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1. Introduction   

Microelectromechanical Systems (MEMS) are constructed to achieve a certain engineering 

function or functions by electromechanical or electrochemical means. Very intricate 

moveable structures can be fabricated using the sacrificial layer (Madou, 2002). These 

moveable suspended structures are micro-bridges fabricated using the sacrificial layer. 

These structures can be cantilever beam bridges fixed at one end or membrane bridges fixed 

at both ends. In the field of RF MEMS these two types of bridges are used to fabricate the 

series or shunt switches. 

In a fabrication process, the final release of a MEMS device is the most crucial step.   Surface 

micromachining process relies on both wet and dry etching techniques. Wet etching has been 

widely used for pattern delineation.  In wet etching, liquid etchant dissolves away the exposed 

film and attacks isotropically, resulting in loss of pattern definition due to undercutting and 

rounding of film features. This chapter suggests a solution to the problem of stiction by 

avoiding the wet release and in the absence of Critical Point Dryer (CPD). A dry release 

technique is presented for the RF MEMS structures, that combines the removal of sacrificial 

layer through wet etching and its substitution with standard photoresist. After coating, this 

photoresist acts as a supporting layer under the structure and rejects the structure to attack the 

substrate (Orpana & Korhonen, 1991). During this complete process wafers are not allowed to 

dry at any moment of time, otherwise structures may be permanently bonded with the 

substrate. The supporting layer is removed by oxygen plasma using the Reactive Ion Etching 

(RIE). In the dry etching, residual waste is off concern which effect the reliability of the MEMS 

structures. Motivation for this unique process was that some left over residues were observed 

after the single step or traditional RIE process. Secondly, this process was more cost effective 

as compared to a wet release CPD technique using CO2 dryer. The process not only produced 

less residual waste but achieved a clean dry release. 

2. Need for dry etching   

A serious limitation of suspended MEMS structures is that they tend to deflect through 
stress gradient or surface tension induced by trapped liquids during the final rinsing and 
drying step. Problems like stiction and bridge collapse are associated with producing a free 
standing structure. The stiction is described as a process of bonding the top and bottom 
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electrodes together by a microscopic surface due to the planner nature of the electrodes. 
Stiction of MEMS is a common concern. When a sacrificial layer is removed and rinsed in 
deionized water, the surface tension of rinse water pulls the delicate micro structure to the 
substrate as the wafer dries. Risk of stiction is caused by the capillary forces originating 
from the dehydration of meniscuses, van der Waals force or the electrostatic force formed 
between the suspended beam structures and the substrate following the wet etching 
(Madou, 2002).  These forces keep the structure firmly attached with the substrate. Stiction 
remains a reliability issue due to contact with adjacent surfaces after release. 
Stiction is an inevitable problem we deal with for achieving the working RF MEMS devices. 
With increase in cantilever length, its flexibility perpendicular to the substrate increases 
which also increases the susceptibility to stiction. When the structure gets attached with the 
substrate due to stiction, the mechanical force required to dislodge it from the surface is 
large enough resulting in damage to MEMS structure (Modou, 2002). The surface 
morphology has a strong influence on stiction and is a serious problem particularly in metal 
to metal contact switches (Varadan et al., 2003). 
In order to achieve a released structure, contact between the structural elements and the 
substrate should be avoided during processing. Etching can be done by physical damage, 
chemical damage or combination of both. Release of these suspended beam structures can 
be done either through wet etching or dry etching. Etching in a plasma environment has 
several advantages as compared to wet etching. In the wet etching, this may become 
impossible or very difficult due to large surface tension forces. Moreover, if a MEMS 
structure is left too long in the etchant, the structure can be over etched and damaged 
(Harsh et al., 1999). Plasmas are easier to start and stop than simple immersion wet etching 
(Campbell, 1996). Also sensitivity of plasma etch is less prone to small changes in the 
temperature of the wafer. Above mentioned factors make plasma etching more repeatable 
than wet etching.  
Different techniques over a period of time have been used to avoid stiction. Method of 

creating stand-off bumps on the underside of a polysilicon plate was introduced (Abe et al., 

1995) which added meniscus shaping microstructures to the perimeter of the microstructure 

for reducing the chance of stiction. To avoid stiction critical point drying technique using 

CO2 dryer is used (Chan et al., 2007) to release the structures. 

