can be treated in the same way.

2.2 Quality assessment

To evaluate the performance of biomarker selections one typically relies on quantities like the
fraction of true positives, i.e., that fraction of the real biomarkers that is actually identified by
the selection method, and the false positives – those variables that have been selected but do
not correspond to real differences. Similarly, true and false negatives can be defined. These
statistics can be summarized graphically in an ROC plot (Brown & Davis, 2005), where the
fraction of true positives (y-axis) is plotted against the fraction of false positives (x-axis). These
two characteristics are also known as the sensitivity and the (complement of) specificity. An
ideal biomarker identification method would lead to a position in the top left corner: all true
biomarkers would be found (the fraction of true positives would be one, or close to one) with
no or only very few false positives. Gradually relaxing the selection criterion, allowing more
and more variables to be considered as biomarkers, generally leads to an increase in the true
positive fraction (upwards in the plot), but also to an increase in the false positive fraction (in
the plot to the right). The best biomarker selection method is obviously the one that finds all
biomarkers very quickly, leading to a very steep ROC curve at the beginning.

A quantitative measure of the efficiency of a method can be obtained by calculating the area
under the ROC curve (AUC). A value of one (or close to one) indicates that the method does a
very good job in identifying biomarkers – all true biomarkers are found almost immediately.
A value of one half indicates a completely random selection (this corresponds to the diagonal
in the ROC plot). Values significantly lower than one half should not occur. In many cases,
the most important area in the ROC plot is the left side, which indicates the efficiency of the
model in selecting the most important biomarkers. Consequently, it is common to calculate
a partial area under the curve (pAUC), for instance up to twenty percent of false positives
(pAUC.2). In a method with higher pAUC, the true biomarkers will be present in the first
positions of the candidate biomarkers list, hence this is the quantity that will be considered in
the current paper.

2.3 Apple data set

Twenty apples, variety Golden Delicious, were purchased at the local store. Extracts of every
single fruit were prepared according to Vrhovsek et al. (Vrhovsek et al., 2004). The core of the
fruit was removed with a corer and each apple was cut into equal slices. Three slices (cortex
and skin) from the opposite side of each fruit were used for the preparation of aqueous acetone
extracts. The samples were homogenized in a blender Osterizer model 847-86 at speed one
in a mixture of acetone/water (70/30 w/w). Before the injection, acetone was evaporated
by rotary evaporation, the samples were brought back to the original volume with ethanol
and were filtered with a 0.22 µm filter (Millipore, Bedford, USA). UPLC-MS spectra were
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HPLC ACQUITY UPLC (Waters)

Column BEH C18 1.7 µm, 2.1*50 mm
Column temperature 40◦C
Injection volume 5µl

Eluent flux 0.8 mlmin−1

Solvent A 0.1% formic acid in H2O
Solvent B 0.1% formic acid in MeOH
Gradient linear gradient

from 0 to 100% of solvent B in 10 minutes
100% of B for 2 minutes
100% A within 0.1 minutes
Equilibration for 2.9 minutes.

Mass Spectrometer SYNAPT Q-TOF (Waters)

Mass range 50-3000 Da.
Capillary 3 kV
Sampling cone 25 V
Extraction cone 3 V
Source temperatures 150◦C
Desolvation temperatures 500◦C

Cone gas flow 50 Lh−1

Desolvation gas flow 1000 Lh−1

Table 1. Chromatographic and spectrometric conditions of the spiked-apple data set.

acquired on a ACQUITY - SYNAPT Q-TOF (Waters, Milford, USA) in positive and negative
ion mode with the chromatographic conditions summarized in Table 1. No technical replicates
were performed. Raw data were transformed to the open NetCDF format by the DataBridge
built-in utility of the MassLynx software.

Class differences were introduced by spiking ten of the twenty extracts with a number of
selected compounds, leaving the other ten as “untreated” controls. The majority of the spiked
compounds are known to be commonly present in apples, while two of them (trans-resveratrol
and cyanidin-3-galactoside) are not naturally present in the chosen matrix. The concentrations
of the specific compounds in the pooled extract are presented in Table 2; markers were
added in different concentrations to test the identification pipeline in conditions which mimic
those found in a typical metabolomic experiment, where variation is usually present at
different concentration levels. As an example of what the data look like, the first control
sample, measured in positive mode, is shown in Figure 1. The horizontal axis shows the
chromatographic dimension, and the vertical axis the mass-to-charge ratio. Circles indicate
features that have been identified in this plane. In the remainder only the extracted triplets for
the features, consisting of retention time, mass-to-charge ratio and intensity, will be used.

