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1. Introduction

Exploratory Data Analysis (EDA) has been employed for decades in many research fields,
including social sciences, psychology, education, medicine, chemometrics and related fields
(1) (2). EDA is both a data analysis philosophy and a set of tools (3). Nevertheless, while
the philosophy has essentially remained the same, the tools are in constant evolution. The
application of EDA to current problems is challenging due to the large scale of the data sets
involved. For instance, genomics data sets can have up to a million of variables (5). There
is a clear interest in developing EDA methods to manage these scales of data while taking
advantage of the basic importance of simply looking at data (3).

In data sets with a large number of variables, collinear data and missing values, projection
models based on latent structures, such as Principal Component Analysis (PCA) (6) (7) (1) and
Partial Least Squares (PLS) (8) (9) (10), are valuable tools within EDA. Projection models and
the set of tools used in combination simplify the analysis of complex data sets, pointing out
to special observations (outliers), clusters of similar observations, groups of related variables,
and crossed relationships between specific observations and variables. All this information is
of paramount importance to improve data knowledge.

EDA based on projection models has been successfully applied in the area of chemometrics
and industrial process analysis. In this chapter, several standard tools for EDA with projection
models, namely score plots, loading plots and biplots, are revised and their limitations are
elucidated. Two recently proposed tools are introduced to overcome these limitations. The
first of them, named Missing-data methods for Exploratory Data Analysis or MEDA for short
(11), is used to investigate the relationships between variables in projection subspaces. The
second one is an extension of MEDA, named observation-based MEDA or oMEDA (33), to
discover the relationships between observations and variables. The EDA approach based on
PCA/PLS with scores and loading plots, MEDA and oMEDA is illustrated with several real
examples from the chemometrics field.

This chapter is organized as follows. Section 2 briefly discusses the importance of subspace
models and score plots to explore the data distribution. Section 3 is devoted to the
investigation of the relationship among variables in a data set. Section 4 studies the
relationship between observations and variables in latent subspaces. Section 5 presents
a EDA case study of Quantitative Structure-Activity Relationship (QSAR) modelling and
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section 6 proposes some concluding remarks. Examples and Figures were computed
using the MATLAB programming environment, with the PLS-Toolbox (32) and home-made
software. A MATLAB toolbox with the tools employed in this chapter is available at
http://wdb.ugr.es/ josecamacho/.

2. Patterns in the data distribution

The distribution of the observations in a data set contains relevant information for data
understanding. For instance, in an industrial process, one outlier may represent an abnormal
situation which affects the process variables to a large extent. Studying this observation with
more detail, one may be able to identify if it is the result of a process upset or, very commonly,
a sensor failure. Also, clusters of observations may represent different operation points.
Outliers, clusters and trends in the data may be indicative of the degree of control in the
process and of assignable sources of variation. The identification of these sources of variation
may lead to the reduction of the variance in the process with the consequent reduction of
costs.

The distribution of the observations can be visualized using scatter plots. For obvious
reasons, scatter plots are limited to three dimensions at most, and typically to two dimensions.
Therefore, the direct observation of the data distribution in data sets with several tens,
hundreds or even thousands of variables is not possible. One can always construct scatter
plots for selective pairs or thirds of variables, but this is an overwhelming and often
misleading approach. Projection models overcome this problem. PCA and PLS can be used
straightforwardly to visualize the distribution of the data in the latent subspace, considering
only a few latent variables (LVs) which contain most of the variability of interest. Scatter plots
of the scores corresponding to the LVs, the so-called score plots, are used for this purpose.

Score plots are well known and accepted in the chemometric field. Although simple to
understand, score plots are paramount for EDA. The following example may be illustrative
of this. In Figure 1, three simulated data sets of the same size (100 × 100) are compared.
Data simulation was performed using the technique named Approximation of a DIstribution
for a given COVariance matrix (15), or ADICOV for short. Using this technique, the same
covariance structure was simulated for the three data sets but with different distributions:
the first data set presents a multi-normal distribution in the latent subspace, the second
one presents a severe outlier and the third one presents a pair of clusters. If the scatter
plot of the observations in the plane spanned by the first two variables is depicted (first
row of Figure 1), the data sets seem to be almost identical. Therefore, unless an extensive
exploration is performed, the three data sets may be though to come from a similar data
generation procedure. However, if a PCA model for each data set is fitted and the score
plots corresponding to the first 2 PCs are shown (second row of Figure 1), differences among
the three data sets are made apparent: in the second data set there is one outlier (right side
of Figure 1(e)) and in the third data set there are two clusters of observations. As already
discussed, the capability to find these details is paramount for data understanding, since
outliers and clusters are very informative of the underlaying phenomena. Most of the times
these details are also apparent in the original variables, but finding them may be a tedious
work. Score plots after PCA modelling are perfectly suited to discover large deviations
among the observations, avoiding the overwhelming task of visualizing each possible pair
of original variables. Also, score plots in regression models such as PLS are paramount for
model interpretation prior to prediction.
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(f) Third Data Set

Fig. 1. Experiment with three simulated data sets of dimension 100 × 100. Data simulation
was performed using the ADICOV technique (15). In the first row of figures, the scatter plots
corresponding to the first two variables in the data sets are shown. In the second row of
figures, the scatter plots (score plots) corresponding to the first two PCs in the data sets are
shown.

3. Relationships among variables

PCA has been often employed to explore the relationships among variables in a data set
(19; 20). Nevertheless, it is generally accepted that Factor Analysis (FA) is better suited
than PCA to study these relationships (1; 7). This is because FA algorithms are designed
to distinguish between shared and unique variability. The shared variability, the so-called
communalities in the FA community, reflect the common factors–common variability–among
observable variables. The unique variability is only present in one observable variable. The
common factors make up the relationship structure in the data. PCA makes no distinction
between shared and unique variability and therefore it is not suited to find the structure in the
data.

When either PCA or FA are used for data understanding, a two step procedure is typically
followed (1; 7). Firstly, the model is calibrated from the available data. Secondly, the model is
rotated to obtain a so-called simple structure. The second step is aimed at obtaining loading
vectors with as much loadings close to 0 as possible. That way, the loading vectors are easier
to interpret. It is generally accepted that oblique transformations are preferred to the more
simple orthogonal transformations (19; 20), although in many situations the results are similar
(1).