3. Mitigation of stiction   

3.1 Causes of stiction   

The gap between two metal surfaces or device to substrate is so small that strong capillary 
forces can be developed during the dehydration which may lead to the adhesion of two 
surfaces. The same adhesion can occur when device is exposed to high humid conditions 
which lead to capillary condensation. Microstructures which contaminate the contact 
surface if stiction occurs, are in fact the synthetic particles of the metals (Alley et al., 1992).  
The adhesion may occur due to solid bridging or liquid bridging. In solid bridging, the non 
volatile impurities present in the drying liquid are deposited on solid surfaces if drying by 
evaporation is conducted. These impurities may be introduced due to dissolution of the 
particles or substrate materials by liquid or through dissolution of residues distributed 
uniformly on the surface of the substrate. The deposition of impurities is pronounced in 
narrow spaces and between the two metal contacting surfaces upper and lower. This results 
in adhesion between the metal surfaces. The adhesion strength through solid bridging is 
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difficult to estimate because of the variation in deposition process or the density of 
deposited material. In any case, the adhesion strength tends to be significant.  
The liquid bridging occurs due to the surface tension of the trapped capillary liquids. The 

drying of this trapped liquid is difficult due to the presence of concentrated soluble 

impurities. These trapped impurities increase surface tension while decreasing the vapor 

pressure. A third possible adhesion cause can occur if suspended membrane is placed in 

contact with the lower contact surface due to some external force. This adhesion can occur 

due to deliberate placement of collapsing forces or can be due to shock effect (Mastrangelo, 

2000).  

3.2 Stiction due to capillary forces   

The removal of sacrificial layer to achieve a suspended microstructure is the final step in the 

surface micromachining process. This process mostly requires a wet etching for removal of 

sacrificial layer. In some cases the removal is also done using plasma etch when sacrificial 

layer is other than a metal layer like polyimide or photo-resist. After the wet etching the 

microstructure is rinsed using DI water to remove the residues left during the etching. 

When the microstructure is pulled out of DI water a strong capillary force develops. A 

meniscus forms at the interface under the microstructure when the microstructure is pulled 

out of water. The curved interface creates a pressure called Laplace pressure which is given 

by (Israelachvili, 1991) 

 L l
a b

P
r r


 

  
 

1 1
 (1) 

The liquid surface tension is denoted by γl and two radii of curvature of liquid surfaces are 

given as ra (parallel to surface normal of the substrate) and rb (in the plane of the substrate). 

In most cases, the liquid droplet on the surface of the substrate will not wet it. It will present 

a definite angle of contact between the liquid and the substrate as shown in figure 1. 

  

    
(a)                                                                   (b) 

Fig. 1. Contact angle at solid liquid interface of (a) non-spreading (b) spreading liquid 

In equilibrium condition, the contact angle between liquid and solid is determined by the 

balance between the surface tension of the three interfaces.  The contact angle θ at the 

junction of three interfaces is defined as the angle formed between solid-air, liquid-air and 

liquid-solid interfacial tensions in equilibrium. The contact is given by the Young’s equation 

(Israelachvili, 1991) as 

  SA SL LAcos      0 < θ < π (2) 
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If the SA  surface tension is smaller than the sum of  SL  and LA surface tensions, then the 

contact angle is larger than 00 and liquid will be non spreading as shown in figure 2(a). If the 

SA  surface tension is larger, than the sum of SL  and LA surface tensions, it will spread the 

liquid energetically. Then the contact angle is equal to 00 and liquid will spread thus 

forming a drop bridging between the two surfaces as shown in figure 2(b). The total surface 

energy of the area between the metal contacting parts can be calculated by adding the 

surface tensions of all the three interfaces (Mastrangelo & Hsu, 1993). 

 

      
(a)                                                                   (b) 

Fig. 2. The capillary condensation phenomenon of (a) non-spreading (b) spreading liquid 
showing underneath of a cantilever beam (front view)  

Because the lateral dimesions of  microstructures like cantilever beams are much larger than 

the vertical gap spacing (g) due to liquid layer thickness, i.e. rb»ra, therefore we may write 

(1) as, 

 l
L

cos
P

g

 


2
 (3) 

where θ is the contact angle of the liquid at the surface of the substrate and g is the gap 

height between the cantilever and the substrate which is equal to 2ra cosθ.  
The shape of the meniscus will be concave (rb< 0) under a cantilever structure on a 

hydrophilic surface (silicon or any metal) which forms a quite shallow contact angle 

i.e., cos  1 as shown in figure 2(a), so the resulting Laplas pressure is negative. This will 

create sufficient attractive capillary force that will pull the cantilever beam structure down 

into contact with lower metal surface or substrate as shown in figure 3. Hence the cantilever 

beam falls into adhesion or stiction with substrate or metal surface following the drying 

process.  

