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1. Introduction 

Molecular genetic analyses have provided evidence that has helped characterize the 

carcinogenesis of pancreatic adenocarcinoma. Pancreatic carcinogenesis is a multistep 

process during which oncogenes are activated, and the function of tumor suppressor genes 

is lost. K-ras mutations, telomere shortening, loss of p16, loss of p53 and loss of smad4 are 

thought to contribute to pancreatic carcinogenesis. Recent studies have shown that some 

new signaling pathway contribute to pancreatic cancer development. Because the model of 

pancreatic cancer development suggests that several genetic alterations accumulate 

progressively, the molecular mechanisms underlying this disease should be investigated 

thoroughly. In addition, we have considered of the appearance of epigenetic and microRNA 

abnormalities in creating a profile of the molecular genetic mechanisms at work in 

pancreatic cancer carcinogenesis. 

This chapter provides an overview of the most relevant molecular genetic alterations that 

have been implicated in pancreatic cancer development and includes the characterization of 

the development of precancerous lesions and invasive carcinoma. 

2. Molecular genetics understanding of pathway in pancreatic cancer 

2.1 Alterations in oncogenes  

Many gene mutations have been implicated in the molecular mechanisms of pancreatic 

cancer formation. In this section, we focus on the oncogenic gene mutations that have been 

linked to pancreatic cancer. 

2.1.1 K-ras 

The most frequent genetic abnormality in invasive pancreatic cancer is mutation of the 

activating K-ras oncogene, which occurs in 75-90% of pancreatic cancers (Ji et al., 2009). K-
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ras is a member of the Ras gene family, which is located on chromosome 12p and encodes a 

21-kDa membrane-bound GTP-binding protein. This GTP-binding protein mediates various 

cellular functions, such as proliferation, cellular survival, motility, and cytoskeletal 

remodeling. The K-ras activating mutations abolish the regulated GTPase activity of the K-ras 

protein, which converts the Ras protein to the ‘on’ state and permanently activates 

downstream signaling events that may contribute to carcinogenesis. K-ras is activated by point 

mutations, most often in codon 12 but also in codons 13 and 61 (Jones et al., 2008). The role of 

H-ras, another member of the Ras family, in carcinogenesis is not as well characterized, but it 

has been reported that H-ras is responsible for mediating the growth-promoting effects in 

pancreatic cancer cells that possess K-ras mutations (Seufferlein et al., 1999).  

The critical role of Ras signaling in pancreatic cancer has been confirmed by many 

experimental studies. The mutations in the K-ras gene are observed in the earliest form of 

pancreatic intraepithelial neoplasia (PanIN) lesions and are considered to be one of the 

earliest genetic events to take place during pancreatic tumorigenesis (Jones et al., 2008; Tada 

et al., 1996). However, the hyperactivation of the Ras signaling cascade alone is neither 

sufficient for the malignant transformation nor restricted to malignant pancreatic cells. 

Instead, Ras hyperactivation may be combined with many genetic abnormalities and 

signaling pathways to promote pancreatic cancer development. Moreover, K-ras mutations 

were also detected in nearly 25% of chronic pancreatitis patients and even in healthy elderly 

subjects (Guerra et al., 2007). 

Until now, several studies have focused on K-ras as a therapeutic target and have worked to 

develop treatments, such as antisense therapy and RNA interference. In a phase II trial of 

patients with locally advanced and metastatic pancreatic cancers, the Ras family antisense 

inhibitor showed a response rate of 10.4% and a median survival of 6.6 months when the 

therapy was combined with gemcitabine treatment (Alberts et al., 2004). RNA interference 

technology is highly specific, but it has not yet entered the clinical trial stage. However, in 

vitro and in vivo studies have provided promising results for the use of RNAi as a pancreatic 

cancer therapy (Rejiba et al., 2007). 

2.1.2 The PI3K/AKT pathway 

The PI3K-AKT pathway is one of several signaling pathways that function downstream of 

K-ras, and it is also activated by mutations during carcinogenesis. AKT proteins are 

activated through PI3K in response to mitogenic stimulation, such as the activation of EGFR. 

Several downstream targets, including the mammalian target of rapamycin (mTOR) and the 

transcription factor NFκB, have a variety of roles in cell proliferation, survival, resistance to 

apoptosis, angiogenesis and invasion (Schneider & Wolf, 2009). 

AKT is amplified and the PI3K–AKT pathway is activated in 20% and 59% of pancreatic 

cancers, respectively (Schlieman et al., 2003). The amplification of AKT2 genes are also 

observed in 10% to 20% of pancreatic cancers, and its suppression by antisense RNA results 

in the reduced growth and tumorigenicity of pancreatic cancer cell lines (Cheng et al., 1996). 

Inhibition of this pathway through aberrant expression of PTEN (phosphatase and tensin 
homolog), which is a natural antagonist of PI3K, is frequently observed in pancreatic cancers 
(Asano et al., 2004). Furthermore, an architectural transcription factor, HMGA1, activates 
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PI3K–AKT signaling and appears to mediate resistance to gemcitabine. Together, these 
observations suggest that this gene is another potential target for inhibition therapy(Kim & 
Gallick, 2008; Liau & Whang, 2008). Other agents, including everolimus and sirolimus, are 
currently in phase II clinical trials (Azzariti et al., 2008). Furthermore, PTEN has also been 
described as a target for treating human pancreatic cancer. 

2.1.3 EGF receptor 

The epidermal growth factor receptor (EGFR) is a transmembrane glycoprotein receptor 
with an intracellular tyrosine kinase domain. Once bound to its ligands, the protein forms 
homodimers or heterodimers with other members of the ErbB family, which leads to the 
phosphorylation of tyrosine residues in its intracellular domain. Intracellular proteins were 
subsequently activated, which induce downstream signaling events through the PI3K–AKT 
family, STAT family, and, most notably, the MAPK signaling pathway. STAT proteins have 
roles in cell proliferation, survival, motility, invasion and adhesion. The mechanisms that 
lead to inappropriate activation of EGFR include receptor overexpression, activating 
mutations, overexpression of receptor ligands, and/or the loss of negative regulatory 
pathways. The overexpression of EGFR and its ligands (EGF and others) and/or the loss of 
the mechanisms that down-regulate the activity are frequently observed in pancreatic cancer 
(Bloomston et al., 2006; Preis & Korc, 2010). 