The limitation of PCA to detect common factors and the application of rotation methods will
be illustrated using the pipelines artificial examples (14). Data for each pipeline are simulated
according to the following equalities:
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(b) Varimax rotation

Fig. 2. Loading plots of the PCA model fitted from the data in the two pipelines example: (a)
original loadings and (b) loadings after varimax rotation.

F12 = F1 + F2

F123 = F1 + F2 + F3

where F1, F2 and F3 represent liquid flows which are generated independently at random
following a normal distribution of 0 mean and standard deviation 1. A 30% of measurement
noise is generated for each of the five variables in a pipeline at random, following a normal
distribution of 0 mean:

x̃i = (xi +
√

0.3 · n)/(
√

1.3)

where x̃i is the contaminated variable, xi the noise-free variable and n the noise generated.
This simulation structure generates blocks of five variables with three common factors: the
common factor F1, present in the observed variables F1, F12 and F123; the common factor F2,
present in the observed variables F2, F12 and F123; and the common factor F3, present in F3
and F123. Data sets of any size can be obtained by combining the variables from different
pipelines. In this present example, a data set with 100 observations from two pipelines for
which data are independently generated is considered. Thus, the size of the data set is 100 ×
10 and the variability is built from 6 common factors.

Figure 2 shows the loading plots of the PCA model of the data before and after rotation.
Loading plots are interpreted so that close variables, provided they are far enough from the
origin of coordinates, are considered to be correlated. This interpretation is not always correct.
In Figure 2(a), the first component separates the variables corresponding to the two pipelines.
The second component captures variance of most variables, specially of those in the second
pipeline. The two PCs capture variability corresponding to most common factors in the data
at the same time, which complicates the interpretation. As already discussed, PCA is focused
on variance, without making the distinction between unique and shared variance. The result
is that the common factors are not aligned with the PCs. Thus, one single component reflects
several common factors and the same common factor may be reflected in several components.
As a consequence, variables with high and similar loadings in the same subset of components
do not necessarily need to be correlated, since they may present very different loadings
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in others components. Because of this, inspecting only a pair of components may lead to
incorrect conclusions. A good interpretation would require inspecting and interrelating all
pairs of components with relevant information, something which may be challenging in many
situations. This problem affects the interpretation and it is the reason why FA is generally
preferred to PCA.

Figure 2(b) shows the resulting loadings after applying one of the most used rotation methods:
the varimax rotation. Now, the variables corresponding to each pipeline are grouped towards
one of the loading vectors. This highlights the fact that there are two main and orthogonal
sources of variability, each one representing the variability in a pipeline. Also, in the first
component variables collected from pipeline 2 present low loadings whereas in the second
component variables collected from pipeline 1 present low loadings. This is the result of
applying the notion of simple structure, with most of the loadings rotated towards 0. The
interpretation is simplified as a consequence of improving the alignment of components with
common factors. This is especially useful in data sets with many variables.

Although FA and rotation methods may improve the interpretation, they still present
severe limitations. The derivation of the structure in the data from a loading plot is not
straightforward. On the other hand, the rotated model depends greatly on the normalization
of the data and the number of PCs (1; 21). To avoid this, several alternative approaches to
rotation have been suggested. The point in common of these approaches is that they find
a trade-off between variance explained and model simplicity (1). Nevertheless, imposing a
simple structure has also drawbacks. Reference (11) shows that, when simplicity is pursued,
there is a potential risk of simplifying even the true relationships in the data set, missing part
of the data structure. Thus, the indirect improvement of data interpretation by imposing a
simple structure may also report misleading results in certain situations.

3.1 MEDA

MEDA is designed to find the true relationships in the data. Therefore, it is an alternative to
rotation methods or in general to the simple structure approach. A main advantage of MEDA
is that, unlike rotation or FA methods, it is applied over any projection subspace without
actually modifying it. The benefit is twofold. Firstly, MEDA is straightforwardly applied in
any subspace of interest: PCA (maximizing variance), PLS (maximizing correlations) and any
other. On the contrary, FA methods are typically based on complicated algorithms, several
of which have not been extended to regression. Secondly, MEDA is also useful for model
interpretation, since common factors and components are easily interrelated. This is quite
useful, for instance, in the selection of the number of components.

MEDA is based on the capability of missing values estimation of projection models (22–27).
The MEDA approach is depicted in Figure 3. Firstly, a projection model is fitted from the
calibration N × M matrix X (and optionally Y). Then, for each variable m, matrix Xm is
constructed, which is a N × M matrix full with zeros except in the m-th column where it
contains the m-th column of matrix X. Using Xm and the model, the scores are estimated with
a missing data method. The known data regression (KDR) method (22; 25) is suggested at this
point. From the scores, the original data is reconstructed and the estimation error computed.
The variability of the estimation error is compared to that of the original data according to the
following index of goodness of prediction:
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Fig. 3. MEDA technique: (1) model calibration, (2) introduction of missing data, (3) missing
data imputation, (4) error computation, (5) computation of matrix Q2

A.

q2
A,(m,l) = 1 −

‖êA,(l)‖2

‖x(l)‖2
, ∀l �= m. (1)

where êA,(l) corresponds to the estimation error for the l-th variable and x(l) is its actual value.
The closer the value of the index is to 1, the more related variables m and l are. After all the
indices corresponding to each pair of variables are computed, matrix Q2

A is formed so that

q2
A,(m,l)

is located at row m and column l. For interpretation, when the number of variables is

large, matrix Q2
A can be shown as a color map. Also, a threshold can be applied to Q2

A so that
elements over this threshold are set to 1 and elements below the threshold are set to 0.