 
 

 

Fig. 3. The process of the microstructure drying that leads to the adhesion of micro 
cantilever to adjacent surfaces 
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The stiction between the two metal surfaces due to capillary forces looks quite similar to 
solid bridging. In the solid bridging, nonvolatile impurities are deposited on the solid 
surface causing the adhesion during the drying whereas in the capillary forces adhesion of a 
thin liquid layer works as an adhesion force between the two solid surfaces. If the contact 
angle θ between the solid and liquid is less than 900 (figure 2(a)) then the pressure inside the 
liquid drop will be less than outside. This results in a net attractive force between the two 
contacting plates. Figure 4 shows the SEM image of the cantilever beam structure stuck with 
lower metal surface due to capillary force. The adhesion of the beam was strong. An attempt 
was made to release the front part of the cantilever using micro probe. This resulted in 
breaking of the cantilever beam.   
   

 

Fig. 4. SEM of cantilever beam held with stiction due to capillary forces 

3.3 Drying method of cantilever beams   

In this study, fabrication of RF MEMS is done using the CPW structure. When liquid 

attaches to the long cantilever beam, separation between the beam and CPW is a function of 

position whereas gap is smaller near the tip than near the anchor. As ra→ ∞, the radius rb 

remains constant as the droplet pressure is constant. As the liquid dries, the decrease in 

surface area drives the radius rb to smaller values. The droplet will form an inside meniscus 

near the base which forces the droplet to neck down in this region resulting in a negative 

value of ra. The necking continues with lower negative value of ra until the two meniscuses 

on either side of the beam meet and pinch off a separated droplet. This technique for drying 

of water activates the capillary forces which can lead to adhesion. However, for applications 

discussed here the drying method has been used while avoiding the meniscus so that 

capillary force does not come into play at the time of drying.  

In this drying method, the sacrificial layer was removed by wet etching. During rinsing with 
DI water when capillary forces could act for stiction during drying, we dipped the device in 
acetone till the time whole water under the cantilever beam was removed. The acetone dip 
also removed the diluted impurities which were present in the DI water while removing the 
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sacrificial layer. Drying does not takes place with acetone, but device was dipped into a thin 
photo-resist (AZ5214E) which took a place underneath the cantilever beam as a supporting 
layer. The acetone evaporates quickly, therefore at no stage sample was exposed to the air. 
The photo-resist became a concentrated resist as the acetone evaporates leaving only the 
supporting layer of photo-resist. Now drying of photo-resist with hard-bake will remove the 
solvents from the photo-resist and then etch the photo-resist supporting layer with O2 
plasma using RIE. This drying method resulted in clean surface without residues and no 
stiction was observed during the process.  

3.4 Stiction by contact adhesion 

Another phenomenon which can produce adhesion between the two surfaces is an inter-
solid adhesion which can overcome the restoring force of the elastic beam. Figure 5 shows 
the cross section of a cantilever beam with length L, width W, height g, and thickness t. The 
Young’s modulus of the beam is represented by E which is 78GPa in terms of Au metal used 
for the fabrication of the switch. The figure shows that beam is adhering to the substrate at a 
distance d = (L-x) from its tip.  
 

 

Fig. 5. Schematic of a cantilever beam adhering to the substrate 

We can calculate the total energy of the system which is sum of the elastic and surface 
energies and is given (Mastrangelo, 2000) by  

 T E S s

EIg
U U U Wd

x
   

2

3

6
 (4) 

where EU is the bending energy stored in the beam and SU is the interfacial energy of the 

contact area. Shear deformations are particularly important for x → L, as d = (L-x) is very 

small and tip of cantilever beam changes its elastic energy substantially just before 

detachment. This causes the beam to detach from substrate (Mastrangelo &Hsu, 1993) when 

L = x = (3Et3h2/8γx)1/4 where γx is the surface energy which is determined from the 

detachment length and beam dimensions.  