A phase III trial that combines gemcitabine and erlotinib, an orally active small molecule 
that binds to the ATP-binding site of EGFR, has revealed a small but statistically significant 
increase in the survival of patients with advanced pancreatic cancer compared with 
gemcitabine treatment alone (Moore et al., 2007). 

2.1.4 IGF  

The insulin-like growth factor receptor (IGF-R) is structurally similar to the insulin receptor. 
Insulin-like growth factor-1 (IGF) exhibits structural homology to proinsulin and binds to 
IGF-R with high affinity and to the insulin receptor with a much lower affinity. Therefore, 
the insulin-receptor substrate is able to interact with many signaling molecules. These 
interactions facilitate the activation of multiple downstream signaling pathways, including 
the PI3K/AKT, MAPK, and JAK/STAT3 pathways, and result in anti-apoptosis and 
growth-stimulating effects. IGF and its receptors have been extensively studied in various 
cancers, such as colon, breast and prostate cancer (Moschos & Mantzoros, 2002). 

A large portion of the exocrine pancreas is exposed to high levels of insulin, which may act 
on the exocrine cells via a proxicrine mechanism to provide the pancreatic cancer cells a 
growth advantage. These high insulin levels can activate both the insulin and IGF receptors. 
IGF-R is overexpressed in 64% of pancreatic cancers (Moschos & Mantzoros, 2002). 

Together, these alterations may work in combination to further enhance cancer growth, 
indicating that IGF-R may be an important therapeutic target in pancreatic cancer. There are 
several IGF-1R-targeting agents that are currently being tested in clinical trials. The anti-
IGF-R monoclonal antibodies, AMG-479 and IMC-A12, are in Phase I/II studies, which are 
currently enrolling patients. Moreover, small molecule inhibitors of IGF-R, such as BMS-
754807, may provide an alternate approach for targeting this important pathway in 
pancreatic cancer treatment (Ma & Adjei, 2009). 
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2.1.5 VEGF 

Tumor angiogenesis is essential for tumor growth and is largely mediated by the vascular 
endothelial growth factor (VEGF) family of proteins and receptors. VEGF is a glycoprotein 
that promotes endothelial cell survival, mitogenesis, migration, differentiation and vascular 
permeability. The upregulation of VEGF expression is stimulated by hypoxia and oncogenic 
proteins, such as Ras. In addition, growth factors, such as EGF, TGF-ǂ, TGF-ǃ, PDGF, and 
HIF, and cytokines, such as IL-1ǂ and IL-6, can also upregulate the expression of VEGF. 
VEGF and its receptors are overexpressed in more than 90% of pancreatic cancers and are 
associated with increased microvessel density, tumor progression and poor prognosis (Seo 
et al., 2000).  

The importance of VEGF and its receptor pathway for the growth of pancreatic tumors was 
demonstrated in several studies with animal models. These studies showed that VEGF and 
its receptors are the targets of numerous ongoing clinical trails that are evaluating the 
efficacy of these treatments in pancreatic cancer (Seo et al., 2000). Several other trials are 
being conducted to examine bevacizumab in combination with other agents or treatment 
modalities for pancreatic cancer; however, this agent seems unlikely to confer sufficient 
benefit to justify licensing for this condition. It has been suggested that angiogenic inhibitors 
that target other non-VEGF pathways may be better able to gain access to the tumor 
environment than an antibody (Whipple & Korc, 2008). 

2.2 Tumor-suppressor genes and pathways  

Tumor suppressor genes inhibit cell proliferation and signaling pathways and induce 
apoptosis and support DNA repair systems, which are thought to be key events that 
suppress transformation during tumor carcinogenesis. However, these genes are subjected 
genetic alterations that reduce or eliminate their normal function. 

In pancreatic cancer, the frequently affected tumor suppressors include p53, APC, 
SMAD4/DPC4, p16INK4A and some additional candidate genes. The loss of these tumor-
suppressor genes may participate and dominate the signaling pathways in pancreatic tissue 
carcinogenesis. A summary of these and other tumor-suppressor genes that are altered in 
pancreatic cancer are discussed below. 

2.2.1 p16INK4A/retinoblastoma 

The loss of function of the p16 gene, due to mutation, deletion or promoter 

hypermethylation, occurs in 80-95% of sporadic pancreatic cancers, which is a higher rate 

than that reported in any other tumor type (Caldas et al., 1994; Rozenblum et al., 1997). The 

p16 locus is located on chromosome 9q21, and it regulates cell cycle progression by limiting 

Rb phosphorylation through inhibition of the cyclin D/CDK4/6 complexes (Serrano et al., 

1996). The inactivation of the pRb/p16 tumor-suppressor pathway may alter the activity of 

pRb, CDK4, and cyclin D to promote tumor development (Freeman et al., 2004). 

The loss of p16 alone or in combination with the activity of other oncogenes has a significant 
role in the formation of pancreatic precursor lesions and the development of pancreatic 
cancer. Immunohistochemical analyses revealed that the loss of p16 protein expression 
occurred in approximately 30% of PanIN-1A lesions, 55% of PanIN-1B lesions and PanIN-2 
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lesions, 71% of PanIN-3 lesions and 100% of PDAC (Real et al., 2008). Recently, Aguirre et al. 
found that p16 limits the malignant conversion of these PanIN lesions to ductal 
adenocarcinoma in activated KRAS-initiated PanIN formation, which suggested that p16 is 
not the earliest event but is an important event in the progression of pancreatic 
carcinogenesis (Aguirre et al., 2003). 

Clinical research has focused on the contribution of p16 in pancreatic cancer. It appears that 

p16 plays a significant role in pancreatic carcinogenesis and is an important diagnostic or 

therapeutic target. Rosty et al. proposed that the loss of the expression of the suppressor 

gene p16 was a major risk factor for the development of pancreatic cancer in patients with 

chronic pancreatitis (Rosty et al., 2003). DNA hypermethylation of p16 in pancreatic juice 

was demonstrated to be a valuable diagnostic marker to predict pancreatic cancer 

progression. However, further studies are needed to provide evidence for the clinical 

applications that target the p16 gene (Matsubayashi et al., 2006; Yan et al., 2005). 