The procedure depicted in Figure 3 is the original and more general MEDA algorithm.
Nevertheless, provided KDR is the missing data estimation technique, matrix Q2

A can
be computed from cross-product matrices following a more direct procedure. The value
corresponding to the element in the i-th row and j-th column of matrix Q2

A in MEDA is equal
to:

q2
A,(m,l) =

2 · Sml · SmlA − (SmlA)2

Smm · Sll
. (2)

where Slm stands for the cross-product of variables xl and xm, i.e. Slm = xT
l · xm, and

SlmA stands for the cross-product of variables xl and xA
m, being xA

m the projection of xm in the
model sub-space in coordinates of the original space. Thus, Slm is the element in the l-th row
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Fig. 4. MEDA matrix from the PCA model fitted from the data in the two pipelines example.

and m-th column of the cross-product matrix XX = XT ·X and SlmA corresponds to the element
in the l-th row and m-th column of matrix XX · PA · Pt

A in PCA and of matrix XX · RA · Pt
A in

PLS, with:
RA = WA · (PT

A · WA)
−1. (3)

The relationship of the MEDA algorithm and cross-product matrices was firstly pointed out
by Arteaga (28) and it can also be derived from the original MEDA paper (11). Equation (2)
represents a direct and fast procedure to compute MEDA, similar in nature to the algorithms
for model fitting from cross-product matrices, namely the eigendecomposition (ED) for PCA
and the kernel algorithms (29) (30) (31) for PLS.

In Figure 4(a), the MEDA matrix corresponding to the 2 PCs PCA model of the example in
the previous section, the two independent pipelines, is shown. The structure in the data is
elucidated from this matrix. The separation between the two pipelines is shown in the fact
that upper-right and lower-left quadrants are close to zero. The relationship among variables
corresponding to factors F1 and F2 are also apparent in both pipelines. Since the variability
corresponding to factors F3 is barely captured by the first 2 PCs, these are not reflected in the
matrix. Nevertheless, if 6 PCs are selected, (Figure 4(b)) the complete structure in the data is
clearly found.

MEDA improves the interpretation of both the data set and the model fitted without actually
pursuing a simple structure. The result is that MEDA has better properties than rotation
methods: it is more accurate and its performance is not deteriorated when the number of
PCs is overestimated. Also, the output of MEDA does not depend on the normalization
of the loadings, like rotated models do, an it is not limited to subspaces with two or three
components at most. A comparison of MEDA with rotation methods is out of the scope of this
chapter. Please refer to (11) for it and also for a more algorithmic description of MEDA.

3.2 Loading plots and MEDA

The limitations of loading plots and the application of MEDA were introduced with the
pipelines artificial data set. This is further illustrated in this section with two examples
provided with the PLS-toolbox (32): the Wine data set, which is used in the documentation of
the cited software to show the capability of PCA for improving data understanding, and the
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Fig. 5. Loading plot of the first 2 PCs from the Wine Data set provided with the PLS-toolbox
(32).

PLSdata data set, which is used to introduce regression models, including PLS. The reading
of the analysis and discussion of both data sets in (32) is recommended.

As suggested in (32), two PCs are selected for the PCA model of the Wine data set. The
corresponding loading plot is shown in Figure 5. According to the reference, this plot shows
that variables HeartD and LifeEx are negatively correlated, being this correlation captured
in the first component. Also, "wine is somewhat positively correlated with life expectancy,
likewise, liquor is somewhat positively correlated with heart disease". Finally, bear, wine and
liquor form a triangle in the figure, which "suggests that countries tend to trade one of these
vices for others, but the sum of the three tends to remain constant". Notice that although
these conclusions are interesting, some of them are not so evidently shown by the plot. For
instance, Liquor is almost as close to HeartD than to Wine. Is Liquor correlated to Wine as it
is to HeartD?

MEDA can be used to improve the interpretation of loading plots. In Figure 6(a), the MEDA
matrix for the first PC is shown. It confirms the negative correlation between HeartD and
LifeEx, and the–lower–positive correlation between HeartD and Liqour and LifeEx and Wine.
Notice that these three relationships are three different common factors. Nevertheless, they all
manifest in the same component, making the interpretation with loading plots more complex.
The MEDA matrix for the second PC in Figure 6(b) shows the relationship between the three
types of drinks. The fact that the second PC captures this relationship was not clear in the
loading plot. Furthermore, the MEDA matrix shows that Wine and Liquor are not correlated,
answering to the question in the previous paragraph. Finally, this absence of correlation
refutes that countries tend to trade wine for liquor or viceversa, although this effect may be
true for bear.

In the PLSdata data set, the aim is to obtain a regression model that relates 20 temperatures
measured in a Slurry-Fed Ceramic Melter (SFCM) with the level of molten glass. The x-block
contains 20 variables which correspond to temperatures collected in two vertical thermowells.
Variables 1 to 10 are taken from the bottom to the top in thermowell 1, and variables 11 to 20
from the bottom to the top in thermowell 2. The data set includes 300 training observations
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Fig. 6. MEDA matrices of the first PCs from the Wine data set provided with the PLS-toolbox
(32).
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Fig. 7. Loading plots from the PLS model in the Slurry-Fed Ceramic Melter data set.

and 200 test observations. This same data set was used to illustrate MEDA with PCA in (11)
with the temperatures and the level of molten glass together in the same block of data 1.

1 There are some results of the analysis in (11) which are not coherent with those reported here, since the
data sets used do not contain the same observations.
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Fig. 8. MEDA matrices from the PLS model in the Slurry-Fed Ceramic Melter data set.

Following recommendations in (32), a 3 LVs PLS model from a mean-centered x-block was
fitted. The loading plots corresponding to the three possible pairs of LVs are shown in Figure
7. The first LV captures the predictive variance in the temperatures, with higher loadings
for higher indices of the temperatures in each thermowell. This holds exception made on
temperatures 10 and 20, which present their predictive variance in the second and third LVs,
being the variance in 10 between three and four times higher than that in 20. The third
LVs also seems to discriminate between both thermowells. For instance, in Figure 7(c) most
temperatures of the first thermowell are in the upper middle of the Figure, whereas most
temperatures of the second thermowell are in the lower middle. Nevertheless, it should
be noted that the third LV only captures 2% of the variability in the x-block and 1% of the
variability in the y-block.