Feature extraction is performed with XCMS (Smith et al., 2006) and all statistical analyses
are carried out in R (R Development Core Team, 2011). The CentWave peak-picking
algorithm (Tautenhahn et al., 2008) is applied, using the following parameter settings: ppm
= 20, peakwidth = c(3,15), snthresh = 2, prefilter = c(3,5). The average numbers of detected
features per chromatogram are 1179 and 610 for positive and negative ion mode, respectively.
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Fig. 1. Visualization of the data of the first control sample, measured in positive mode. The
top of the figure shows the square root of the Total Ion Current (TIC); background color
indicates the intensity of the signal in the plane formed by retention time and m/zaxes.
Circles indicate features found by the peak picking; the fill colour of these circles indicates
the intensity of the features.

Compound mgl−1 pool ∆ Conc. (mgl−1)

quercetin-3-galactoside (querc-3-gal) 5.69 1.48
quercetin 0.006 0.008
quercetin-3-glucoside (querc-3-glc) 1.05 0.3
quercetin-3-rhamnoside (querc-3rham) 3.64 3.55
phloridzin 2.92 2.3
cyanidin-3-galactoside (cy-3-gal) n.d. 0.57
trans-resveratrol n.d. 0.4

Table 2. Spiked compound summary. The difference in concentration is relative to the one
measured in the pooled extract. Cyanidin-3-galactoside and trans-resveratrol are not
normally found in Golden Delicious.
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After grouping across samples, features are screened for isotopes, clusters and common
adducts with in-house developed software.

Due to fragmentation occurring in the ionization source, it is common for a single neutral
molecule to give rise to several ionic species. A single spiked compound can then generate
several “biomarkers” in the MS peak table. Adducts, isotopes and common clusters are
automatically screened, but fragments must be included in the biomarker list, as in real
metabolomic experiments no a priori knowledge can be used to distinguish molecular
from fragment ions. For the apple data set, the characteristic couples mass/retention time
for all spiked metabolites were identified by manual inspection of the UPLC-MS profiles
of standards. For negative ions the following numbers of features have been associated
with the spike-in compounds: querc-3-gal/querc-3-glc (1 feature), phloridzin (2 features),
trans-resveratrol (1), querc-3-rham (1). In the case of positive ion mode the numbers are
cy-3-gal (1), trans-resveratrol (1), querc-3-rham (1), quercetin (1) and phloridzin (4). These
feature are now taken to be the “true” biomarkers and they are used to construct ROC
curves. The data set, as well as a more extended version including different concentrations
of spiked-in compounds is publicly available in the R package BioMark (see http://cran.
r-project.org/web/packages/BioMark, Wehrens & Franceschi (2011)) and has been
used to evaluate a novel stability-based biomarker selection method (Wehrens et al., 2011).

In this application, the effects of decreasing sample size are investigated by subsampling
the original set of twenty samples: sample sizes of 16, 12, 8 and 6 apples, respectively, are
considered. In all cases, both classes (spiked and control) have equal sizes, which is the most
easy case for detecting significant differences. Results are summarized by analysis of ROC
curves – to prevent effects from accidentally easy or difficult subsets, the final ROC curves are
obtained by averaging the results of 100 repeated re-samplings.

2.4 Simulated data sets

To assess the behaviour of biomarker selection for larger data sets, we resort to simulation.
Simulated data sets have been constructed as multivariate normal distributions, using the
means and covariance matrices of the experimental data: both classes (untreated and spiked)
have been simulated separately. Simulations are performed for both positive and negative
modes; in every simulation, one hundred data sets are created. The outcomes reported here
are the averages of the results for the one hundred simulations. Data sets consisting of 10, 25,
50 and 200 biological samples per class have been synthesized.

3. Results and discussion

As a first step, the data are visualized using Principal Component Analysis (PCA). Since the
intensities of the features can vary enormously, standardized data are used. The score plots
for the positive and negative data sets are shown in Figure 2 for the positive ion mode, and in
Figure 3 for the negative mode. In both cases, control and spiked data sets are not completely
separated and the same is also true for the other PCs (not shown). This fact indicates that
the “inherent” variability of the data set is not perturbed to a significant extent by spiking, as
could be expected considering the small number of affected variables.

