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1. Introduction 

Stroke is the leading cause of permanent disability in the Western world (Kolominsky-Rabas 
et al., 2001). Clinically, stroke is defined as a neurological deficit of cerebrovascular cause 
that persists beyond 24 hours. The clinical outcome of a stroke depends on which part of the 
brain is injured and how severely it is affected. The most common symptom of a stroke is 
sudden weakness or numbness of the face, arm or leg, most often on one side of the body. 
Other symptoms include: confusion, difficulty in speech production or comprehension; 
visual deficits; difficulty walking, dizziness, loss of balance or coordination; severe headache 
with no known cause; fainting or unconsciousness. The clinical presentation is closely 
associated with the affected artery, which is occluded by a clot or plaque (ischemic stroke), 
or ruptured (hemorrhagic stroke), and the extent of tissue infarct (Amarenco et al., 2009). 

In recent decades, the introduction of thrombolysis and the establishment of stroke units in 
hospitals have led to a significant reduction of mortality rate after stroke (Howard et al., 
2001). However, declining mortality rate has resulted in increased proportion of patients to 
be left with moderate to severe disability, affecting their daily activities. It is now well-
established that early rehabilitation provides more effective recovery of function than would 
occur in the natural course of recovery (Maulden et al., 2005). However, in most cases this 
recovery is still incomplete. Up to 60% of patients still have impaired manual dexterity six 
months after the onset of stroke (Kolominsky-Rabas et al., 2001; Kwakkel et al., 2002).  

Advances in neuroscience in the last two decades unequivocally established the brain’s 
capacity to reorganize itself (Nudo, 2007). This has led to the development of various 
techniques that could potentially improve the rehabilitation of stroke patients. Most widely 
researched and experimented non-invasive techniques are transcranial magnetic stimulation 
(TMS) and transcranial direct current stimulation (tDCS). 

2. Non-invasive brain stimulation methods 

2.1 Transcranial Magnetic Stimulation (TMS) 

In the 1980’s Merton and Morton (1980) were able to stimulate the human brain non-
invasively by means of transcranial electrical stimulation (TES). However, contraction of 
scalp muscles and activation of nociceptive fibres evoked intense unpleasant pain sensation. 
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Introduction of TMS by Barker, Jalinous and Freeston in 1985 instantly attracted more 
attention over electrical stimulation, as in this method the current in the coil could activate 
cortical structures without causing pain. In the following two decades there have been 
significant advances in this method both technologically and scientifically.  

2.1.1 Basics of TMS  

TMS is based on the concept of electromagnetic induction. It involves the generation of a 
brief but strong magnetic field capable of activating cortical elements in the brain of 
conscious subjects without causing pain (Wasserman et al., 2008). This magnetic field is 
derived from a changing primary electric current circulating in a coil which then passes 
through the skull to induce a secondary electric current capable of altering the neurons’ 
transmembrane potential. Rapid depolarization of the membrane leads to action potential 
generations (Figure 1). 

 

Fig. 1. TMS setup. A brief pulsed electric current passes through the coil, which results in a 
rapidly changing magnetic field that is perpendicular to the coil’s surface. This magnetic 
field passes through the skull and scalp, and generates an electric field flowing in the 
opposite direction to the flow of current in the coil. This current leads to the activation of 
excitable structures in the brain tissue (from Fyre et al., 2008). 

The extent of activation within the cortex during magnetic stimulation is influenced by a 
number of variables, including the coil shape and its position over the head (Tings et al. 
2005); number, intensity and frequency of pulses; output waveforms (monophasic vs. 
biphasic); induced current direction; and the anatomy of the region stimulated. For example, 
a circular shaped coil generates a relatively large and diffuse magnetic field over the brain, 
whereas a figure-of-eight (butterfly) coil produces a more focalized field (Wassermann et al., 
2008). More recently introduced coils, such as the double-cone coil and H-coil, were 
designed to stimulate deeper structures within the brain (Hayward et al., 2007; Zangen et al., 
2005). However, in general the depth of stimulation is restricted to 2-3 cm below the scalp 
and the stimulated area within the cortex to around 1-3 cm2. Increasing the stimulation 
intensity to activate deeper brain regions would result in wider and stronger stimulation of 
more superficial areas. 
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2.1.2 TMS techniques 

A number of different stimulation techniques and paradigms have been introduced over the 
past two decades. Initially single-pulse TMS was used to primarily evaluate the excitability 
changes of the motor cortex and its output. It is still widely used to determine the best 
location (hot-spot) of recorded muscles within the motor homunculus and the 
active/passive motor thresholds, and to assess the effect of interventions on various 
intracortical influences (Wassermann et al., 2008). Paired-pulse TMS utilizes two individual 
magnetic pulses, separated by a variable inter-stimulus interval (ISI). This method is used to 
evaluate the intracortical influences of magnetic stimulation, such as short- and long-
interval intra-cortical inhibition (SICI and LICI) and intra-cortical facilitation (ICF) (for 
review see Reis et al., 2008). The ICF of a test motor evoked potential (MEP) elicited from the 
target muscle can be observed at ISIs of 6-25 ms, using a subthreshold conditioning stimulus 
(CS) to influence the response to a subsequent suprathreshold test stimulus (TS) (Kujirai et 
al., 1993). This effect tends to become stronger with increasing CS intensity and weaker with 
increasing TS intensity. A SICI on the other hand, can be observed when a subthreshold CS 
suppresses the MEP evoked in response to the suprathreshold TS if the interval between the 
stimuli is 5 ms or less (Kujirai et al., 1993). In LICI a suprathreshold CS strong enough to 
produce an MEP in the target muscle could suppress an MEP to a later stimulus of the same 
intensity if the ISI was 50-200 ms.  