The information gained with the loading plots can be complemented with that in MEDA,
which brings a much clearer picture of the structure in the data. The MEDA matrix for
the PLS model with 3 LVs is shown in Figure 8(a). There is a clear auto-correlation effect
in the temperatures, so that closer sensors are more correlated. This holds exception made
on temperatures 10 and 20. Also, the corresponding temperatures in both thermowells are
correlated, including 10 and 20. Finally, the temperatures at the bottom do not contain
almost any predictive information of the level of molten glass. In (32), the predictive error
by cross-validation is used to identify the number of LVs. Four LVs attain the minimum
predictive error, but 3 LVs are selected since the fourth LV does not contribute much to the
reduction of this error. In Figure 8(b), the contribution of this fourth LV is shown. It is
capturing the predictive variability from the third to the fifth temperature sensors in the first
thermowell, which are correlated. The corresponding variability in the second thermowell is
already captured by the first 3 LVs. This is an example of the capability of MEDA for model
interpretation, which can be very useful in the determination of the number of LVs. In this
case and depending on the application of the model, the fourth LV may be added to the model
in order to compensate the variance captured in both thermowells, even if the improvement
in prediction performance is not high.

The information provided by MEDA can also be useful for variable selection. In this example,
temperatures 1-2 and 11-12 do not contribute to a relevant degree to the regression model.
As shown in Table 1, if those variables are not used in the model, its prediction performance
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Variables Complete model [3 : 10 13 : 20] [3 : 10] [13 : 20]

LVs 3 3 3 3
X-block variance 88.79 89.84 96.36 96.93
Y-block variance 87.89 87.78 84.61 83.76
RMSEC 0.1035 0.1039 0.1166 0.1198
RMSECV 0.1098 0.1098 0.1253 0.1271
RMSEP 0.1396 0.1394 0.1522 0.1631

Table 1. Comparison of three PLS models in the Slurry-Fed Ceramic Melter data set. The
variance in both blocks of data and the Root Mean Square Error of Calibration (RMSEC),
Cross-validation (RMSECV) and Prediction (RMSEP) are compared.

remains the same. Also, considering the correlation among thermowells, one may be tempted
to use only one of the thermowells for prediction, reducing the associated costs of maintaining
two thermowells. If this is done, only 8 predictor variables are used and the prediction
performance is reduced, but not to a large extent. Correlated variables in a prediction model
help to better discriminate between true structure and noise. For instance, in this example,
when only the sensors of one thermowell are used, the PLS model captures more x-block
variance and less y-block variance. This is showing that more specific–noisy–variance in the
x-block is being captured. Using both thermowells reduces this effect. Another example of
variable selection with MEDA will be presented in Section 5.

3.3 correlation matrices and MEDA

There is a close similarity between MEDA and correlation matrices. To this regard, equation
(2) simplifies the interpretation of the MEDA procedure. The MEDA index combines the
original variance with the model subspace variance in Sml and SmlA . Also, the denominator
of the index in eq. (2) is the original variance. Thus, those pairs of variables where a high
amount of the total variance of one of them can be recovered from the other are highlighted.
This is convenient for data interpretation, since only factors of high variance are highlighted.
On the other hand, it is easy to see that when the number of LVs, A, equals the rank of X, then
Q2

A is equal to the element-wise squared correlation matrix of X, C2 (11). This can be observed
in the following element-wise equality:

q2
Rank(X),(m,l) =

S2
ml

Smm · Sll
= c2

(m,l). (4)

This equivalence shows that matrix Q2
A has a similar structure than the–element-wise

squared–correlation matrix. To elaborate this similarity, a correlation matrix can be easily
extended to the notion of latent subspace. The correlation matrix in the latent subspace, CA,
can de defined as the correlation matrix of the reconstruction of X with the first A LVs. Thus,
CA = PA · Pt

A · C · PA · Pt
A in PCA and CA = PA · Rt

A · C · RA · Pt
A in PLS. If the elements of CA

are then squared, the element-wise squared correlation in the latent subspace, noted as C2
A, is

obtained. Strictly speaking, each element of C2
A is defined as:

c2
A,(m,l) =

S2
mAlA

SmAmA · SlAlA

. (5)
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However, for the same reason explained before, if C2
A is aimed at data interpretation, the

denominator should be original variance:

c2
A,(m,l) =

S2
mAlA

Smm · Sll
. (6)

If this equation is compared to equation (2), we can see that the main difference between
MEDA and the–projected and element-wise squared–correlation matrix is the combination
of original and projected variance in the numerator of the former. This combination is
paramount for interpretation. Figure 9 illustrates this. The example of the pipelines is used
again, but in this case ten pipelines and only 20 observations are considered, yielding a
dimension of 20 × 50 in the data. Two data sets are simulated. In the first one, the pipelines
are correlated. As a consequence, the data present three common factors represented by the
three biggest eigenvalues in Figure 9(a). In the second one, each pipeline is independently
generated, yielding a more distributed variance in the eigenvalues (Figure 9(b)). For matrices
Q2

A and C2
A to infer the structure in the data, they should have large values in the elements

which represent real structural information (common factors) and low values in the rest of
the elements. Since in both data sets it is known a-priori which elements in the matrices
represent actual common factors and which not, the mean values for the two groups of
elements in matrices Q2

A and C2
A can be computed. The ratio of these means, computed by

dividing the mean of the elements with common factors by the mean of the elements without
common factors, is a measure of the discrimination capability between structure and noise
of each matrix. The higher this index is, the better the discrimination capability is. This
ratio is shown in Figures 9(c) and 9(d) for different numbers of PCs. Q2

A outperforms C2
A

until all relevant eigenvalues are incorporated to the model. Also, Q2
A presents maximum

discrimination capability for a reduced number of components. Notice that both alternative
definitions of C2

A in equations (5) and (6) give exactly the same result, though equation (6) is
preferred for visual interpretation.

4. Connection between observations and variables

The most relevant issue for data understanding is probably the connection between
observations and variables. It is almost useless to detect certain details in the data distribution,
such as outliers or clusters, if the set of variables related to these details are not identified.
Traditionally, biplots (12) have been used for this purpose. In biplots, the scatter plots
of loadings and scores are combined in a single plot. Apart from relevant considerations
regarding the comparability of the axes in the plot, which is also important for any scatter
plots, and of the scales in scores and loadings (18), biplots may be misleading just because of
the loading plot included. In this point, a variant of MEDA, named observation-based MEDA
or oMEDA, can be used to unveil the connection between observations and variables without
the limitations of biplots.