Even with this data structure, biomarker selection strategies can still perform efficiently.
Figure 2 and Figure 3 also display the score plots of a PCA analysis performed considering
only the top 10 variables selected by univariate t-testing. In these conditions, the separation
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Fig. 2. PCA score plot (PC1 vs PC2) for the positive ion mode data set after standardization.
In the left plot the principal components have been calculated on the full data set. In the right
panel PCA analysis has been performed considering only the top 10 variables selected by a
t-test.

between control and spiked samples is evident, thus indicating that this subset of the variables
separates the two classes. Whether these ten variables contain the true biomarkers remains to
be seen: especially in small data sets there may be chance correlations causing false positives,
and seeing differences between the two groups in the score plots after t-testing in fact is
trivial. The score plot is merely showing that the variables, selected on the bases of their
discriminating power, are separating the two classes. As already discussed, small data sets
will in general not capture all relevant biological variability, which implies that the predictive
power of statistical models based on small data sets usually is very low. To illustrate this
effect, the predictive power, i.e., the fraction of correct predictions for PC-LDA and PLS-DA
models is presented in Figure 4. Four subsets of different sizes are considered as training sets,
and the estimate of predictive power is based on predictions for the apples not in the training
set. Again, the results are the average over 100 different subsamplings. Even if the control
and spiked subsets are different, it can be seen that the predictive power of the multivariate
methods is comparable to random selection, meaning that for every subset different variables
will be important in the models and no consistency can be achieved. However, it is important
to point out that this fact does not mean that some of the true biomarkers are not consistently
selected upon subsetting, but rather that the more important variables are changing from a
subset to another: even with models that are unpredictive it is possible to extract relatively
good lists of putative biomarkers. Obviously, with very different characteristics for the two
classes there will be predictive power, but for realistic data sets like the one used in this paper,
where differences are small, it is unwise to focus solely on prediction.

To evaluate the efficiency of the different methods as far as biomarker selection is concerned,
ROC curves for the t-test and two-component PLS-DA and PC-LDA models are presented in
Figure 5, for 3, 4, 6 and 8 biological samples per class, respectively. The ROC curves indicate
that all three variables selection methods perform significantly better than random selection.
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Fig. 4. Predictive power of multivariate PLS-DA and PC-LDA on a subset of the initial data
set for positive and negative ion mode. Different lines are relative to models constructed
with an increasing number of LVs. The horizontal dashed line indicates random selection.

Of the three, PC-LDA is always the least efficient, while PLS-DA and the t-test have a very
similar performance. In absolute terms, the efficiency of the three methods increases with
the number of biological samples. ROC curves for all possible conditions were constructed
and the results are summarized in terms of early AUC (pAUC.2) in Figure 6, for positive and
negative ion mode, respectively. From these figures it is possible to extract some clear trends:
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Fig. 5. ROC curves for the t-test and two component PLS-DA and PC-LDA as a function of
the number of samples per class.

1. The performance of the methods improves by increasing the number samples per class.

2. The performance of PLS-DA is not particularly sensitive to the number of components.

3. PC-LDA does not show top class performance in any of the conditions considered.

4. The performance of PC-LDA is very much dependent on the number of components.

5. Multivariate approaches do not show a definitive advantage over univariate t-testing.

As expected, the performances of all the methods in terms of biomarker identification decrease
with a reduction of the data set size. However, it is important to point out that even
in the worst possible case (3 samples per class) early AUC for PLS-DA and the t-test are
significantly greater than that obtained for completely random selection. This indicates that
both methods can be used effectively in the biomarker selection phase, even with a low
number of samples. In other words, features related to spiked compounds are consistently
present in the top positions of the ordered list of experimental variables, which implies that
also models constructed with very few samples can be relied upon to recognize these features.

The performance of PC-LDA is very much dependent on the number of components taken
into account. This behavior can be explained by considering that in PC-LDA the variable
reduction step is performed without any knowledge of class labels, only selecting the
directions of greater variance. If these directions show little discriminating power, their
supervised linear combination leads to poor modeling. However, performance improves with
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Fig. 6. pAUC.2 for PLS-DA, PC-LDA and t-test as a function of the number of samples per
class and the number of LVs. The gray dashed line indicates the pAUC.2 of random selection.

the number of components, as an increase of the number of LVs leads to a better “coverage”
of the data space. These limitations do not affect PLS-DA, as the variable reduction step
is already performed in a supervised framework, where discriminating power is the main
request. This means that the first PLS components are by definition more relevant than the
first PCA components in biomarker identification. The other side of the coin is the danger
of overfitting, very real in the application of PLS-DA (Westerhuis et al., 2008) – we will come
back to this point later.