2.2.2 p53 

The p53 locus, which is on the 17p13 chromosome, regulates the cell cycle by integrating 

numerous signals to control cell death (Rozenblum et al., 1997). The abrogation of p53 

activity through mutation occurs in more than 50% of sporadic pancreatic cancers. Wild-

type p53 maintains a G2-M arrest and regulates the G1-S checkpoint to facilitate normal 

cell cycle progression (Vogelstein & Kinzler, 2004). The inactivation of p53 affects PTEN, 

which inhibits the AKT signaling pathway and induces apoptosis in pancreatic cancers. 

p53 is short-lived and expressed at very low levels in normal cells, but p53 becomes stable 

and accumulates if the cell has DNA damage. Pinho AV et al. found that p53 controls both 

growth and epithelial cell differentiation in the pancreas, which indicates that p53 

inactivation in tumors is associated with aggressive biological behavior (Pinho et al., 

2011). 

Because p53 mutations accumulate relatively late in carcinogenesis, clinical research has 

focused on the therapeutic contribution of p53 in pancreatic cancer. Patients with pancreatic 

cancer that carry a p53 mutation have shorter survival rates than patients with wild-type 

p53. Moreover, tumors that contain a mutated p53 are typically radioresistant and/or 

chemoresistant, indicating that p53 may serve as treatment indicator in pancreatic cancer 

(Dergham et al., 1998). In addition, p53 gene therapy strategies can induce tumor regression 

in patients with advanced NSCLC and with recurrent head and neck cancer (Roth et al., 

1999). 

2.2.3 SMAD4/DPC4 

The SMAD4/DPC4 locus on 18q21 is the critical component of the TGFǃ signaling pathway 

and negatively regulates the growth of epithelial cells (Massague et al., 2000). SMAD4 (DPC) 

is another commonly mutated gene in PDAC, and it is activated in approximately 50% of 

pancreatic cancers as a result of homozygous deletion mutations. Wilentz et al. revealed that 

expression of the SMAD4 protein is associated with the histopathological grades of 

pancreatic cancer (Hahn et al., 1996). In addition, immunohistochemical assays revealed that 

the smad4 protein was not expressed in 31% (9/29) of the high-grade lesions (PanIN-3). 
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Conversely, the loss of SMAD4 expression did not occur in PanIN-1 and -2, indicating that 

the loss of SMAD4 typically occurs late in PanIN progression to PDAC, similarly to p53 

(Miyaki & Kuroki, 2003; Wilentz et al., 2000). 

SMAD4 is an integral member of the TGF-ǃ signaling cascade, which plays an integral role 

in tumor initiation and progression (Bierie & Moses, 2006; Massague, 2008). There are three 

TGF-ǃ ligands (TGF-ǃ1, TGF-ǃ2 and TGF-ǃ3), which bind to TbRII, TbRI and phosphorylate 

the downstream mediators SMAD2 and SMAD3. The phosphorylated SMAD2 and SMAD3 

for a complex with SMAD4 and enter the nucleus to modulate gene transcription (Derynck 

& Zhang, 2003). 

Clinical research has focused on the therapeutic contribution of smad4 in pancreatic cancer. 
Melisi D et al. found that the TGF-ǃ/Smad-independent pathway can increase apoptosis 
inhibitors to produce pancreatic cancer cells that are resistant to the pro-apoptotic effects of 
gemcitabine (Melisi et al., 2011). Some ongoing clinical trials are employing different TGF-ǃ 
inhibitors to inhibit the TGF-ǃ signaling pathway in advanced pancreatic carcinoma (Korpal 
& Kang, 2010; Nagaraj & Datta, 2010). The loss of SMAD4 plays a crucial role in abrogating 
the TGFǃ-mediated cancer cell growth and metastasis. However, further studies are needed 
to investigate and improve the effectiveness of combined TGFǃ inhibitor treatment and 
SMAD4 gene therapy. 

2.2.4 Candidate tumor suppressor genes 

2.2.4.1 ARHI gene 

The maternally imprinted gene Aplesia Ras homolog member I (ARHI, DIRAS3) is a 
member of the Ras superfamily locus on chromosome 1q. It is a small 26-kDa GTPase that 
inhibits anchorage-dependent and independent growth, motility, invasion and 
angiogenesis, despite sharing 54-62% amino acid homology with Ras and Rap (Yu et al., 
1999). Artificially induced expression of ARHI in mice leads to small body size, infertility 
and decreased lactation (Xu et al., 2000) . Ectopic overexpression of ARHI in cancer cells that 
express low levels of ARHI triggers apoptosis through a caspase-independent, calpain-
dependent mechanism (Bao et al., 2002). Recent studies suggest that the return of ARHI to 
normal physiological expression levels also induces a G2/M cell cycle arrest, autophagy and 
tumor dormancy in ovarian cancer (Lu et al., 2008) . The expression and function of ARHI in 
pancreatic cancer has received relatively little attention. Because ARHI appears to oppose 
Ras function, and K-ras is frequently activated in pancreatic cancers, it is possible that the 
loss of ARHI contributes to pancreatic carcinogenesis. In the present study, we measured 
the expression of ARHI in normal and cancerous pancreatic tissue. Yang et al. found that 
ARHI is widely expressed in the ductal and acinar cells of normal pancreatic tissue but is 
down-regulated or lost in approximately 50% of pancreatic cancers (Yang et al., 2010). This 
study also examined the methylation status of ARHI in pancreatic cancer cell lines with low 
ARHI expression and found that hypermethylation was the main mechanism for the loss of 
function of ARHI. Stable transfections of ARHI can inhibit cell cycle progression and induce 
cell apoptosis in pancreatic cancer cells through the inhibition of PI3K/AKT signaling (Lu et 
al., 2009). The role of ARHI in regulating growth and its loss in half of pancreatic cancers 
suggest that the loss of ARHI could be an important event in the pathogenesis of pancreatic 
cancer. However, the identification of clinical applications of ARHI requires further studies.  
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2.2.4.2 KLF4 gene 

The KLF4 gene, which locus on chromosome 9q31.1-3, negatively regulates G protein-

coupled mitogenic signal transduction, cell proliferation, transformation, and oncogenesis. 