4.1 oMEDA

oMEDA is a variant of MEDA to connect observations and variables. Basically, oMEDA is
a MEDA algorithm applied over a combination of the original data and a dummy variable
designed to cover the observations of interest. Take the following example: a number of
subsets of observations {C1, ..., CN} form different clusters in the scores plot which are located
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Fig. 9. Comparison of MEDA and the projected and element-wise squared covariance matrix
in the identification of the data structure from the PCA model fitted from the data in the ten
pipelines example: (a) and (b) show the eigenvalues when the pipelines are correlated and
independent, respectively, and (c) and (d) show the ratio between the mean of the elements
with common factors and the mean of the elements without common factors in the matrices.

far from the bulk of the data, L. One may be interested in identifying, for instance, the
variables related to the deviation of C1 from L without considering the rest of clusters. For
that, a dummy variable d is created so that observations in C1 are set to 1, observations in L
are set to -1, while the remaining observations are left to 0. Also, values other than 1 and -1 can
be included in the dummy variable if desired. oMEDA is then performed using this dummy
variable.

The oMEDA technique is illustrated in Figure 10. Firstly, the dummy variable is designed
and combined with the data set. Then, a MEDA run is performed by predicting the original
variables from the dummy variable. The result is a single vector, d2

A, of dimension M × 1,
being M the number of original variables. In practice, the oMEDA index is slightly different to
that used in MEDA. Being d the dummy variable, designed to compare a set of observations
with value 1 (or in general positive values) with another set with value -1 (or in general
negative values), then the oMEDA index follows:

d2
A,(l) = ‖xd

(l)‖2 − ‖êd
A,(l)‖2, ∀l. (7)
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Fig. 10. oMEDA technique: (1) introduction of the dummy variable, (2) model calibration, (3)
introduction of missing data, (4) missing data imputation, (5) error computation, (6)
computation of vector d2

A.

where xd
(l)

represents the values of the l-th variable in the original observations different to

0 in d and êd
A,(l)

is the corresponding estimation error. The main difference between the

computation of index d2
A,(l)

in oMEDA and that of MEDA is the absence of the denominator

in the former. This modification is convenient to avoid high values in d2
A,(l)

when the amount

of variance of a variable in the reduced set of observations of interest is very low. Once d2
A is

computed for a given dummy variable, sign information can be added from the mean vectors
of the two groups of observations considered (33).

In practice, in order to avoid any modification in the PCA or PLS subspace due to the
introduction of the dummy variable, the oMEDA algorithm is slightly more complex than
the procedure shown in Figure 10. For a description of this algorithm refer to (33). However,
like in MEDA, the oMEDA vector can be computed in a more direct way by assuming KDR
(26) is used as the missing data estimation procedure. If this holds, the oMEDA vector follows:

d2
A,(l) = 2 · xt

(l) · D · xA,(l) − xt
A,(l) · D · xA,(l), (8)

where x(l) represents the l-th variable in the–complete–set of original observations and xA,(l)
its projection in the latent subspace in coordinates of the original space and:
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Fig. 11. oMEDA vector of two clusters of data from the 10 PCs PCA model of a simulated
data set of dimension 100 × 100. This model captures 30% of the variability. Data present two
clusters in variable 10.

D =
d · (d)T

‖d‖2
. (9)

Finally, the equation can also be reexpressed as follows:

d2
A,(l) =

1

N
· (2 · Σ

d
(l) − Σ

d
A,(l)) · |Σd

A,(l)| (10)

with Σ
d
(l)

and Σ
d
A,(l)

being the weighted sum of elements in x(l) and xA,(l) according to the

weights in d, respectively. Equation (10) has two advantages. Firstly, it presents the oMEDA
vector as a weighted sum of values, which is easier to understand. Secondly, it has the sign
computation built in, due to the absolute value in the last element. Notice also that oMEDA
inherits the combination of total and projected variance present in MEDA.

In Figure 11 an example of oMEDA is shown. For this, a 100 × 100 data set with two clusters
of data was simulated. The distribution of the observations was designed so that both clusters
had significantly different values only in variable 10 and then data was auto-scaled. The
oMEDA vector clearly highlights variable 10 as the main difference between both clusters.

4.2 Biplots vs oMEDA

Let us return to the discussion regarding the relationship between the common factors and
the components. As already commented, several common factors can be captured by the
same component in a projection model. As a result, a group of variables may be located close
in a loading plot without the need to be correlated. This is also true for the observations.
Thus, two observations closely located in a score plot may be quite similar or quite different
depending on their scores in the remaining LVs. However, score plots are typically employed
to observe a general distribution of the observations. This exploration is more aimed at
finding differences among observations rather than similarities. Because of this, the problem
described for loading plots is not so relevant for the typical use of score plots. However, this is
a problem when interpreting biplots. In biplots, deviations in the observations are related to
deviations in the variables. Like loading plots, biplots may be useful to perform a fast view on
the data, but any conclusion should be confirmed with another technique. oMEDA is perfectly
suited for this.
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Fig. 12. Biplot of the first 2 PCs from the Wine Data set provided with the PLS-toolbox (32).
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Fig. 13. Score plot of the first 2 PCs from the Wine Data set provided with the PLS-toolbox
(32) and two artificial observations.

In Figure 12, the biplot of the Wine data set is presented. The distribution of the scores show
that all countries but Russia follow a trend from the Czech Republic to France, while Russia
is located far from this trend. The biplot may be useful to make hypothesis on the variables
related to the special nature of Russia or to the trend in the rest of countries. Nevertheless,
this hypothesis making is not straightforward. To illustrate this, in Figure 13 the scores are
shown together with two artificial observations. The artificial observations were designed to
lay close to Russia in the score plot of the first two PCs. In both cases, three of the five variables
were left to their average value in the Wine data set and only two variables are set to approach
Russia. Thus, observation W&LE only uses variables Wine and LifeEx to yield a point close
to Russia in the score plot while the other variables are set to the average. Observation L&B
only uses Liquor and Beer. With this example, it can be concluded that very little can be said
about Russia only by looking at the biplot.
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Fig. 14. oMEDA vectors of the first 2 PCs from the Wine Data set provided with the
PLS-toolbox (32). Russia (a), L&B (b) and W&LE (c) compared to the rest of countries.