In this small-sample set, the t-test does as well as the best multivariate methods. This shows
that modeling the correlation structure is not necessarily an advantage if the number of
samples is low, or, alternatively, that the true correlation structure has not been captured well
enough from the few samples that are available to allow meaningful inference. A definite
advantage of the t-test is that it has no tunable parameters and can be applied without further
optimization. It should be noted that we do not need to apply multiple-testing corrections
in this context since we only use the order of the absolute size of the t-statistics to construct
the ROC curves, and not a specific cut-off level α. In other applications, however, this aspect
should be taken into account.

To extend the comparison between different models beyond the limits imposed by the apple
experiment, ROC curves and early AUC were calculated for the simulated data using larger
sample sizes (10, 25, 50, 200), both for positive and negative ion modes. The dependence of
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random selection

pAUC.2 on the number of replicates and of components is presented in Figure 7, comparing
the multivariate methods to the t-test and to “random” selection.

This analysis shows that PC-LDA only becomes effective if a large number of LVs is
considered: the true biomarkers should have appreciable weight in the latent variables and
it is by no means certain that this is the case for the first couple of LVs. Is it worth noting
that for negative ion mode, the model with 2 LVs is comparable to random selection. In the
case of PLS-DA, this dependence on the number of LVs is less evident and shows an opposite
trend: the best performance is obtained with the smallest number of LVs. This is in agreement
with the explanation given earlier: the relevant variables are captured in the very first PLS
components, and the effect of overtraining leads to deterioration if more components are
added. If anything, it is surprising that the overtraining effect is relatively small for these
data.

The results on the simulated data sets are in agreement with the conclusions from the apple
data. Differences between the methods decrease with increasing sample sizes, but even
with the largest number of objects (200 in each group) the t-test still performs as well as
PLS-DA. Multivariate testing is slightly more effective for the positive ion mode, while the
t-test shows a slight advantage for the negative ion mode. This behaviour is probably due to
the different characteristics of both ionization modes, leading to different levels of correlation
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between biomarkers. Indeed, in positive ion mode, the ionization shows a more pronounced
fragmentation (phloridzine, for example, gives rise to four different biomarkers).

4. Conclusions

In this paper we have investigated the effects of sample set size on the performance of
some popular strategies for biomarker identification (PLS-DA, PC-LDA and the t-test). The
experiments are performed on a spiked metabolomic data set measured in apple extracts by
UPLC-QTOF. The efficiency of the different statistical approaches is compared in terms of ROC
curves, and in order to assess general trends, simulated data have been used to extend the data
set. The experimental results clearly show that Linear Discriminant Analysis carried out on
the Principal Components (PC-LDA) is the least efficient strategy for biomarker identification
among the ones we considered. PLS-DA and the t-test show comparable performances in all
the considered conditions. These results, and the observation that PLS-DA based selection
is relatively consistent for different numbers of components, indicate that multivariate and
univariate approaches are equally efficient for the apple data set. It is perhaps surprising that
relatively good results in terms of biomarker selection are obtained, even for models that have
very poor predictive performance. One should realise, however, that this is not a paradox at
all: it merely is the result from the low sample-to-variable ratio, leading to chance correlations
of intensities of metabolite signals with class. The true biomarkers are often present among
the most significant variables in, e.g., a PLS-DA model, but many other false positives are,
too, destroying the predictive power. One recently published approach actually utilizes
this variability by focusing only on those variables that are consistently present in the most
important variables upon disturbance of the data by jackkifing or bootstrapping (Wehrens
et al., 2011).

The main point of this contribution, however, is the relation between data set size and
reliability of biomarker identification. As expected, all the methods become less efficient as the
number of biological replicates decreases, but even in these conditions the use of PLS-DA and
the t-test offer effective biomarker identification strategies. This observation is fundamentally
important in all studies where it is impossible to acquire more samples, and suggests that
small sample sizes can still allow reliable selection of biomarkers.
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