Paired associative stimulation (PAS) technique involves applying pairs of peripheral and 
central stimuli repeatedly (Stefan et al. 2000). When around 100 peripheral electrical stimuli 
and central TMS pulses are paired at an ISI of 25 ms over 30 min, the cortical excitability 
increases. At an ISI of 10 ms a reduced cortical excitability is observed. 

Technical advances in magnetic stimulator and coil designs led to more recent TMS 
techniques based on delivery of a series of pulses by means of multiple capacitors. This 
method, referred to as “repetitive transcranial magnetic stimulation” (rTMS), enabled 
researchers and clinicians to explore the potential benefits of TMS in clinical conditions 
(Pascual-Leone et al. 1994; Wassermann et al., 2008; Hoogendam et al., 2010).  

2.1.3 Clinical and diagnostic applications of TMS 

Since its introduction, TMS has been used to measure and evaluate the motor evoked 
potential (MEP) responses from target muscles and commonly applied as a non-invasive 
tool to clinically evaluate aspects of sensorimotor cortex and pyramidal tract function (Chen 
et al., 2008). Motor threshold (MT) measurements are useful in determining the level of 
excitability within the motor cortex. MT is defined as the lowest stimulation required for a 
single pulse to produce a criterion amplitude MEP on a pre-specified fraction of consecutive 
trials (Wassermann et al., 1998). MT measurements are also useful in establishing and 
following-up the hemispheric differences in clinical conditions, such as stroke. MEP 
amplitude and onset latency measurements are also useful parameters in the assessment and 
comparison of motor cortex excitability and its output. For example, in pathologies 
involving upper motor neurons, such as multiple sclerosis, MEP amplitudes are often 
reduced or absent, and central motor conduction times are prolonged (Cruz-Martínez et al. 
2000). Somatosensory information processing at the cortical level is also influenced by TMS 
and can be evaluated by psychophysical measurements, such as vibration detection 
thresholds (Morley et al. 2007). 
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Cerebral hemispheres exert various influences on each other through interhemispheric 
connections. Therefore, TMS could be useful for investigating inter-hemispheric dynamics 
which can be investigated using paired-pulse TMS. In this paradigm, a conditioning stimulus 
is applied to one hemisphere, followed by a test stimulus applied to the other. Although a 
number of studies have reported some complex and inconsistent interhemispheric 
facilitatory influences dependent on background motor activity, coil position and 
conditioning stimulus intensity (Hanajima et al. 2001, Chowdhury & Matsunami, 2002), 
more consistent effects are observed in interhemispheric inhibition. The response to the test 
stimulus can be inhibited by the conditioning stimulus at inter-stimulus interval range of 6-
50 ms (Ferbert et al., 1992; Daskalakis et al. 2002). These transcallosal effects appear to be 
important in influencing the cortical excitability. For example, interhemispheric inhibition 
abnormalities have been found in patients with amyotrophic lateral sclerosis (Karandreas et 
al., 2007).  

Another method, called “triple stimulation technique (TST)”, delivers a single magnetic pulse 
in association with two timed peripheral electrical pulses and is used to evaluate the 
integrity of neuronal pathways by means of collision (Magistris et al. 1999). It is reported 
that in amyotrophic lateral sclerosis patients TST provides a quantitative tool for assessing 
the upper motor neuron conduction failure and when used together with silent period 
measurements provides a sensitive diagnostic tool (Attarian et al., 2007). 

In short, TMS has been shown to be an important non-invasive diagnostic tool for 
evaluation of certain aspects of motor cortex function and its output. In clinical settings TMS 
could therefore be a useful tool to determine subclinical presentations in which clear clinical 
signs are not yet present or indecisive. 

The most talked about adverse effect of magnetic brain stimulation is the induction of 
seizures. A number of cases of accidental seizures induced by rTMS have been reported 
over the years (total of 16 cases from 1998 to 2008). However, given the large number of 
subjects and patients who have undergone rTMS in over 3,000 published studies, it is 
suggested that the risk of rTMS to induce seizures is very low (Rossi et al., 2009). 
Comprehensive screening of participants with regards to medication and predisposition to 
seizures will certainly further eliminate the possibility of this adverse effect. 

2.1.4 Therapeutic applications of TMS 

Since the introduction of repetitive stimulation capable stimulators, rTMS has been 
increasingly investigated and applied as a therapeutic tool. Using ‘simple’ rTMS, in which a 
series of regularly repeated magnetic pulses are delivered in trains and then separated by 
constant inter-train intervals, it is possible to induce changes to the excitability of motor 
cortex that outlast the stimulation period from several minutes up to 30 minutes (Touge et 
al., 2001; Peinemann et al., 2004). In this method, stimulation frequency plays a crucial role in 
producing selective changes in motor cortex excitability. Overall, low frequency (< 5Hz) 
rTMS results in suppression of corticospinal excitability, while high frequency (≥5 Hz) 
stimulation leads to facilitatory after-effects (for review see Siebner & Rothwell, 2003).  