3.4.1 Inter solid adhesion reduction method   

To eliminate the chance of permanent adhesion failure between the two solid surfaces, an 
inter-solid surface adhesion reduction is required. This can be done using techniques such 
as use of textured surfaces and posts, low energy molecular coatings and fluorinated 
coatings. The textured surfaces and posts approach has been used for the method presented 
here. Contact area between the elastic cantilever beam and the lower metal contact area on 
substrate was reduced which in turn reduced the adhesion forces.  
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The surface roughness of the upper contact area and lower contact area is rough enough, 
thus generates a rough interface between the two contact areas. The measured surface 
roughness of the upper contact area is 18nm and lower contact area is 22nm, respectively. 
This accomplishes the texturing of contact surfaces.  
Texturing of the two solid surfaces was enhanced deliberately by introducing the 
construction of a small supporting post. In this approach, a dimple was introduced under 
the front tip of the cantilever. The dimple was constructed by making an extra mask layer in 
the fabrication process before patterning the cantilever beam. The dimensions of the dimple 
are 10×20μm with the height 0.9μm. Figure 6 shows the SEM of the dimple. It was taken by 
manually turning the cantilever beam using a lift out microscope. 
 

 

Fig. 6. SEM of the dimple under the front end of the cantilever beam 

The contact adhesion was also investigated by using a sharp Tungsten probe tip. The radius 
of curvature of the probe tip was 1μm. The sharp tip of the probe was used to pull the 
beams down under a high magnification microscope to ensure that cantilever tip has made 
contact with lower surface. When the tip of the cantilever touched the lower CPW surface, 
the probe tip was removed and cantilever beam started peeling off the surface. During this 
experimentation, there were only two options available to verify that either the beam would 
stick to lower surface or the beam would come off without stiction. A number of samples 
were tested after the release and no inter-solid adhesion was observed in these samples. 

4. Dry etch process optimization using RIE   

The first batch of wafers was used to optimize the release of the final device. For this 
purpose whole fabrication process was skipped and only the mask layers which were 
required for the fabrication of cantilever beams were used. For optimizing the release 
process Aluminum (Al) metal was used as it was readily available rather than expensive Au 
metal. Once the release process was carefully optimized, Au layer was used for the final 
fabrication of RF MEMS switches.  
A 2.5μm thick layer of photo-resist (AZ6612) was deposited and then patterned for anchor. 
A 1.5μm thick layer of evaporated Al was deposited using e-beam evaporator. A layer of 
1.0μm of photo-resist was deposited to pattern the cantilever beam. Two approaches were 
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used to dry release the cantilever beams. First, one wafer was used to directly dry etch the 
sacrificial layer of photo-resist without using any other process on it. In this approach, it was 
observed that RIE tool was not able to remove the sacrificial layer material sufficiently from 
the devices. Some leftover metal residues were also observed which could not be cleaned 
even after extensive DI water rinsing of the wafer. A prolonged exposure of anisotropic RIE 
also damaged the cantilever beam structures.  
In the second approach, a combination of wet and dry release was used to remove the 
leftover metal residues after etching while replacing a new layer of photo-resist as a 
supporting layer. The sample was inspected under microscope followed by SEM and in this 
case metal residues were not observed on the sample or supporting layer.  Wafer was 
exposed under O2 plasma in RIE chamber for dry etch. The wafer was exposed to high RF 
power (70W) and high pressure (30Pa). The high RF power generated an intense 
bombardment of plasma atoms with high pressure.  
Devices were inspected under the microscope after the first etching exposure. It was 
observed that although plasma etched the photo-resist from top and sides of the device a 
significant amount of resist was observed under the cantilever beam. A second exposure of 
plasma was given again to the samples. After second exposure of plasma it was observed 
that resist was still visible under the beam. However, the beam structures were discoloured. 
It was assumed that some resist was still on the beam which created this discolourization. 
However, when the samples were observed under SEM, it showed that this discolourization 
was not due to resist but the beam structures were damaged due to high power plasma 
particles.  
Figure 7(a) shows the SEM image of bridge over bias line with damaged surface. A metal 
peeling from some parts of the bridge is also visible. One can observe that high power 
bombardment of plasma atoms has damaged the metal layers on the device. Figure 7(b) 
shows the cantilever beam structure damaged due to RIE plasma while optimizing the 
release process.  
After a number of iterations, it was revealed that power and pressure were the main factors 
for the optimization of dry release process. Variation of power and pressure from high to 
low and vise versa can change the plasma behavior inside the chamber. The voltage bias 
was also controlled once these parameters were changed. With high RF power and low 
pressure we achieved a bias of 232±6V which indicated that plasma particles generated 
inside the chamber strike the surface of the substrate with more power giving anisotropic 
etching behavior. With low power and high pressure the bias changed to as low as 90±6V 
which changed the plasma atoms behavior from anisotropic to isotropic giving etch profile 
below the surface of the cantilever beam also.  
Three wafer samples were used to optimize the RIE process using the supporting layer 
technique. In this case, a careful shifting of power and pressure parameters was done. Once 
sample was ready with supporting layer of photo-resist underneath the cantilever beam, the 
sample was exposed to high power and low pressure for one hour. In this case, the plasma 
particles struck the wafer surface with high power but under low pressure. It did not 
damage the device surface. The sample was observed under the microscope and a 
significant amount of photo-resist was observed on the sample as well as under the beam. 
The sample was exposed to plasma for 30min and then inspected again under microscope. It 
was observed that much of the resist from top of the beam and sides was removed but a 
small amount of resist was still visible on the beam and significant amount of resist was 
observed under the beam. Sample was exposed to another 30min exposure which cleaned 
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the resist from top and sides of the beam but under the beam resist was observed. Now, the 
power and pressure parameters of the RIE tool were changed from high power to low 
power and from low pressure to high pressure. This created an isotropic behavior of the 
plasma instead of anisotropic behavior which was observed in the first setting. Sample was 
exposed to plasma for one hour which resulted in a clean release of the structures.  
 