Zammarchi F et al. used immunohistochemical analysis to show that the KLF4 protein is 

expressed in 86.8% cases of DPC (33/38). The overexpression of KLF4 in a human pancreatic 

carcinoma cell line induced the up-regulation of p21 and the down-regulation of cyclin D1. 

It appears that the KLF4 gene may be a key suppressor in pancreatic tumorigenesis 

(Zammarchi et al., 2011).  

2.3 Telomere length abnormalities  

2.3.1 The definition and function of telomeres 

A telomere is a region of repetitive DNA sequences at the end of a chromosome. This region 

protects the end of the chromosome from deterioration and from fusion with neighboring 

chromosomes. Human telomeres are nucleoprotein complexes consisting of 8–15 kb of 

hexameric DNA repeat sequences (TTAGGG) and specifically bound proteins at 

chromosomes ends (Blackburn, 1991). These structures prevent the chromosome termini 

from being recognized as double-stranded DNA breaks and are essential for genomic 

stability (Artandi et al., 2000). During DNA replication, the DNA polymerase protein 

complex cannot replicate the sequences that are present at the ends. In somatic cells, 

telomeres become progressively shorter during each round of cell division through 

replication-dependent loss of the DNA termini (Harley et al., 1990). Over time, due to each 

cell division, the telomere ends become shorter. This is the reason why telomeres are so 

important in context of successful cell division; they "cap" the end sequences and are lost in 

the process of DNA replication. The cell has an enzyme termed telomerase, which carries 

out the task of adding repetitive nucleotide sequences to the ends of the DNA. Telomerase is 

the natural enzyme that promotes telomere repair. Its expression is low or absent in somatic 

cells, but it is active in stem cells, germ cells, hair follicles, and 90 percent of cancer cells 

(Blackburn, 1991). 

The consecutive shortening of telomeres ultimately leads to excessive telomere erosion, loss 

of telomere capping function, and eventually genetic instability and cellular senescence 

when telomeres become critically short (Counter et al., 1992). Consequently, epithelial cells 

with excessive telomere shortening are largely eliminated by protective mechanisms 

(Artandi et al., 2000). Therefore, telomere shortening has been suggested to be an important 

biological factor in aging and cellular senescence, which could limit the over-growth of cells 

and prevent them from transforming into cancer cells. 

2.3.2 The relationship between telomeres and human cancer 

It is clear that telomeres could function as protectors of chromosome stability and prevent 

uncontrolled cellular growth. In cancer progression, telomeres help to maintain genomic 

integrity, similar to the role played by caretaker genes. It is assumed that the loss of 

telomere function might permit subsequent accumulation of additional genomic changes at 

the chromosomal level, which may facilitate the progression toward a fully malignant 

phenotype (Hackett & Greider, 2002). 
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Telomeres can be maintained through recombination or by telomerase activation. 
Telomerase is an RNA-dependent DNA polymerase that is generally inactivated in normal 
human somatic cells. Introduction of telomerase into normal human somatic cells may 
facilitate unlimited cellular growth and extend the cellular lifespan (Bodnar et al., 1998). 

In most human cancers, telomerase was activated through the accumulation of multiple 

genomic and epigenetic aberrations, and these changes help the cells restore the minimal 

length of telomeres required to maintain cell function and escape from cellular senescence 

(O'Hagan et al., 2002). Therefore, the reactivation of telomerase has become an additional 

hallmark of some human cancers, including pancreatic cancer (Hiyama et al., 1997). 

Telomeric fusion is mechanism of telomere dysfunction and leads to uncontrolled mitosis of 

cancer cells. Telomeric fusions between chromosomal arms may occur in the presence of 

critically shortened telomere repeat sequences; these fusions lead to ring and dicentric 

chromosomes that form anaphase bridges during mitosis (Gisselsson et al., 2001). 

Highly recombinogenic free DNA ends are generated when anaphase bridges are broken, 

and fusion of the broken ends results in novel chromosomal rearrangements. Some of these 

abnormal chromosomes may then form bridges during the next cell division, setting in 

motion a self-perpetuating breakage-fusion-bridge cycle. The presence of unbalanced 

chromosomal rearrangements is an essential feature of most human epithelial cancers 

(Gisselsson et al., 2001) . 

2.3.3 The relationship between telomeres and pancreatic cancer 

Pancreatic adenocarcinomas, which are remarkable for their highly complex karyotypes, 
numerous chromosomal abnormalities, and multiple deletions, often possess chromosome 
ends that lack telomeric repeat sequences (Griffin et al., 1995). The evidence for up-regulated 
human telomerase reverse transcriptase expression has been demonstrated in invasive 
pancreatic cancer (Hiyama et al., 1997) and in the intraductal papillary mucinous neoplasms 
(IPMN) of the pancreas (Hashimoto et al., 2008). Telomere dysfunction was also found to 
play a role in the multistep progression model for the development of pancreatic cancer. In 
this multistep model of pancreatic cancer development, noninvasive precursor lesions in the 
pancreatic ductules accumulate genetic alterations in cancer-associated genes that ultimately 
lead to the development of an invasive cancer. In the pancreas, the noninvasive precursor 
lesions are called pancreatic intraepithelial neoplasia or PanIN. PanINs are believed to 
progress from a flat and papillary appearance without dysplasia to a papillary appearance 
with dysplasia to carcinoma in situ (van et al., 2002). Telomere fluorescence in situ 
hybridization and immunostaining was used to assess the telomere length in tissue 
microarrays containing a variety of noninvasive pancreatic ductal lesions (van et al., 2002) 
found that the telomere signals were strikingly reduced in 79 of 82 (96%) of PanINs 
compared with adjacent normal structures. The 82 PanIN lesions that were examined 
included all histological grades (PanIN-1A, PanIN-1B, PanIN-2, and PanIN-3). Thus, this 
study reveals that telomere shortening is the most common early genetic abnormality in the 
progression of pancreatic adenocarcinomas. Telomeres may be an essential gatekeeper for 
maintaining chromosomal integrity and normal cellular physiology in pancreatic ductal 
epithelium. A critical shortening of telomere length in PanINs may predispose these 
noninvasive ductal lesions to accumulate progressive chromosomal abnormalities and to 

www.intechopen.com



Characterization of the Molecular Genetic  
Mechanisms that Contribute to Pancreatic Cancer Carcinogenesis 

 

41 

progress toward the stage of invasive carcinoma. Another research group also found that 
the telomeres were significantly shortened (97.3%) in 37 intraductal papillary mucinous 
neoplasm (IPMN) loci of the pancreas, which has been increasingly identified as a precursor 
to infiltrating ductal adenocarcinoma (Hashimoto et al., 2008) .  