Another form of repetitive stimulation involves patterned stimuli. Theta-burst stimulation 
(TBS) is a burst of three to five pulses at high frequency (30-100 Hz) delivered at a repeated 
frequency (usually 5 Hz). This method has been shown to be safe and effective in producing 
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changes in the excitability of motor systems (Huang & Rothwell, 2004). The typical form of 
TBS contains three pulse 50Hz bursts given every 200 ms (i.e. at 5 Hz) at the stimulus 
intensity of 80% of active motor threshold. When a 2-sec train of TBS is given every 10 sec 
(intermittent TBS – iTBS), the cortical excitability is enhanced due to a long-term potentiation 
(LTP) like effect. Conversely, when bursts are given every 200 ms continuously without 
interruption (continuous TBS – cTBS), the cortical excitability is suppressed due to a long-
term depression (LTD) like effect (Huang et al., 2005). 

 

Fig. 2. Theta bust stimulation patterns. A usual TBS contains 3-pulse 50Hz bursts given 
every 200 ms. When a 2-sec train of TBS is given every 10 sec (iTBS), the cortical excitability 
is enhanced, while the excitability is suppressed when bursts are given every 200 ms 
continuously (cTBS) (from Huang, 2010). 

More recently, quadripulse stimulation (QPS) has been introduced as a patterned rTMS 

protocol in which repeated trains of four mono-phasic pulses are separated by inter-

stimulus intervals of 1.5-1250 ms to produce facilitation (at short intervals) or inhibition 

(at longer intervals). This protocol appears to induce long-term changes in cortical 

excitability, probably through a modulatory action on intracortical excitatory circuits 

(Hamada et al., 2008). 

Over the years, many studies have investigated the therapeutic use of rTMS in psychiatric 

disorders, particularly in depression. For this clinical condition many stimulation paradigms 

and durations have been trialled. At the end of 2008, the United States Food and Drug 

Administration (FDA) approved the NeuroStar TMS Therapy System™ for “the treatment of 
Major Depressive Disorder in adult patients who have failed to achieve satisfactory improvement 
from one prior antidepressant medication at or above the minimal effective dose and duration in the 
current episode”. However, there is still no consensus on the treatment protocols and 

durations, and the efficacy, tolerability, cost and inconvenience of TMS over 

electroconvulsive therapy and medication are still debatable (Rasmussen, 2011). 
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Other clinical conditions in which rTMS has been investigated as a therapeutic tool include 
amyotrophic lateral sclerosis (ALS), dystonia, migraine and stroke. Studies on ALS patients 
revealed some promising preliminary data. However, recent studies have demonstrated a 
lack of significant long-term beneficial effects of rTMS on neurological deterioration in ALS 
(Dileone et al., 2011). 

Both inhibitory (low frequency) and excitatory (high frequency) rTMS over the primary 
motor cortex (M1) appear to reduce chronic pain. A number of studies have assessed the 
efficacy of rTMS in patients with drug-resistant chronic pain of various causes and a meta-
analysis showed that rTMS was associated with a significant reduction in pain (Lima and 
Fregni, 2008). Analgesic effects were also shown after stimulation of other cortical areas, 
such as the prefrontal cortex. However, as the induced effects are relatively short duration, 
the therapeutic use of rTMS in chronic pain is limited, unless repeated sessions over several 
weeks are considered (for review see Lefaucheur et al., 2008). 

2.2 Transcranial Direct Current Stimulation (tDCS) 

Transcranial direct current stimulation (tDCS) is a non-invasive, low-cost and easy-to-use 
technique that has the potential to modify cortical excitability and behavior in a range of 
clinical and experimental conditions. Historically, strong electrical currents have been 
delivered to patients for the relief of headache and epilepsy using torpedo electric fish 
(Kellaway, 1946). Since the rediscovery of tDCS about 10 years ago, interest in this method 
has grown significantly.  

2.2.1 Basics of tDCS 

The constant direct current delivered to the brain in tDCS is caused simply by positioning 

the two poles of an electric battery-based stimulator to the brain (Nitsche & Paulus, 2000). In 

order to stimulate the motor cortical region, the stimulating (active) electrode is placed over 

the motor cortex (M1) and the reference electrode over the contralateral supraorbital ridge 

or the neck region. More accurate stimulation of a representation within M1, such as the 

hand area, could be achieved after TMS assessment of the hand area’s “hot spot”. Two 

surface conductive rubber electrodes (sized 25 cm2 - 35 cm2) attached to the device are 

usually placed inside sponges soaked in NaCl solution. The sponge-electrodes are then 

placed and kept on their desired region by a non-conducting rubber band, which is strapped 

firmly around the subject’s head (Figure 3). Current intensities used during sessions vary 

between 1 mA - 2 mA and are commonly applied for 10 to 20 minutes.  

Physical modeling of currently available stimulators suggests that only around 50% of the 
applied current is actually delivered to the brain tissue. The remaining current is shunted 
across the scalp following the path of least resistance towards the other electrode (Miranda 
et al., 2006). However, the portion of the current which does eventually reach the brain can 
be sufficient in altering neuronal activity (Wagner et al., 2007). The current delivered by 
tDCS cannot directly generate action potentials in cortical neurons, as the electric field in the 
brain tissue is not capable of inducing a rapid depolarization (Nitsche et al., 2008). Therefore, 
tDCS might be considered a neuromodulatory intervention. The electric field modifies the 
excitability of exposed cells by a tonic depolarization or repolarization of their resting 
membrane potential by only few millivolts. Evidence that the effects of anodal stimulation  
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Fig. 3. tDCS setup and montage. (A) The setup using a battery-operated direct current 
stimulator connected with two electrodes. One electrode (active) is positioned over C3 
(corresponding to the precentral gyrus), and the reference electrode is positioned over the 
contralateral supraorbital region. If current flows from C3 to the supraorbital region, then the 
tissue underlying C3 is subjected to anodal (increase in excitability) stimulation. If current is 
reversed, then the tissue underlying C3 is subjected to cathodal (decrease in excitability) 
stimulation. (B) Regional cerebral blood increases in the motor region underlying the electrode 
positioned over C3 after anodal stimulation. Regional cerebral blood was determined using a 
non-invasive arterial spin-labeling technique (from Schlaug et al., 2008). 