    
(a)                                                                         (b) 

Fig. 7. SEM of discolored/damaged areas after RIE (a) bias line bridge (b) cantilever beam 

5. Fabrication process 

The fabrication of the RF MEMS switches is a six mask all metal fabrication process, as   

shown in figure 8. All processing steps are developed on the basis of standard CMOS 

processing. A standard one-layer photo-resist was used as a mask during the fabrication 

process to provide precise pattern definition. However, during release step the photo-resist 

was also used as a sacrificial layer. The photo-resist (AZ6612) was a positive photo-resist 

sensitive to ultraviolet (UV) radiation and can be developed with AZ-300 MIF solution. 

Throughout the fabrication process, alignment was performed with Quintal Q-6000 mask 

aligner with UV light exposure. In order to achieve good RF performance device, the switch 

was fabricated on a low loss alumina substrate with dielectric constant 9.9.  

The fabrication is a six mask all metal process. The process started with the standard wafer 

cleaning process. DC bias lines and actuation pads were defined by evaporating 0.04µm 

layer of Cromium (Cr). This layer was then patterned with mask one. The Cr metal 

evaporation was done using Lesker evaporator operating in 10-6 Torr range. An insulator 

layer in a series switch served as a mechanical connection as well as electrical isolation 

between the actuator and the contact. Since the switch was made of metal, the insulator 

layer also acted as a dielectric layer which was needed to prevent direct contact between the 

metal cantilever bridge and the actuation pad.  

A 0.75µm thick layer of silicon nitride was deposited as dielectric layer using PECVD and 

patterned with mask two. The deposition of Si3N4 was performed using VACUTEC-1500 

series PECVD equipment. The CPW lines were defined by evaporating/RF sputtering of 

0.04/1.0µm thick layer of Cr/Au and patterned with mask three. Cr was used as an 

adhesion layer between the Au and substrate. The sputtering was performed using Edwards 

E-306 series sputtering tool which was used for RF sputtering of the Au film.  
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Fig. 8. Six mask fabrication process for RF MEMS switches 

Then a 2.5µm thick layer of photo-resist (AZ-6632) was deposited as sacrificial layer and 

patterned for anchor and dimple with mask four and five respectively. While defining the 

anchor and dimple full dark masks were used to expose only the anchor and dimple areas. 

This was followed by a 1.5µm thick layer of RF sputtered Au which was patterned with 

mask six to form the cantilever beam. Finally, the bridge structure was released using a 

unique dry release process. 

6. Dry release process 

During fabrication of RF MEMS switches both dry and wet release methods were applied. 
The yield of wet release was very low and no working prototype was achieved. Problems 
related to wet release and stiction have already been discussed in the previous sections. As 
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explained in last section, in single dry release process, the problem of left over residues of 
metal after etching the metal layer was experienced. So a unique dry release process was 
developed with a combination of wet and dry release to achieve better results. 