Therefore, telomere abnormalities may function as a cancer marker in invasive pancreatic 
cancer and may also function as the earliest known event in the cascade of pancreatic cancer 
development. 

Telomere shortening has been suggested to be an important biological factor in aging, 

cellular senescence, cell immortality, and transformation to cancer. Cellular immortality and 

transformation are associated with the reactivation of telomerase and with telomere 

dysfunction in cells with critically shortened telomeres and may play an important role in 

the development of pancreatic cancers. 

2.4 Epigenetic abnormalities  

Both epigenetic abnormalities and genetic alterations contribute greatly to cancer 
development at all stages and may drive the initial steps of cancer progression. DNA 
methylation and chromatin configurations underlie the abnormal patterns in cancer, and 
cumulative epigenetic abnormalities of the host genes without accompanying changes in the 
DNA sequences are critical contributors to oncogenesis. Interestingly, cancer-specific 
epigenetic alterations can be reversed by pharmacological targeting, and increasing 
attention has been given to this field as a means to treat cancer. 

In the United States, it is estimated that 44,030 new cases of pancreatic cancer were 

diagnosed and 37,660 deaths occurred in 2011(Siegel et al., 2011), which indicates that 

pancreatic ductal adenocarcinoma is an extremely aggressive and devastating neoplasm. 

Therefore, a better understanding of pancreatic cancer molecular genetics is important and 

can provide the basis for the development of valuable biomarkers and targets for 

therapeutic intervention. 

Over the past two decades, extensive interest has revealed many advances in the 

understanding of genetic alterations that are important in pancreatic cancer. The mutations 

and deletions of oncogenes and tumor suppressor genes, such as k-ras,p53 CDKN1A/p16, 

SMAD4/DPC4, etc., appear to play an important role in pancreatic carcinogenesis. In 

addition, by understanding of the progression of pancreatic cancer, a model of pancreatic 

carcinogenesis, from precursor lesions to invasive cancers with genetic alterations, was 

proposed. 

Recently, the epigenetic abnormalities found in pancreatic cancers were also of considerable 
interest among researchers and clinicians. This interest was especially piqued after 
demethylating drugs, 5-azacytidine (5-aza-CR) and 5-aza-29-deoxycytidine (5-aza-dC), were 
shown to be effective in treating myelodysplastic syndrome and were approved by the Food 
and Drug Administration (FDA) (Venturelli et al., 2011). The key epigenetic mechanisms 
that may affect gene expression include DNA methylation, histone modification, and 
microRNA expression (Hong et al., 2011). Epigenetic abnormalities may be functionally 
involved in precursor lesions, tumor growth, invasion and metastasis in pancreatic cancer. 
In the following section, we will review recent advances in our understanding of the 
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epigenetic features associated with pancreatic neoplastic progression, specifically focusing 
on their role in precursor lesions and their potential clinical benefits. 

2.4.1 DNA methylation 

DNA methylation is a biochemical process where a methyl group is added to the fifth 
positon of the cytosine pyrimidine ring or the sixth nitrogen of the adenine purine ring. 
DNA methylation stably alters the gene expression pattern to provide cellular memory or 
decrease gene expression. DNA methylation also plays a crucial role in the development of 
nearly all types of cancer. Both hypermethylation and hypomethylation distinguish normal 
tissue from tissue associated with pancreatic cancer (Jaenisch & Bird, 2003). 
Hypermethylation is one of the major epigenetic modifications that repress transcription via 
the promoter region of tumor suppressor genes. Hypermethylation typically occurs at CpG 
islands in the promoter region and is associated with gene inactivation. Global 
hypomethylation has also been implicated in the development and progression of cancer 
through alternative mechanisms (Jeffrey & Nicholas, 2011). 

2.4.2 DNA methylation and precursor lesions 

It has been shown that PDAC develops through a stepwise progression from preinvasive 
lesions, including PanINs, IPMNs, and MCNs, to invasive neoplasms (Haugk, 2010). The 
discovery of abnormal methylation in pancreatic cancer has been followed by the 
investigation of methylation in precursor lesions. Many genes that are epigenetically 
silenced in pancreatic cancers also are silenced or have reduced expression in precursor 
lesions of pancreatic cancer. The molecular genesis of precursor lesions may lay the 
foundation for our understanding of pancreatic carcinogenesis and the identification of 
valuable tumor markers and therapeutic targets. 

Many genes showed epigenetic abnormalities in precursor lesions of pancreatic cancer, 
including Reprimo, SPARC, SAPR2, NPTX2, LHX1, CLDN5, CDH3, and ST14 for PanIN and 
119 CDKN1C/p57KIP2 and CyclinD2 for IPMN (Fukushima et al., 2002, 2003; Gerdes et al., 
2003; Matsubayashi et al., 2003; Sato et al., 2008). Using methylation-specific PCR analysis 
(Singh & Maitra, 2007), eight genes (Reprimo, SPARC, SAPR2, NPTX2, LHX1, CLDN5, 
CDH3, and ST14) were tested in 65 PanIN lesions. The results revealed that these eight 
genes may be detected in more than 70% of the earliest lesions (PanIN-1A). In addition, 
aberrant DNA methylation can be detected in PanIN-2 and PanIN-3 lesions, which suggests 
that DNA methylation alterations may begin in the early stages of precursor lesions, such as 
in PanINs, IPMNs, and MCNs. Moreover, their prevalence was shown to progressively 
increase during pancreatic carcinogenesis. Because DNA methylation of particular genes can 
occur in the precursor lesions, the methylation targets may be valuable tumor markers and 
treatment strategies. 