appear to be solely dependent on changes in membrane potential comes from studies using 
pharmacological agents. For example, while calcium channel blocker flunarizine reduces 
and the sodium channel blocker carbamezipine abolishes the effects of anodal stimulation, 
NMDA receptor antagonist dextromethorphane does not alter current-generated excitability 
changes (Nitsche et al., 2003a). In terms of the effects of tDCS on cortical interneurons, 
anodal tDCS does not modify the TMS measures of either glutaminergic interneurons 
(intracortical facilitation – ICF) or GABAergic interneurons (short-interval cortical inhibition 
– SICI); suggesting that GABAergic or glutaminergic interneuronal pools are not 
significantly modulated (Nitsche et al., 2005). During cathodal stimulation, blockade of 
calcium or sodium channels does not alter the effects of tDCS, suggesting a 
hyperpolarisation of neurons generated by tDCS itself (Nitsche et al., 2003a). However, ICF 
and the input/output curve for TMS motor threshold were modulated during cathodal 
stimulation (Nitsche et al., 2005), suggesting that the membrane potential of glutaminergic 
interneurones, rather than pyramidal neurons, is modulated by tDCS (for review see Stagg 
& Nitsche, 2011). Overall, the evidence so far suggests that the modulation observed with 
tDCS are shaped by a combination of non-synaptic mechanisms, which alter the resting 
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membrane potential of neurons, and synaptic mechanisms, which alter the signaling 
strength of neurons. 

2.2.2 Variables in the application of tDCS 

The current density in the tissue is the quotient of current strength and electrode size. 
Hence, stimulation efficacy can be augmented by either increasing the current strength or 
reducing the electrode size (Nitsche & Paulus, 2000). Furthermore, the duration of 
stimulation sessions also affects the strength of the tDCS induced response; longer session 
durations result in prolonged after-effects (Nitsche & Paulus, 2001; Nitsche et al., 2003b).  

The direction of current flow is another parameter that influences the electrical stimulation 
effects. The population of neurons exposed to the electrical field and the shifts in their 
membrane potential depend mainly on the positions of the electrodes and their polarity. In 
tDCS, both positive electrode (anode) and negative electrode (cathode) are used for 
stimulation. In this circuit the current flows from the cathode to the anode. The positioning 
of these electrodes on the scalp is important in determining the overall effects elicited in the 
underlying cortex. For example, during anodal tDCS of the primary motor cortex, the anode 
is generally placed over the primary motor cortex (M1) and the cathode over the 
contralateral supraorbital region. In this montage most studies report an increase in the 
cortico-motor excitability (Nitsche & Paulus, 2001; Jeffery et al., 2007). Conversely, reversing 
the current flow (cathodal stimulation) generally diminishes the cortical excitability 
(Ardolino et al., 2005).  

In the literature, so far over 100 studies with tDCS in healthy and patient populations have 
been published; with no serious side effects. At the start of stimulation, most subjects report 
a slight itching sensation, which then normally fades. It is possible to reduce or avoid this 
sensation by ramping the current up and down at the beginning and end of session. Poreisz 
et al., (2007) in a group of 567 subjects, reported most commonly a mild tingling sensation 
(~70%), moderate fatigue (~35%) and slight itching under the electrode (~30%), and in ≤10% 
of cases, headache, nausea and insomnia. Other studies, for example evidence of neuronal 
damage as assessed by serum neuron-specific enolase, MRI measures of edema using 
contrast-enhanced and diffusion-weighted MRI measures, EEG waveform analyses and 
neuropsychological measures, reported no evidence of neural damage or brain pathology 
(for review see Stagg & Nitsche, 2011).  

The large size of stimulating electrodes could result in the stimulation of a larger cortical 
region then intended. Furthermore, as the reference electrode is not physiologically inert 
because of current flow between electrodes, there might be modulatory effects in remote 
brain areas. Therefore, other brain regions and structures between electrodes should be 
taken into consideration during the application of tDCS. Moreover, modulations of cortical 
excitability can be focused by reducing the size of the stimulating electrode and by 
increasing the size of the reference electrode (Nitsche et al., 2007). An extracephalic (e.g. neck 
region) reference could be used to avoid the undesirable effects of two electrodes with 
opposite polarities over the brain (Nitsche & Paulus, 2000).  

As subjects only occasionally experience any sensation related to the stimulation, controlled 
placebo sessions could be conducted without the need for additional equipment or 
attachments. During sham stimulation the stimulator can be initially ramped up (around 10 
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sec), and after a 30 sec period of stimulation it can be slowly turned down (within 10 sec). With 
this method placebo and real stimulation sessions are indistinguishable (Gandiga et al., 2006). 
It should be noted that with motor cortex stimulation, strong cognitive effort by the subject 
unrelated to the stimulated area, as well as strong activation of the stimulated motor cortex by 
voluntary prolonged muscle contraction abolishes the effects of tDCS (Antal et al., 2007) 

2.2.3 Time course and after-effects of tDCS 

With short duration (seconds) tDCS, changes in cortical excitability are observed during the 
stimulation period, but these effects do not outlast the stimulation itself (Nitsche & Paulus, 
2000). However, when applied for several minutes longs lasting excitability shifts are 
produced. For example, around 10 minutes of tDCS can produce stable effects for up to an 
hour (Nitsche & Paulus, 2001).  