6.1 Dry release model 
Motivation for this unique process was that some left over residues were observed after the 
single step or traditional RIE process. Secondly, this process was more cost effective as 
compared to a wet release CPD technique using CO2 dryer. The process not only produced 
less residual waste but achieved a clean dry release. The steps for dry release process are 
described in figure 9.  
First, the sacrificial layer was removed using acetone. This also included the removal of 
some Au leftover residues on photo-resist from the previous wet etching with mask 6 
[figure 9(a)]. After this, sample was dipped again into clean acetone for 30 min for final 
cleaning. Then the structure was immediately dipped into another resist (AZ5214E), until all 
the liquid covering the sample was concentrated resist [figure 9(b)] (Forsen et al., 2004 & 
Orpana & Korhonen, 1991). The resist covered sample was spun at 2500 rpm to achieve 
uniform layer of resist and then soft backed at 90ºC resulting in a thick layer of photo-resist 
fully encapsulating the suspended beam as a supporting layer.  
It must be noted that the wafer was never allowed to dry during the the process or else 
structure would be permanently bonded to the substrate. The structure was then dry 
released by Oxygen plasma using the single process RIE in two steps. In step one the etching 
was done using high power and low pressure (15sccm O2, 180 W, 8 Pa) giving an anisotropic 
etch of the photo-resist [figure 9(c)]. In step two low power and high pressure (15sccm O2, 50 
W, 40 Pa) was used. This resulted in isotropic etching of the photo-resist thus giving a free 
standing structure at the end [figure 9(d)]. 
 

                       
(a)                                                                         (b) 

                               
(c)                                                                         (d) 

Fig. 9. Schematic representation of process steps involved in dry release process of MEMS 
structures (a) patterned cantilever beam over sacrificial layer of AZ-6612 (b) cantilever beam 
dipped in structural layer of AZ-5214E (c) anisotropic etching (d) isotropic etching  
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6.2 Dry release using RIE 

Figure 10 displays a SEM image of the fabricated switch. The sacrificial layer (AZ-6612) has 
been removed after two dips in acetone; supporting layer below the structure has been 
made with another photoresist (AZ5214E). It can be observed that structure has got a clear 
standing on the supporting layer. There is no indication of left over residues of the Au after 
acetone cleaning. 
 

 

Fig. 10. SEM of the RF MEMS switch with supporting layer 

Figure 11 shows a SEM image of the structure after anisotropic etching during the first step 
of single process RIE. The structure rests on supporting layer. Some leftover parts of the 
chemical waste are also visible. The chemical waste observed during the dry etching was 
comparatively less than as seen in the wet etching. 
 

 

Fig. 11. SEM of the cantilever beam structure resting on supporting layer after anisotropic etch 

During the isotropic etching step of RIE, plasma moves in all directions and etches the 
photo-resist layer located below the cantilever beam structure. Figure 12 shows the released 
RF MEMS cantilever beam structures. The clean standing structure of the MEMS bridge can 
be observed. The release of structure was clean and results achieved by this process 
technique were satisfactory. 
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Fig. 12. Released RF MEMS switch cantilever beam (front tip view) 

From the SEM images and optical microscopy it was observed that the released beam 

structure showed higher curling up trend. This was due to residual gradient stress in the 

film and lead to the increase in the actuation voltage. The stress gradient lead to the lift of 

beam around 1µm after the release of structure. The measured lift of cantilever front end is 

4.3µm after release. Figure 13 shows a DEKTAK profile of the unreleased and released beam 

tip of RF MEMS switch. In figure 13(a) DEKTAK profile indicates the beam height after 

patterning mask six which also confirms the gap height distance of 2.5μm. When beam 

structure was released using RIE plasma technique, the lift of the front tip of the cantilever 

beams was measured again which confirms the curling up trends of the beam stated above.  