2.4.3 DNA methylation and pancreatic cancer 

Changes in the DNA methylation program are closely associated with pancreatic 
carcinogenesis, including CpG island hypermethylation and hypomethylation (Sato & 
Goggins, 2006). Recently, high-throughput screening technologies and single gene 
methylation technologies have identified several genes that are affected by aberrant DNA 
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methylation in pancreatic cancer. Tan AC et al. detected 1505 CpG sites across 807 genes to 
identify DNA methylation patterns in the pancreatic cancer genome and found that 289 
CpG sites show different patterns in the normal pancreas, pancreatic tumors and cancer cell 
lines (Tan et al., 2009). The promoter and CpG island array was used to compare the Panc-1 
cell lines with a non-neoplastic pancreatic duct line, and 1,010 of 87,922 probes on the 88 K 
promoter array (606 genes) had higher signals (log2 > 2) in the pancreatic cancer line. 

The aberrant hypermethylation of CpG islands is an important cause of altered tumor 

suppressor gene function in pancreatic cancers. Several of the classic tumor suppressor 

genes, such as p16, p53, and SMAD4/DPC4, showed DNA hypermethylation, which 

suggests that DNA hypermethylation is an important mechanism in pancreatic 

carcinogenesis. DNA hypermethylation has also been observed in many other genes that are 

implicated in pancreatic carcinogenesis, including TNFRSF10C, NPTX2, SPARC, FOXA1/2, 

RUNX3, GATA-4, GATA-5, ppENK, CDKN1C/p57KIP2, HHIP, DUSP6, CXCR4, TFPI-2, 

HIN-1, SOCS-1, WWOX, RASSF1A, CACNA1G, TIMP-3, E-cad, THBS1, hMLH1, DAP 

kinase, and ARHI (Cai et al., 2011; Dammann et al., 2003; Fendrich et al., 2005; Fu et al., 2007; 

Gao et al., 2010; Komazaki et al., 2004; Krop et al., 2004; Kuroki et al., 2004; Martin et al., 

2005; Nakayama et al., 2009; Nomoto et al., 2008; Ohtsubo et al., 2006; Park et al., 2007, 2011; 

Sato et al., 2003, 2005, 2005, 2005, 2005; Song et al., 2010; Ueki et al., 2000; Xu et al., 2005). 

DNA hypomethylation an additional type of epigenetic alteration that is found in pancreatic 
cancer (Ehrlich, 2002). Global DNA hypomethylation and hypomethylation of specific genes 
have been observed. Global DNA hypomethylation is associated with folate metabolism, 
indicating that essential nutrients are helpful for preventing cancer progression (Gaudet et 
al., 2003; Kim, 2004). DNA hypomethylation of many oncogenes, such as claudin4, 
lipocalin2, 14-3-3 sigma, trefoil factor 2, S100A4, mesothelin, PSA, has also been shown to be 
important for facilitating their over-expression during pancreatic carcinogenesis.  

2.4.4 DNA methylation and clinical applications 

Does targeting DNA methylation in pancreatic cancer show a clinical benefit as an early 
detection method or an effective treatment strategy? Initially, the serum level of the 
hypermethylation of specific genes appeared to hold potential diagnostic value. Gotoh M 
found that the methylation status of twelve bacterial artificial chromosome (BAC) clones 
could predict pancreatic tumors with 100% sensitivity and specificity and could also identify 
patients that would show early relapse with 100% specificity (Gotoh et al., 2011). Park JK 
found that the level of serum NPTX2 hypermethylation was a valuable diagnostic marker 
for identifying pancreatic cancers with 80% sensitivity and 76% specificity (Park et al., 2011). 
Gerdes B et al. found that p16(INK4a) alterations can be observed in a significant number of 
PanIN1 in chronic pancreatitis tissues, and methylation of the p16(INK4a) promoter may 
indicate a high-risk for progression from chronic pancreatitis to cancer (Gerdes et al., 2001). 
In addition, DNA methylation of p16, ppENK, SARP2 and some additional genes was 
demonstrated to be a valuable diagnostic tool to predict pancreatic cancer (Yan et al., 2005). 
Overall, the detection of DNA methylation, either alone or in combination with other tumor 
markers, will be helpful for screening and diagnosing pancreatic cancer. 

Importantly, DNA methylation, unlike genetic changes, are considered to be reversible 
biological alterations, so pharmacological agents that target this change are attractive potential 
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strategies for treating cancer. Drugs that target the DNA methyltransferase are promising 
chemotherapeutic agents because this enzyme is a limiting factor for DNA methylation.  

Yang et al (Yang et al., 2010). demonstrated that the inhibitor decitabine (5-aza-dC, 2'-deoxy-
5-azacytidine DNMT inhibitor) could inhibit pancreatic cancer cell growth, induce 
apoptosis, induce ARHI gene demethylation and induce ARHI re-expression. Many studies 
have demonstrated that tumor-suppressor gene expression can be restored by DNMT 
inhibitors to induce pancreatic cancer apoptosis, including NPTX2, BNIP3, SOCS-1, WWOX, 
and cyclin D2. Although demethylating drugs have been approved by the FDA to treat 
MDS, these demethylating drugs must be further investigated to understand the mechanism 
that prevents pancreatic cancer progression and to predict potential side effects 
(Matsubayashi et al., 2006; Sato & Goggins, 2006).  

2.4.5 Histone modifications and pancreatic cancer 

Histone proteins influence chromatin accessibility and gene activity through post-
translational modifications (Bernstein et al., 2007; Gaudet et al., 2003; Ting et al., 2006). 
Histone acetylases/deacetylases, the polycomb group proteins, and HP1 are the key histone 
protein complexes that influence chromatin accessibility and gene activity. Histone 
modifications have been linked to the altered expression of several critical genes in 
pancreatic cancer, including the IL-13 receptor, MUC17, MUC4, MUC1 and MUC2 (Esteller, 
2007; Fujisawa et al., 2011; Kitamoto et al., 2011; Vincent et al., 2008; Yamada et al., 2008).  

The importance of histone modifications lies in their potential use as a diagnostic and 
therapeutic intervention. For instance, it has been shown that histone deacetylase inhibitors 
induce apoptosis of human pancreatic cancer cells. Donadelli M found that histone 
deacetylase inhibitors, in combination with conventional chemotherapeutic drugs, such as 
gemcitabine, leads to a synergistic inhibition of pancreatic adenocarcinoma cell growth. In 
addition, targeting the Polycomb members and HP1 has also been shown to be effective in 
inhibiting pancreatic cancer cells. Furthermore, Manuyakorn A et al. showed that the 
pattern of H3K4ME2, H3K9me2 and H3K18ac can predict the prognosis and treatment 
response of patients (Donadelli et al., 2007; Garcia-Morales et al., 2005; Haefner et al., 2008; 
Manuyakorn et al., 2010; Yamada et al., 2006).  