The changes in cortical output measures that outlast a tDCS session are dependent on 

membrane depolarization. The after-effects induced by anodal stimulation could be 

abolished by calcium or sodium channel blockers or prolonged by NMDA receptor agonists 

(Nitsche et al., 2003a, 2004). Results from other studies using TMS mediated measures and 

neuropharmacological applications suggest that the after-effects of anodal tDCS are 

dependent on modulation of both GABAergic and glutaminergic synapses, and these effects 

are modulated by acetylcholine, serotonin and catecholamines (for review see Stagg & 

Nitsche, 2011). 

In order to achieve relatively stable changes in cortical function, repeated sessions of tDCS is 

necessary. For example, recently it was reported that tDCS enhances motor skill acquisition 

over multiple days through an effect on consolidation (Reis et al., 2009). However, the 

optimal number and duration of sessions, as well as intersession intervals will depend on 

the objective of the study or therapeutic application, and requires more research. 

2.2.4 Therapeutic applications of tDCS 

tDCS has been shown to have beneficial effects in a wide range of clinical pathologies; such 

as refractory epilepsy (Fregni et al., 2006), stroke (Fregni et al., 2005; Hummel et al., 2005) and 

various pain conditions (for review see O’Connell et al., 2011), as well as psychiatric 

conditions, like depression and addiction (Arul-Anandam & Loo 2009; Utz et al., 2010). 

However, the measurable effects induced in a single session are usually short lived. With 

repeated session tDCS, growing number of clinical trials is reporting long-term benefits, in 

particular for depression. For example, in a recent double-blind clinical trial with 40 patients 

with major depression, significantly large reductions in depression scores were reported 

after dorsolateral prefrontal cortex (DLPFC) anodal tDCS applied for 10 sessions during a 2-

week period (Boggio et al., 2008). These results suggest promising potential for tDCS as an 

antidepressant treatment. 

3. Use of non-invasive brain stimulation in stroke 

Following stroke, the neuroplastic changes within the brain lead to reorganization that is 
attributable to spontaneous recovery of function. Possible mechanisms of such 
reorganization include; axonal and/or dendritic regeneration or sprouting, reorganization 
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within the lesioned cortical region by means of synaptic modulation, and remapping of 
functional representations from the lesioned region onto neighboring unaffected areas 
surrounding the lesion or homologous areas within the unaffected hemisphere. 

During local ischemia various cytotoxic and metabolic reactions result in the loss of 
structural and functional integrity of neural tissue (Schallert et al., 2000). However, early 
repair mechanisms, such as expression of developmental proteins and other substrates of 
molecular plasticity, as well as structural changes, such as regeneration and sprouting, 
modulation of synaptic plasticity, changes in cortical excitability due to neurotransmitter 
alterations take place locally and in remote areas of the brain (Witte & Stoll 1997). There is 
increasing evidence that suggests functional reorganization in both hemispheres. Functional 
magnetic resonance imaging (fMRI) studies reveal bilateral activation in recovered stroke 
patients (Gerloff et al., 2006; Nair et al., 2007). 

A network of cortical and subcortical areas constitutes the motor system. The final motor 

output is determined by complex interactions between multiple excitatory and inhibitory 

circuits within and between these areas. After stroke, the balance in this system could be 

vitally disturbed as a result of damage to neurons or their fibers within the white matter 

which connects these areas. For example, in recovered stroke cases, magnetic stimulation 

over the dorsal premotor cortex, the superior parietal lobe, as well as the primary motor 

cortex results in significant interference with recovered finger movement performance 

(Lotze et al., 2006). Furthermore, experimental results using TMS in stroke patients suggest 

that the motor output from the lesioned hemisphere could be further reduced by 

pathologically enhanced inhibitory influences from the intact hemisphere (Murase et al., 
2004; Duque et al., 2005; Hummel & Cohen, 2006). Although the exact mechanism of this 

interhemispheric interaction is still unclear, the possibility that suppressing the inhibitory 

influences exerted by the intact hemisphere could improve recovery has gained interest in 

recent years. 

As stated earlier, depending on the stimulation parameters, cortical excitability can be 

reduced (inhibition) or enhanced (facilitation). Therefore, non-invasive brain stimulation 

could accelerate, facilitate or potentiate the functional recovery process and provide better 

rehabilitation outcomes. TMS and tDCS are the most extensively researched methods in 

stroke recovery and rehabilitation (for review see Nowak et al., 2010). These techniques not 

only cause a local change in cortical excitability, but can also evoke changes within remote 

parts of the cortical motor system, hence improve recovery after stroke (Nowak et al., 2008; 

Ameli et al., 2009; Grefkes et al., 2010).  

3.1 Application of TMS in stroke 

In the last decade a number of studies using rTMS in stroke patients have been conducted. 
These include, single session interventions, in which patients are assessed before and after 
rTMS and longer term treatment strategies in which patients are given daily sessions of 
rTMS for up to two weeks. In multiple session interventions rTMS is usually combined with 
conventional physical therapy to assess and compare the benefits of rTMS in rehabilitation 
(for review see Khedr & Abo-El Fetoh, 2010; Nowak et al., 2010). Majority of these studies 
have been conducted in chronic stroke patients whose baseline performance is likely to be 
stable, compared to acute and subacute stroke cases.  
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So far, there have been over twenty clinical studies conducted using low or high frequency 
simple rTMS, or theta-burst stimulation (TBS) of the lesioned or intact hemisphere in acute 
or chronic patients (for review see Khedr & Abo-El Fetoh, 2010). For example, Koganemaru 
et al., (2010) used 5 Hz rTMS of the upper-limb area of the primary motor cortex, combined 
with extensor motor training, and suggested that combining motor training with rTMS can 
facilitate use-dependent plasticity and achieve functional recovery of motor impairments 
that cannot be accomplished by either intervention alone. Overall, rTMS gives a 10–30% 
improvement over sham in a range of performance measures, from simple reaction times to 
timed behavioral tests. In addition, the effects of multiple session intervention tend to be 
similar in size but longer lasting than those seen in single session trials.  