In Figure 14(a), the oMEDA vector to discover the differences between Russia and the rest
of countries is shown. For this, a dummy variable is built where all observations except
Russia are set to -1 and Russia is set to 1. oMEDA shows that Russia has in general less
life expectancy and more heart disease and liquor consumption than the rest of countries. The
same experiment is repeated for artificial observations L&B and W&LE in Figures 14(b) and
14(c). oMEDA clearly distinguishes among the three observations, while in the biplot they
seem to be very similar.

To analyze the trend shown by all countries except Russia in Figure 12, the simplest approach
is to compare the most separated observations, in this case France and the Czech Republic.
The oMEDA vector is shown in Figure 15(a). In this case, the dummy variable is built so that
France has value 1, the Czech Republic has value -1 and the rest of the countries have 0 value.
Thus, positive values in the oMEDA vector identify variables with higher value in France
than in the Czech Republic and negative values the opposite. oMEDA shows that the French
consume more wine and less beer than Czech people. Also, according to the data, the former
seem to be more healthy.

Comparing the two most separated observations may be misleading in certain situations.
Another choice is to use the capability of oMEDA to unveil the variables related to any
direction in a score plot. For instance, let us analyze the trend of the countries incorporating
the information in all the countries. For this, different weights are considered in the dummy
variable. We can think of these weights as-approximate–projections of the observations in
the direction of interest. Following this approach, the weights listed in Table 2 are assigned,
which approximate the projection of the countries in the imaginary line depicted by the arrow
in Figure 13. Since Russia is not in the trend, it is left to 0. Using these weights, the resulting
oMEDA vector is shown in Figure 15(b). In this case, the analysis of the complete set of
observations in the trend resembles the conclusions in the analysis of the two most separated
observations.

Country Weight CountryWeight

France 3 Mexico -1
Italy 2 U.S.A. -1
Switz 1 Austra -1
Japan 1 Brit -1
Russia 0 Czech -3

Table 2. Weights used in the dummy variable for the oMEDA vector in Figure 15(b).
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Fig. 15. oMEDA vectors of the first 2 PCs from the Wine Data set provided with the
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the score plot by all countries except Russia is analyzed.

19.8 20 20.2 20.4 20.6 20.8 21 21.2
19.8

20

20.2

20.4

20.6

20.8

21

21.2

Y Measured 1 Level

Y
 P

re
d

ic
te

d
 1

 L
e

v
e

l

(a) Training & Test

0 50 100 150 200
19.8

20

20.2

20.4

20.6

20.8

21

Sample

 

 

Y Measured

Y Predicted

(b) Test

Fig. 16. Measured vs predicted values of molten glass level in the PLS model with 3 LVs
fitted from the Slurry-Fed Ceramic Melter (SFCM) data set in (32).

Let us return to the PLSdata data set. A PLS model relating temperatures with the level of
molten glass was previously fitted. As already discussed, the data set includes 300 training
observations and 200 test observations. The measured and predicted values of both sets of
observations are compared in Figure 16(a). The predicted values in the test observations
(inverted triangles) tend to be higher than true values. This is also observed in Figure 16(b).
The cause for this seems to be that the process has slightly moved from the operation point
where training data was collected. oMEDA can be used to identify this change of operation
point by simply comparing training and test observations in the model subspace. Thus,
training (value 1) and test observations (value -1) are compared in the subspace spanned by
the first 3 LVs of the PLS model fitted only from training data. The resulting oMEDA vector is
shown in Figure 17. According to the result, considering the test observations have value -1 in
the dummy variable, it can be concluded that the process has moved to a situation in which
top temperatures are higher than during model calibration.

5. Case study: Selwood data set

In this section, an exploratory data analysis of the Selwood data set (34) is carried out. The data
set was downloaded from http://michem.disat.unimib.it/chm/download/datasets.htm. It
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Fig. 18. Scores corresponding to the first LV in the PLS model with the complete set of
descriptors of the Selwood dataset.

consists of 31 antifilarial antimycin A1 analogues for which 53 physicochemical descriptors
were calculated for Quantitative Structure-Activity Relationship (QSAR) modelling. The set
of descriptors is listed in Table 3. These descriptors are used for predicting in vitro antifilarial
activity (-LOGEC50). This data set has been employed for testing variables selection methods,
for instance in (35; 36), in order to find a reduced number of descriptors with best prediction
performance. Generally speaking, these variable selection methods are based on complex
optimization algorithms which make use of heuristics to reduce the search space.

Indices Descriptors

1:10 ATCH1 ATCH2 ATCH3 ATCH4 ATCH5 ATCH6 ATCH7 ATCH8 ATCH9 ATCH10
11:20 DIPV_X DIPV_Y DIPV_Z DIPMOM ESDL1 ESDL2 ESDL3 ESDL4 ESDL5 ESDL6
21:30 ESDL7 ESDL8 ESDL9 ESDL10 NSDL1 NSDL2 NSDL3 NSDL4 NSDL5 NSDL6
31:40 NSDL7 NSDL8 NSDL9 NSDL10 VDWVOL SURF_A MOFI_X MOFI_Y MOFI_Z PEAX_X
41:50 PEAX_Y PEAX_Z MOL_WT S8_1DX S8_1DY S8_1DZ S8_1CX S8_1CY S8_1CZ LOGP
51:53 M_PNT SUM_F SUM_R

Table 3. Physicochemical descriptors of the Selwood dataset.
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Fig. 19. Several vectors corresponding to the first LV in the PLS model with the complete set
of descriptors of the Selwood dataset.