 

  
(a)                                                                     (b) 

Fig. 13. DEKTKK image of beam tip (a) before release (b) after release  

6.2.1 Yield 

The yield of the released structures on the wafer was measured using visual examination and 
SEM. No stiction was observed with new release process. However presence of some residues 
was observed on the outer samples of the substrate. This was due to non uniform plasma 
distribution during the RIE. The yield of the release process was worked out on full cleaned 
samples. A yield of more than 70% was achieved with contact resistance of less than 2.7Ω.  
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7. Fabricated RF MEMS switches 

Due to better flexibility for large systems and wide band applications, metal to metal contact 

switch was chosen over the capacitive switch. The CPW centre conductor was 60µm wide, 

20µm gap and 210µm ground widths which resulted in characteristic impedance of 50Ω. The 

beam was suspended 2.5µm from the substrate. The ground planes around the beam were 

suspended as it provided easy access to beam and electrode when being used in biasing 

systems. The switches were fabricated using the developed six mask all metal process. A 

dimple was used at the bottom of front centre tip of the cantilever beam to reduce the stress 

sensitivity of the beam. Front tip contact area was small as compared to conventional 

cantilever beams because of following reasons. First, small contact points would reduce the 

metal-to-metal stiction and would increase the contact pressure. Secondly, it gave better 

isolation. 

Figure 14 displays the proposed arrow beam design. The length of the beam is 120µm and 
the width of the beam is 60µm. The beam has been curved inside from the front with a front 
tip 20µm in width.  
 

 

Fig. 14. SEM of fabricated arrow beam cantilever based RF MEMS switch 

Figures 15 and 16 show the two proposed cantilever beam designs. In figure 15, the beam 

labeled Design-1 has three supported cantilever bars which behave like three springs while 

moving the beam during the actuation. The length of each cantilever bar is 20µm and the 

width is 10µm. The gap between each cantilever bar is 15µm and provides symmetry to the 

beam structure. All three cantilever bars are connected with an anchor which is 20µm in 

length and 60µm wide. The supported cantilever bars are then connected with a beam of 

length 100µm and width of 60µm.  

www.intechopen.com



 
Plasma Based Dry Release of MEMS Devices 

 

283 

 

Fig. 15. SEM of fabricated RF MEMS switch 

Figure 16 shows the beam labeled Design-2, with three supported cantilever bars and an 

extended cantilever at the front. The dimensions of the three supported cantilever beams are 

the same as that for Design-1, with the centre 60µm×60µm and the extended cantilever at the 

front 40µm×20µm.  

 

 

Fig. 16. SEM of fabricated RF MEMS switch 
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Fig. 17. SEM of fabricated RF MEMS switch 

Figure 17 shows the RF MEMS switch which has the same dimensions of beam as 

explained in figure 16, instead of three supporting bars, has two supporting bars with a 

single cross bar link intended to increase the strength of the two low spring constant 

supporting bars.  

 

 

Fig. 18. SEM of fabricated novel RF MEMS switch 
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Figure 18 shows another design of switch which has a standard cantilever with dimensions 

of 80µm×60µm at the rear and an extended cantilever at the front with 40µm×20µm. Some 

metal particles can be seen on front portion of the cantilever which came after testing of the 

device while dragging the probe for contact.  

8. Experimental results  

The measurement setup for actuation voltage and RF performance was employed using two 

test configurations, i.e, preliminary screening and RF characterization. Preliminary 

screening was made using Cascade Microtech 10000 probe station with Tungsten needle 

connected to a Sony Tektronix 370 Programmable Curve Tracer. No RF performance was 

analyzed at this stage. The curve tracer was programmed to 0-100V DC signal with a step of 

2V increment. The switches actuated at 19V and 23V. At this stage, the contact confirmation 

was made between two surfaces while measuring the contact resistance.  

For RF performance, a two port on wafer measurement of the RF MEMS switches was 

performed using HP-8510 vector network analyzer (VNA) from 0-40 GHz. A Cascade 

Microtech 10000 probe station was used. RF probing was done using Cascade Microtech 

GSG RF probes with a pitch of 100µm. The SOLT (short-open-line-through) method was 

used for the calibration of the system before each test sequence.   

An HP 4140 DC voltage source was used to actuate the switch during RF characterization. 

The actuation voltage for the RF MEMS switches was applied between the cantilever beam 

and the lower actuation pad. Two Picosecond Pulse Labs 5590 DC blocks were connected 

between VNA and RF cables connected with RF probes. 

8.1 Electrical performance  

A two port on wafer measurement of the RF MEMS switches have been performed from 0-

40 GHz. When our switches were unactuated and beam was in up position, switches were in 

OFF state.When switches were actuated and the beam was pulled down, switches were in 

ON state. 

8.1.1 Isolation  

In order to determine the RF performance of the switch the insertion loss, return loss and 

isolation of the switches were measured.  Isolation of the switch was measured when signal 

was in OFF state. Figure 19 and 20 illustrate the measured S-parameters for Design-1 and 

Design-2 respectively. As shown, Design-1 had an isolation of 28dB at 20GHz and better 

than 23dB at 40GHz. For Design-2, the isolation of the switch was 30dB at 20GHz and better 

than 28dB at 40GHz. 