Even more complex intervention protocols, by stimulating multiple target areas have been 
trialed. For example, in a group of thirty chronic stroke patients, comparison of unilateral 
and bilateral rTMS (1 Hz over intact hemisphere and 10 Hz over affected hemisphere) 
revealed improved motor training effect on the paretic hand after bilateral rTMS (Takeuchi 
et al., 2008).  

Although still relatively few, there are studies conducted to investigate the possible benefits 

of rTMS in other disabilities associated with stroke; such as, dysphagia, aphasia and 

hemispatial neglect. The underlying concept of rTMS treatment is based on “upregulating” 

the lesioned hemisphere or “downregulating” the intact hemisphere (for review see Platz & 

Rothwell, 2010). Altered connectivity within the cortex as a result of stroke influences the 

modulatory effects of afferent inputs (Tarlaci et al., 2010). Therefore, combining TMS 

intervention with afferent inputs, such as vibrotactile stimuli could also be effective.  

Overall, the application of rTMS as a therapeutic tool is still in its infancy. According to 

available evidence, cortical magnetic stimulation could be an effective method for 

improving functional recovery of acute and chronic stroke. Table 1 summarizes the studies 

undertaken using rTMS. Although the majority of results report improvements in various 

behavioral functions, the overall methodology remains to be optimized, in particular 

regarding the number and duration of rTMS sessions, the site, frequency and intensity of 

stimulation and the exact timing of rTMS application after stroke 

3.2 Application of tDCS in stroke 

Human studies using electrical brain stimulation can be divided into invasive and non-

invasive. The invasive method principally involves implantation of epidural electrodes 

through a small craniotomy around a “hot spot” within the perilesional area determined 

by fMRI. Cortical stimulation is then applied together with physical therapy. Initial 

cortical stimulation feasibility studies in combination with a motor rehabilitation training 

targeting the affected arm and hand reported significant improvements compared to 

control patients receiving only rehabilitation (Brown et al., 2006; Levy et al., 2008). 

However, in a subsequent larger, multi-center study (Everest Clinical Trial) involving 174 

chronic stroke patients (implant and control groups) who underwent six weeks of upper 

limb rehabilitation, the outcome measures did not meet its primary efficiency end-point at 

4-week follow-up, with improvement of 30% in both implant and control groups (Harvey 

& Winstein, 2009). It is clear that more basic and clinical research into the efficacy of 

invasive cortical electrical stimulation is needed. 

www.intechopen.com



 
Topics in Neuromodulation Treatment 178 

Study Stimulation 
Side 

Lesion 
location 

Time of 
stroke 

Stimulus Behavioral results 
on affected hand 

Khedr et al., 

2005 

IL 26 cortical, 

26 subcortical

acute 3 Hz, 10 daily 

stimulation 

sessions 

Improved hand 

function 

(Scandinavian 

Stroke Scale, 

National  

Institute of Health 

Stroke Scale  

Scale, Barthel 

index) 

Mansur et al., 

2005 

CL 10 subcortical subacute, 

chronic 

1 Hz Shortened simple 

and choice 

reaction times, 

improvement of 

hand function 

(Purdue Pegboard 

Test) 

Takeuchi et 

al., 2005 

CL 20 subcortical chronic 1 Hz Improved peak 

pinch  

acceleration 

Boggio et al., 

2006 

CL one 

subcortical 

chronic 1 Hz Improved hand 

function (clinical 

testing), no change 

in spasticity 

(modified 

Ashworth scale for 

spasticity) 

Fregni et al., 

2006 

CL 2 cortical, 

13 subcortical

chronic 1Hz , 5 daily 

stimulation 

sessions 

Shortening of 

simple and choice 

reaction times, 

improvement of 

hand function 

(Jebsen-Taylor 

Hand Function 

Test, Purdue 

Pegboard Test) 

Kim et al., 

2006 

IL 5 cortical, 

10 subcortical

chronic 10 Hz Improved 

movement 

accuracy and 

movement time 

(sequential  

finger movement 

task) 
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Study Stimulation 
Side 

Lesion 
location 

Time of 
stroke 

Stimulus Behavioral results 
on affected hand 

Malcom et al., 

2007 

IL 11 cortical, 

8 subcortical 

chronic 20 Hz, 

followed by 

constraint 

induced 

movement 

therapy, 10 

daily 

stimulation 

sessions 

Improved hand 

function (Wolf 

Motor Function 

Test, Motor 

Activity Log) after 

constraint induced 

movement 

therapy, no 

additive effect of 

rTMS 

Talelli et al., 
2007 

CL 3 cortical, 
3 subcortical 

chronic continuous 
theta burst 
stimulation 

No change in 
acceleration and 
amount of peak 
grip force 

Talelli et al., 
2007 

IL 3 cortical, 
3 subcortical 

chronic intermittent 
theta burst 
stimulation 

Improved 
movement speed, 
no effect on peak 
grip force 

Nowak et al., 
2008 

CL 15 subcortical subacute 1 Hz Improved 
grasping 
movements 
(kinematic motion 
analysis) 