Recently, many studies have focused only on somatic genetics; however, these areas 

represent only a small portion of mechanisms that contribute to gene alteration in pancreatic 

cancer. Epigenetic changes, including CpG island hypermethylation, hypomethylation, and 

histone modifications, comprise a new arena for pancreatic cancer research, which may 

provide new diagnostic and therapeutic tools to combat pancreatic cancer. However, many 

fundamental questions about the biological and clinical significance of epigenetic changes 

have yet to be answered, and further studies are needed to do to create effective clinical 

applications for pancreatic cancer.  

2.5 Aberrant microRNA expression in pancreatic cancer  

2.5.1 Introduction to microRNA 

MicroRNAs(miRNAs) are non-protein-coding RNA molecules that are approximately 22 
nucleotides and regulate gene function in various silencing pathways. These molecules are 
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also encoded by genes and are transcribed by RNA polymerase II. miRNAs are 
phylogenetically conserved and play an important role in cell survival, proliferation, 
differentiation, apoptosis and angiogenesis (Ambros, 2004; Farh et al., 2005). miRNAs 
expression patterns differ, depending upon the cell, tissue, and disease type. 

miRNAs regulate their targets by direct mRNA cleavage or translational inhibition and each 

miRNA can regulate multiple target genes.In the most recent database (miRBase release 15), 

over 21,643 mature miRNAs have been identified in 168 species (Kozomara & Griffiths-

Jones, 2011). 

2.5.2 miRNAs and pancreatic cancer 

The overexpression and deregulation of several miRNAs has been observed in human 

cancers (Lu et al., 2005; Metzler et al., 2004; Takamizawa et al., 2004). These studies have also 

shown that miRNA expression signatures correlate well with specific cancer clinical 

characteristics and could be used to differentiate normal and cancerous tissues, as well as 

subtypes of malignancy (Calin & Croce, 2006; Cummins & Velculescu, 2006; Dalmay & 

Edwards, 2006).Deregulation of miRNAs in cancer may be caused by several changes: (1) 

chromosomal regional gain, loss or translocation, (2) aberrant expression and activation of 

transcriptional factors, (3) epigenetic alterations, or (4) changes in miRNA processing (Deng 

et al., 2008).  

The miRNA expression profiles in pancreatic tumor tissues are different from those 
observed in the normal pancreas or in patients with chronic pancreatitis. Most miRNA 
expression profile analyses show that miRNAs are deregulated in tumor tissues compared 
with normal pancreatic tissue, and the expression pattern is tissue specific. 

Szafranska et al. (Szafranska et al., 2007) demonstrated that two miRNAs, miR-216 and miR-
217, are pancreas specific, which was in agreement with two previous studies (Sood et al., 
2006). Furthermore, both miR-216 and miR-217 are absent or only minimally expressed in 
pancreatic carcinoma tissues and cell lines. Therefore, miR-216 and miR-217 are potential 
biomarkers. Based on clustering analysis, the three pancreatic tissue types (normal pancreas, 
chronic pancreatitis and pancreatic cancer) can be classified according to their respective 
miRNA expression profiles. Among 26 miRNAs that have been identified as most 
prominently deregulated in PDAC, only miR-217 and miR-196a have been found to 
discriminate between normal pancreas, chronic pancreatitis and tumor tissues. These 
miRNAs are also potential biomarkers. 

Zhang et al. (Zhang et al., 2009) evaluated 95 miRNAs, which were selected from pancreatic 
cancer profiling, and correlated them with their potential biological functions, such as 
cancer biology, cell development, and apoptosis. Among them, eight miRNAs (miR-196a, 
miR-190, miR-186, miR-221, miR-222, miR-200b, miR-15b and miR-95) are differentially 
expressed in most pancreatic cancer tissues and cell lines. These eight genes are all 
significantly up-regulated, from 3- to 2018-fold, in pancreatic tumors compared with normal 
control samples. 

miRNAs are functionally classified as oncogenes or tumor suppressors based on whether 
their targets are oncogenes or tumor suppressor genes. Therefore, oncogenic miRNAs are 
upregulated in tumors, whereas tumor suppressor miRNAs are downregulated. Torrisani et 
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al. (Torrisani et al., 2009) have reported that the tumor suppressor let-7 miRNA is expressed 
in normal acinar pancreatic cells but is extensively downregulated in PDAC samples 
compared with adjacent unaffected tissues.  

2.5.3 miRNAs and clinical applications 

2.5.3.1 miRNAs as biomarkers for pancreatic cancer diagnosis 

Recent studies indicate that aberrant miRNA expression occurs early in the precursor 

lesions during the multiple stages of pancreatic cancer development. In addition, miRNA 

profiles may be assessed in more clinically accessible samples, such as pancreatic juice, and 

may be used as a diagnostic tool. 

Szafranska et al. (Szafranska et al., 2008) identified potential miRNA markers in EUS-FNA 

biopsies of pancreatic tissue. The results show that the combined expression pattern of miR-

196a and miR-217 can differentiate PDAC cases from healthy controls and chronic 

pancreatitis in the FNA samples. Furthermore, miR-196a expression is likely to be specific to 

PDAC cells and is positively associated with the progression of PDAC.  

The potential use of these miRNAs as biomarkers has been evaluated in pancreatic juices. 

Habbe et al. (Habbe et al., 2009) have observed significant overexpression of 10 miRNAs in 

IPMNs (n = 15). miR-155 and miR-21 show the highest relative fold-changes in the precursor 

lesions. The upregulation of both miR-155 and miR-21 in the subset of IPMN-associated 

pancreatic juices was observed. 

Wang et al. (Wang et al., 2009) have studied plasma samples from patients with PDAC and 

found that four miRNAs (miR-21, miR-210, miR-155 and miR-196a) are able to differentiate 

pancreatic cancer patients from healthy controls with moderate accuracy (64% sensitivity 

and 89% specificity). 