First of all, a PLS model is calibrated between the complete set of descriptors and -LOGEC50.
Leave-one-out cross-validation suggests one LV. The score plot corresponding to the 31
analogues in that LV are shown in Figure 18. Four of the compounds, namely K17, J1, J19 and
K18, present an abnormally low score. This deviation is highly contributing to the variance
in the first LV and the reason for it should be investigated. Two of these compounds, K17
and K18, were catalogued as outliers by (34), where the authors stated that "Chemically, these
compounds are distinct from the bulk of the training set in that they have an n-alkyl side chain
as opposed to a side chain of the phenoxy ether type". Since the four compounds present an
abnormally low score in the first LV, typically the analyst may interpret the coefficients of
that LV to try to explain this abnormality. In Figure 19, the loadings, weights and regression
coefficients of the PLS model are presented together with the oMEDA vector. The latter
identifies those variables related to the deviation of the four compounds from the rest. The
oMEDA vector is similar, but with opposite sign, to the other vectors in several descriptors,
but quite different in others. Therefore, the loadings, weights or coefficient vectors should
not be used in this case for the investigation of the deviation, or otherwise one may arrive to
incorrect conclusions. On the other hand, it may be worth to check whether the oMEDA vector
is representative of the deviation in the four compounds. Performing oMEDA individually on
each of the compounds confirm this fact (see Figure 20)
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Fig. 20. oMEDA vectors corresponding to the first LV in the PLS model with the complete set
of descriptors of the Selwood dataset. To compute each of the vectors, one of the four
compounds K17, J1, J19 and K18 are set to 1 in the dummy variable and the other three are
set to 0, while the rest of compounds in the data set are set to -1.

The subsequent step is to search for relevant descriptors (variable selection) For this, MEDA
will be employed. In this point, there are two choices. The four compounds with low score
in the first LV may be treated as outliers and separated from the rest of the data (34) or the
complete data set may be modelled with a single QSAR model (35; 36). It should be noted
that differences among observations in one model may not be found in a different model,
so that the same observation may be an outlier or a normal observation depending on the
model. Furthermore, as discussed in (35), the more general the QSAR model is, so that it
models a wider set of compounds, the better. Therefore, the complete set of compounds will
be considered in the remaining of the example. On the other hand, regarding the analysis tools
used, there are different possibilities. MEDA may be applied over the PLS model relating the
descriptors in the x-block and -LOGEC50 in the y-block. Alternatively, both blocks may be
joined together in a single block of data and MEDA with PCA be applied. The second choice
will be generally preferred to avoid over-fitting, but typically both approaches may lead to
the same conclusions, like it happens in the present example.

The application of MEDA requires to select the number of PCs in the PCA model. Considering
that the aim is to understand how the variability in -LOGEC50 is related to the descriptors in
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Fig. 21. Structural and Variance Information (SVI) plot of in vitro antifilarial activity
(-LOGEC50). The data set considered combines -LOGEC50 with the complete set of
descriptors of the Selwood dataset.

the data set, the Structural and Variance Information (SVI) plots are the adequate analysis tool
(14). The SVI plots combine variance information with structural information to elucidate how
a PCA model captures the variance of a single variable. The SVI plot of a variable v reveals
how the following indices evolve with the addition of PCs in the PCA model:

• The R2 statistic, which measures the variance of v.

• The Q2 statistic, which measures the performance of the missing data imputation of v, or
otherwise stated its prediction performance.

• The α statistic, which measures the portion of variance of v which is identified as unique
variance, i.e. variance not shared with other variables.

• The stability of α, as an indicator of the stability of the model calibration.

Figure 21 shows the SVI plot of -LOGEC50 in the PCA model with the complete set of
descriptors. The plot shows that the model remains quite stable until 5-6 PCs are included.
This is seen in the closeness of the circles which represents the different instances of α

computed on a leave-one-out cross-validation run. The main portion of variability in
-LOGEC50 is captured in the second and eighth PCs. Nevertheless, is not until the tenth
PC that the missing data imputation (Q2) yields a high value. For more PCs, the captured
variability is only slightly augmented. Since MEDA makes use of the missing data imputation
of a PCA model, Q2 is a relevant index. At the same time, from equation (2) is clear that MEDA
is also influenced by captured variance. Thus, 10 PCs are selected. In any case, it should be
noted that MEDA is quite robust to the overestimation in the number of PCs (11) and very
similar MEDA matrices are obtained for 3 or more PCs in this example.

The MEDA matrix corresponding to the PCA model with 10 PCs from the data set which
combines -LOGEC50 with the complete set of descriptors of the Selwood dataset is presented
in Figure 22. For variable selection, the most relevant part of this matrix is the last column
(or row), which corresponds to -LOGEC50. This vector is shown in Figure 23(a). Those
descriptors with high value in this vector are the ones from which -LOGEC50 can be better
predicted. Nevertheless, the selection of, say, the first n variables with higher value is not an
adequate strategy because the relationship among the descriptors should also be considered.
Let us select the descriptor with better prediction performance, in this case ATCH6, though
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Fig. 22. MEDA matrix of the PCA model with 10 PCs from the data set which combines the
in vitro antifilarial activity (-LOGEC50) with the complete set of descriptors of the Selwood
dataset.
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Fig. 23. MEDA vector corresponding to the in vitro antifilarial activity (-LOGEC50) (a)
comparison between this vector and that corresponding to ATCH6 (b) and MEDA vector
corresponding to LOGP (c) in the PCA model with 10 PCs from the data set which combines
-LOGEC50 with the complete set of descriptors of the Selwood dataset.

ATCH1, ATCH3, ATCH7 or SUM_F have a very similar prediction performance. The
least-squares regression model with ATCH6 as regressor attains a Q2 equal to 0.30, more than
the Q2 attained by any number of LVs in the PLS model with the complete set of descriptors. If
for instance ATCH6 and ATCH1 are used as regressors, Q2 = 0.26 is obtained for least squares
regression and Q2 = 0.31 for PLS with 1 LV, which means an almost negligible improvement
with the addition of ATCH1. The facts that the improvement is low and that the 1 LV PLS
model outperforms the least squares model are caused by the correlation between ATCH6
and ATCH1, correlation clearly pointed out in the MEDA matrix (see the element at the sixth
column and first row or the first column and sixth row) Clearly, both ATCH6 and ATCH1 are
related to the same common factor in -LOGEC50. However, the variability in -LOGEC50 is the
result of several sources of variability, which may be common factors with other descriptors.