Takeuchi et 
al., 2008 

CL 20 subcortical chronic 1 Hz, 
stimulation 
session with 
metronome-
paced 
pinching 
between 
index  
finger and 
thumb 

Improved of pinch 
acceleration and 
peak pinch force 

Dafotakis et 
al., 2008 

CL 12 subcortical subacute, 
chronic 

1 Hz Improved timing 
and efficiency of 
grasping  
(kinetic motion 
analysis) 

Liepert et al., 
2007 

CL 12 subcortical acute 1 Hz No change in peak 
grip force, 
improved hand 
function  
(Nine Hole Peg 
Test) 
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Study Stimulation 
Side 

Lesion 
location 

Time of 
stroke 

Stimulus Behavioral results 
on affected hand 

Kirton et al., 
2008 

CL 10 children 
with 
subcortical 
stroke 

chronic 1 Hz, 8 daily 
stimulation 
sessions 

Improved hand 
function 
(Melbourne 
assessment of 
upper extremity 
function) 

Carey et al., 
2009 

CL 1 subcortical,
1 cortical 

chronic 1 Hz primed 
by 6Hz 

Improved hand 
function (clinical 
testing) 

Carey et al., 
2009 

CL 10 cortical chronic 1 Hz primed 
by 6Hz 

No change in hand 
function (clinical 
testing); 
transiently 
deteriorated verbal 
learning (Hopkins 
Verbal Learning 
Test-Revised) 

Khedr et al., 
2009 

IL 48 subcortical 
and cortical 

acute 3 Hz or 10 
Hz, 5 daily 
stimulation 
sessions 

Improved hand 
function 1,2,3 and 
12 months after 
rTMS 

Yozbatiran et 

al., 2009 

IL No detailed 

information 

subacute, 

chronic 

20 Hz Improved grip 

strength, 

improved hand 

function (Nine 

hole peg test) 

Koganemaru 

et al., 2010 

IL 9 subcortical chronic 5 Hz Better 

improvement of 

extensor 

movement when 

rTMS is combined 

with extensor 

motor training 

Grefkes et al., 

2010 

CL 11 subcortical subacute 1 Hz Improved hand 

function 

supported by fMRI 

Table 1. A summary of studies and their outcomes conducted with rTMS in stroke patients 
IL: ipsilesional, CL: contralesional. Time of stroke after symptom onset; acute: < 1month, 
subacute 1-6 months, chronic > 6 months (modified from Nowak et al., 2010). 

Introduction of tDCS as a research tool a decade ago also attracted attention for its clinical 

application in stroke. tDCS would have advantages over direct cortical stimulation by 

stimulating a wider region of brain involving not only the primary motor cortex but also 

premotor, supplementary motor and somatosensory areas, all of which have been  
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Study Stimulation 
side

Lesion 
location

Time of 
stroke

Stimulus Behavioral results on 
affected hand 

Fregni et 
al., 2005 

IL 2 cortical,
4 subcortical

chronic anodal Improved hand function 
(Jebsen-Taylor Hand 
Function Test) 

Fregni et 
al., 2005 

CL 3 cortical,
3 subcortical

chronic cathodal Improved hand function 
(Jebsen-Taylor Hand 
Function Test) 

Hummel 
and Cohen., 
2005 

IL 1 subcortical chronic anodal Improved hand function 
(Jebsen-Taylor Hand 
Function Test, peak pinch 
force), shortened simple 
reaction times 

Hummel et 
al., 2005 

IL 1 cortical,
5 subcortical

chronic anodal Improved hand function 
(Jebsen-Taylor Hand 
Function Test) 

Hummel et 
al., 2006 

IL No detailed 
information 

chronic anodal Shortened simple 
reaction time, increased 
peak pinch force 

Boggio et 
al., 2007 

IL 1 subcortical chronic anodal Improved hand function 
(Jebsen-Taylor Hand 
Function Test) 

Boggio et 
al., 2007 

CL 9 subcortical chronic cathodal, 5 
daily 
stimulation 
sessions

Improved hand function 
(Jebsen-Taylor Hand 
Function Test) 

Hesse et al., 
2007 

IL 8 cortical,
2 subcortical

acute,
subacute

anodal, 
followed by 
robotassisted 
arm training, 6 
daily 
stimulation 
sessions

Improved hand function 
(Jebsen-Taylor Hand 
Function Test, Medical 
Research Council score) 

Celnik et 
al., 2009 

IL 9 cortical 
and 
subcortical 

chronic anodal, 
followed by 
peripheral 
nerve 
stimulation to 
the affected 
hand and a key 
pressing task

Improved key pressing 
task performance 

Lindenberg 
et al., 2010 

IL 20 cortical 
and 
subcortical 

chronic bihemispheric 
(anodal on IL, 
cathodal on 
CL)

Improved key pressing 
task performance 

Table 2. A summary of studies and their outcomes conducted with tDCS in stroke patients 
IL: ipsilesional, CL: contralesional. Time of stroke after symptom onset; acute: < 1month, 
subacute 1-6 months, chronic > 6 months (modified from Nowak et al., 2010). 
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implicated in the recovery process (Nair et al., 2007). Furthermore, as a non-invasive 

technique, tDCS is less risky, portable and flexible in its montage parameters. Studies 

investigating the effects of anodal tDCS of the lesioned hemisphere on rehabilitation 

measures suggest limited benefits of this intervention. For example, Hummel et al. (2005, 

2006) reported beneficial effects of anodal tDCS on reaction times and a set of hand 

functions that mimic activities of daily living in the paretic hand of patients with chronic 

stroke. However, in a study involving robot-assisted arm training during anodal tDCS of ten 

stroke patients, the arm function of only three patients improved significantly (Hesse et al., 
2007). Based on the concept of modulation of corticomotor excitability by peripheral sensory 

inputs (Kaelin-Lang et al., 2002), Celnik et al., (2009) investigated the effects of tDCS and 

peripheral nerve stimulation (PNS) on motor training in chronic stroke patients and 

reported a significant facilitatory effect of combing tDCS with PNS compared with each 

intervention alone. 