2.5.3.2 miRNAs as therapeutic targets in pancreatic cancer 

Several studies have shown that the events leading to EMT are regulated by miRNAs 

(Gregory et al., 2008; Korpal & Kang, 2008; Wellner et al., 2009). Li et al. (Li et al., 2009) 

investigated the effects of let-7 and miR-200 on the morphological changes of EMT in 

gemcitabine-resistant pancreatic cancer cells (GRPCCs). They noted several observations: (1) 

the expression of miR-200 and let-7 is significantly downregulated in GRPCCs, which have 

EMT characteristics; and (2) transfection of GRPCCs with miR-200 rescues the epithelial 

phenotype by upregulating the epithelial marker E-cadherin and downregulating the 

mesenchymal markers ZEB1 and vimentin. 

Oh et al. (Oh et al., 2010) have shown that upregulation of let-7a results in the attenuated 

expression of Kras and increased radiosensitization of pancreatic cancer cells. This suggests 

that miRNA could be used as a valuable therapeutic option in radioresistant tumors that 

have K-ras mutations. 

Weiss et al. (Weiss et al., 2009) have shown that miR-10a expression promotes metastasis, 

and repression of miR-10a inhibits invasion and metastasis in xenotransplantation 

experiments using zebrafish embryos. These data also suggest new therapeutic applications 

for miRNA in patients with metastatic pancreatic cancer. 
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Moriyama et al. (Moriyama et al., 2009) showed that miR-21 could be a target for a 
therapeutic strategy for patients with chemoresistant pancreatic cancer. Ji et al. (Ji et al., 
2009) showed that miRNAs, such as miR-34, can be a novel molecular therapy for human 
pancreatic cancer via inhibiting pancreatic cancer stem cell differentiation. 

Overall, many reasearchers suggest that miRNA play an important role in pancreatic 
carcinogenesis. However, many questions about the function and clinical application need 
to be further answered for pancreatic cancer.  

2.6 A multistep model that involves the accumulation of genetic alterations during the 
development of pancreatic cancer  

We now know that the development of pancreatic cancer, like other malignant diseases, is a 
multistep process involving the accumulation of genetic and epigenetic mutations. 
Furthermore, it has been shown that some genetic alterations occur early in the disease and 
can be designated disease-promoting mutations, whereas others occur later and enhance the 
oncogenic potential of earlier mutations. Three different types of preneoplastic lesions have 
been identified in the pancreas: pancreatic intraepithelial neoplasia (PanIN), intraductal 
papillary mucinous neoplasia (IPMN) and mucinous cystic neoplasms (MCN). Of these, 
PanIN lesions are the best characterized, both genetically and pathologically. A well-known 
progression model of pancreatic cancer development explains that normal pancreatic ductal 
cells progress from flat (PanIN-1A) and papillary lesions (PanIN-1B) without dysplasia to 
papillary lesions with dysplasia (PanIN-2) to carcinoma in situ (PanIN-3) and finally to 
invasive pancreatic cancer (Hruban et al., 2008).  

There are two distinct genetic events that occur in the early stages of pancreatic cancer 
PanIN -1 lesions: telomere shortening and K-ras mutations (Hruban et al., 2000). Activating 
point mutations of K-ras occur in approximately 45% of PanIN-1 lesions (Hingorani et al., 
2003). Telomere shortening is found in approximately 90% of PanIN-1 lesions and may 
contribute to global chromosomal abnormalities in PanINs (van et al., 2002). Inactivating 
mutations of CDKN2A/p16 begin to occur in PanIN-2 lesions, whereas inactivation of TP53, 
SMAD4/DPC4, and BRCA2 are generally associated with higher-grade PanIN lesions 
(PanIN-3) (Schonleben et al., 2008). 

Furthermore, a recent study described a cell surface marker-mediated system for identifying 
pancreatic cancer stem cells. Pancreatic cancer cells share several features with embryonic 
pancreatic cells, including activation of the Notch and Hedgehog signaling pathways, which 
regulate the growth of many organs during embryogenesis and is aberrantly activated in 
pancreatic cancer cells (Hong et al., 2011; Wong & Lemoine, 2009). The Notch pathway is a 
critical regulator of pancreatic development and appears to be active in the early stages of 
pancreatic cancer initiation as well as in invasive cancers. Activation of this pathway leads 
to the proteolytic intramembrane cleavage of Notch receptors, which results in the release 
and translocation of their active intracellular domain to the nucleus. Moreover, the 
upregulation of several Notch target genes in invasive pancreatic cancer as well as 
preneoplastic lesions suggests that this pathway is an important contributing factor in the 
development of pancreatic cancer (Maitra & Hruban, 2008). 

The activity of the Hedgehog pathway is another important pathway in the development of 
the gastrointestinal tract and has been implicated in the development and maintenance of 
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the pancreatic cancer phenotype. The Hedgehog family is composed of Sonic Hedgehog 
(Shh), Indian Hedgehog (Ihh), and Desert Hedgehog (Dhh). Many studies have shown that 
many of the components of the Hedgehog family show abnormal expression in pancreatic 
cancer and precursor lesions (Dosch et al., 2010). These studies indicate that Hedgehog 
signaling plays a role in the initiation and growth of pancreatic cancer (Kayed et al., 2006). 
Overall, multistep changes and pathway involves the development of pancreatic cancer. 

3. Conclusion 

As in colorectal cancer, two distinct tumor categories exist in pancreatic cancer, which are 
distinguishable by the predominant mutagenic mechanism. Most pancreatic cancers exhibit 
chromosomal instability (CIN), which causes numerous gross chromosomal changes that 
result in aneuploidy. A second category is characterized by microsatellite instability (MSI) 
(Vogelstein & Kinzler, 2004), which results in a drastically decreased fidelity of DNA 
replication and repair due to defects in the DNA mismatch-repair pathway. Therefore, MSI 
tumors exhibit frequent errors during DNA replication, which are particularly pronounced 
at repetitive sequences termed microsatellites.  

In the past decade, major advances have been made in understanding the earliest 
histological and molecular changes that occur in precursor lesions and cancers of the 
pancreas (Hruban & Adsay, 2009). In addition, the identification of molecular signatures 
that mark the earliest changes of carcinogenesis may lead to the earlier detection of 
pancreatic cancer. Understanding the signature of molecular alterations that occur before 
the development of invasive pancreatic cancer may lead to improved detection and survival 
of pancreatic cancer patients. 
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