8.1.2 Insertion loss and return loss  

The return loss and insertion loss of the switches were measured when signal passed 

through the ON state. Design-1 has a return loss better than 22dB at 20GHz and 19dB at 

40GHz, for Design-2 it was better than 20dB at 20GHz and 18dB at 40GHz. This reveals 

good impedance matching to 50Ω of our RF MEMS designs. 

Insertion loss for Design-1 was 0.75dB at 20GHz and 1.15dB at 40GHz where as insertion 

loss for the Design-2 was 0.8dB at 20GHz and 1.3dB at 40GHz.  Higher insertion loss was  
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Fig. 19. Measured S-parameters of the switch using Design-1 

 
 

 

Fig. 20. Measured S-parameters of the switch using Design-2 
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attributed to following reasons. First, the higher contact resistance was achieved which was 
due to high surface roughness of the metal surface and smaller contact area. The surface 
roughness value is 18nm for dimple and 22nm for signal line contact area which showed 
that surfaces of both contact points are quite rough.  

  
 

(a)                                                                        (b) 
 
 

    
 

(c)                                                                        (d) 
 

 

  
 

(e)                                                                        (f) 

Fig. 21. Simulated view of dimple contact during different stages of actuation  

Secondly, dimple surface might have an uneven surface contact with signal line contact 

area. To validate this observation, a simulation test was conducted to see the dimple 

movement in different stages of the actuation. Figure 21 showed the movement of the 

cantilever beam with dimple in different stages when actuation bias was applied. The 

dimple made a perfect smooth contact with lower contact surface as shown in figure 21(c) 
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but at this point full boundary conditions were not enforced. When boundary condition 

were fully enforced and beam was placed in the hold down position the complete surface of 

dimple was not in contact and front surface of dimple has lifted up as shown in figure 21(e). 

This phenominon lead to higher insertion loss. 

8.1.3 Actuation voltage  

The measured actuation voltage of the Design-1 is 19V and Design-2 is 23V. A number of 

release holes can be observed in the fabricated switches. The effect on electrostatic force due 

to release holes had already been rationalized with inclusion of 40% of fringing field effect 

during simulation of spring constant of the beam designs (Rebeiz, 2003).  

9. Conclusion  

Bulk and surface micromachining are the two most widely used techniques for fabrication 

of MEMS devices. Wet and dry etching is used to achived the final release of the MEMS 

devices. However, in surface micromachining a combination of wet and dry etching 

techniques is used. Pros and cons of both the techniques have been disscused in the chapter. 

In wet etching capilary forces developed during the process leads to stiction and permanent 

adhesion of the MEMS devices. To eliminate the chance of stiction and permanent adhesion 

between the two solid surfaces, an inter-solid surface adhesion reduction is required. The 

textured surfaces and posts approach has been used for to eliminate the inter-solid surface 

adhesion. This was done firstly, by introducing a dimple as a supporting post between two 

solid surfaces and secondly, by reducing the contact area between the two metal surfaces. 

Both the methods were used to design improved switches which include the stiction 

mitigation structures. In dry etching, a dry release method with better solution for release of 

RF MEMS structures has been used. The technique was developed using RIE instead of CO2 

dryer or critical point drying technique. This process may lead to long term storage of the 

MEMS devices. Finally, fabricated novel switches have been presented validating the 

developed fabrication process.  

A six mask all metal fabrication process was used for fabrication of RF MEMS switches. The 

experimental RF performance of the two fabricated swithes achieved a measured actuation 

voltages of 19V and 23V, respectively. Both switches showed good RF performance. Design-

1 exhibited an isolation of 28dB at 20GHz and better than 23dB at 40GHz whereas, Design-2 

exhibited an isolation of 30dB at 20GHz and better than 28dB at 40GHz. Both RF MEMS 

designs showed good impedance matching to 50Ω as deducted from the ON state S-

parameter measurements.  A return loss better than 22dB at 20GHz and 19dB at 40GHz was 

measured for  Design-1 whereas, Design-2 exhibited a return loss of better than 20dB at 

20GHz and 18dB at 40GHz. The insertion loss was 1.15dB and 1.3dB respectively, for all 

frequency band of interest.  
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