85Exploratory Data Analysis with Latent Subspace Models

www.intechopen.com



24 Will-be-set-by-IN-TECH

Therefore, in order to introduce a new common factor in the model other than that in ATCH6,
we need to find a descriptor related to -LOGEC50 but not to ATCH6. Also, the model may be
improved by introducing a descriptor related to ATCH6 but not to -LOGEC50. For this, Figure
23(b) compares the columns in the MEDA matrix corresponding to ATCH6 and -LOGEC50.
The comparison should not be performed in terms of direct differences between values. For
instance, ATCH1 and ATCH6 are much more correlated than ATCH1 and -LOGEC50. It is
the difference in shape which is informative. Thus, we find that -LOGEC50 present a high
correlation with LOGP (variable 50) which is not found in ATCH6. Thus, LOGP presents a
common factor with -LOGEC50 which is not present in ATCH6. Using LOGP and ATCH6 as
regressors, the least squares model presents Q2 = 0.37.

If an additional descriptor is to be added to the model, again it should present a different
common factor with any of the variables in the model. The MEDA vector corresponding to
LOGP is shown in Figure 23(c). This descriptor is related to a number of variables which are
not related to -LOGEC50. This relationship represents a common factor in LOGP but not in
-LOGEC50. The inclusion of a descriptor containing this common factor, for instance MOFI_Y
(variable 38) may improve prediction because it may help to distinguish the portion of
variability in LOGP which is useful to predict -LOGEC50 from the portion which is not. Using
LOGP, ATCH6 and MOFI_Y as regressors yields Q2 = 0.56, illustrating that the addition of a
descriptor which is not related to the predicted variable may be useful for prediction.

In Figure 24, the two common factors described before, the one present in ATCH6 and
-LOGEC50 and the one present in LOGP and MOFI_Y, are approximately highlighted in
the MEDA matrix. If variables ATCH6 and MOFI_Y are replaced by others with the same
common factors, the prediction performance of the model remains similar. However, LOGP
is utmost for the model since is the only descriptor which relates the second common factor
and -LOGEC50. These results are coherent with findings in the literature. Both (35) and (36)
highlight the relevance of LOGP, and justify it with the results in several more publications.
Furthermore, the top 10 models found in (35), presented in Table 4, follow the same patter of
the solution found here. The models with three descriptors contain LOGP with one descriptor
from the first and second common factors. The models with two descriptors contain LOGP
and a variable with the second common factor.

Descriptors Q2

SUM_F (52) LOGP (50) MOFI_Y (38) 0.647
ESDL3 (17) LOGP (50) SURF_A (36) 0.645
SUM_F (52) LOGP (50) MOFI_Z (39) 0.644
LOGP (50) MOFI_Z (39) 0.534
ESDL3 (17) LOGP (50) MOFI_Y (38) 0.605
ESDL3 (17) LOGP (50) MOFI_Z (39) 0.601
LOGP (50) MOFI_Y (38) 0.524
LOGP (50) PEAX_X (40) 0.518
LOGP (50) SURF_A (36) 0.501
SUM_F (52) LOGP (50) PEAX_X (40) 0.599

Table 4. Top 10 models obtained after variable selection of the Selwood data set in (35)

Finally, in Figure 25 the plot of measured vs predicted values of -LOGEC50 in the model
resulting from the exploration is shown. No outliers are identified, though the four
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Fig. 24. MEDA matrix of the PCA model with 10 PCs from the data set which combines the
in vitro antifilarial activity (-LOGEC50) with the complete set of descriptors of the Selwood
dataset. Two common factors are highlighted. The first one is mainly found in descriptors 1
to 3, 5 to 7, 17, 52 and 53. The second one is mainly found in descriptors 35, 36, 38 to 40, 45, 47
and 50. Though the second common factor is not present in -LOGEC50, it is in LOGP.
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Fig. 25. Plot of measured vs predicted values of -LOGEC50 in the model with regressors
LOGP, ATCH6 and MOFI_Y of the Selwood dataset.

compounds previously highlighted are found at the bottom left corner. This result support
the non-convenience of isolating these compounds.

Notice that MEDA is not a variable selection technique per se and therefore other methods
may be more powerful for this purpose. Nevertheless, being an exploratory method, the
benefit of using MEDA for variable selection is that the general solution can be identified and
understood, like in the present example. On the contrary, most variable selection approaches
are based on highly complex algorithms which can only report a set of possible alternative
solutions (e.g. Table 4).
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6. Conclusion

In this chapter, new tools for exploratory data analysis are presented and combined with
already well known techniques in the chemometrics field, such as projection models, score
and loading plots. The shortcomings and potential pitfalls in the application of common tools
are elucidated and illustrated with examples. Then, the new techniques are introduced to
overcome these problems.

The Missing-data methods for Exploratory Data Analysis technique, MEDA for short, studies
the relationships among variables. As it is discussed in the chapter, while chemometric
models such as PCA and PLS are quite useful for data understanding, they have a main
problem which complicates its interpretation: a single component captures several sources
of variability or common factors and at the same time a single common factor is captured in
several components. MEDA, like rotation methods or Factor Analysis (FA), is a tool for the
identification of the common factors in subspace models, in order to elucidate the structure
in the data. The output of MEDA is similar to a correlation matrix but with better properties
associated. MEDA is the perfect complement of loading plots. It gives a different picture of the
relationships among variables which is especially useful to find groups of related variables.
Using a Quantitative Structure-Activity Relationship (QSAR) example, it was shown that the
understanding of the relationships among variables in the data may lead to perform variable
selection with similar performance of highly sophisticated algorithms, with the extra benefit
that the global solution is not only found but also understood.

The second technique introduced in this chapter is a variant of MEDA, named
observation-based MEDA or oMEDA. oMEDA was designed to identify the variables which
differ between two groups of observations in a latent subspace, but it can be used for the more
general problem of identifying the variables related to a given direction in the score plot. Thus,
when a number of observations are located in a specific direction in the score plot, oMEDA
gives the variables related to that distribution. oMEDA is the perfect complement of score
plots and much more reliable than biplots. It can also be seen as an extension of contribution
plots to groups of observations. It may be especially useful to check whether the distribution
of a new set of observations agree with a calibration model.

Though MEDA and oMEDA are grounded on missing-data imputation methods and their
original algorithms are complex to a certain extent, both tools can be computed with very
simple equations. A MATLAB toolbox with the tools employed in this chapter, including
MEDA, oMEDA, ADICOV and SVI plots, is available at http://wdb.ugr.es/ josecamacho/.
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