In recent years, most clinical studies have been designed with the concept of 
interhemispheric competition. Hence, abnormal interhemispheric inhibition is the 
hypothetical model for these experimental therapies. It is possible to modulate cortical 
excitability within motor areas of the lesioned and intact hemispheres by means of tDCS, as 
well as rTMS. These modulatory influences may induce synaptic plasticity and/or interfere 
with maladaptive processes that could develop after stroke. Although still limited, studies 
so far with cathodal stimulation of the intact hemisphere and/or anodal stimulation of the 
lesioned hemisphere suggest improvements in hand function (Fregni et al., 2005; Boggio et 
al., 2007; Lindenberg et al., 2010). 

In summary, research on the efficacy of tDCS as a therapeutic intervention is well 
underway. Table 2 summarizes the cases, stimulation protocols and outcomes of tDCS 
studies in stroke patients. It is clear that more clinical data are required to establish efficient 
protocols, including the optimal stimulation locations, dose, duration and frequency of 
treatment.  

4. Controversies 

In a recent review, the key opinion leaders in the area of brain stimulation identified and 
addressed the controversial aspects of “therapeutic” cortical stimulation in stroke (Hummel 
et al., 2008). These controversies include the following: 

1. Mechanism of effect: Increased cortical excitability with brain stimulation suggests plastic 
changes in glutaminergic and GABAergic intracortical networks, resembling the 
mechanism of LTP-like changes at the cellular level. However, these assumptions are 
indirect and have not been proven directly. With regards to inhibitory stimulation of 
the intact hemisphere to suppress transcallosal inhibition, clinical reports are 
encouraging, but still there are relatively few studies and the exact neuronal mechanism 
of this interhemispheric interaction is not clear. 

2. Site of stimulation: There is evidence of beneficial clinical outcomes from stimulation of 
the lesioned, as well as the intact hemisphere. Although theoretically susceptibility to 
seizures with lesioned hemisphere stimulation is possible, so far no such incident has 
been reported. Other possible adverse effects include the excitotoxicity and metabolic 
changes in the vicinity of the lesion due to induced hyperexcitability and the current 
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shunting effects of the scar tissue within brain. In this regard, targeting the intact rather 
than the lesioned hemisphere as the site of stimulation could have advantages. 
However, if post-stroke reorganizational changes leading to functional recovery are, at 
least in part, due to inputs originating from the intact hemisphere, reducing the activity 
of this region with excitability-decreasing stimulation could have unintended 
consequences and lead to impaired performance of the paretic hand (Lotze et al., 2006). 
Interaction between multiple cortical areas, such as premotor and supplementary areas, 
and the posterior parietal cortex during motor performance makes these regions a 
possible target for up-regulation or down-regulation during stroke recovery. However, 
our understanding of the role and interaction of these areas is still limited, and more 
basic research is necessary.  

3. Type of stimulation and its parameters: Although epidural electrical stimulation has 

advantages over non-invasive methods due to its proximity to the cortical tissue, still 

more patient data is needed to establish its benefits. In terms of practical use, tDCS is 

advantageous over TMS because it is safer, easier to apply, portable and well-tolerated 

by patients. It is also a cheaper option as a device. However, technological advances 

and expending markets will certainly lead to cheaper and more portable magnetic 

stimulators in the near future. 

Currently, most stimulation parameters for stroke patients are based on the 

effectiveness of polarity, electrode/coil size, stimulus amplitude, frequency, duration, 

and session repetition and interval reported in previous studies, in particular in healthy 

subjects. As more data become available on the efficacy of clinical studies using 

different parameters, eventually consensus on this controversy will be reached. 

4. Combining stimulation techniques: Studies so far indicate that stimulation alone might not 

produce significant improvement in motor function. If combined with other 

interventional techniques, such as peripheral nerve stimulation (Celnik et al., 2009), 

better outcomes could be achieved. However, studies that combined brain stimulation 

with constrained-induced movement therapy (Malcolm et al., 2007) or robot-aided 

training (Hesse et al., 2007) failed to show clear additive effects. Clearly, more clinical 

studies are needed in order to determine which combinations could produce better 

clinical outcomes of motor function. 

5. Commencement of stimulation: As mentioned earlier, most clinical studies are conducted 

on chronic stroke patients (>6 months). Although in the chronic stage the deficits are 

stable and it is easier to assess motor function, within the brain the scar tissue has 

already formed and natural reorganizational changes have occurred. On the other 

hand, interference during the acute stage when there is NMDA-induced calcium influx, 

which might be involved in neuronal toxicity, could result in unintended changes in the 

brain. Several studies report dynamic changes in neural activation patterns within both 

lesioned and intact hemispheres during the functional recovery process (for review see 

Hummel et al., 2008). Therefore, as we better understand the exact mechanisms of post-

stroke reorganization, it will be easier to determine the optimal commencement times 

for intervention by non-invasive brain stimulation. There are a number of variable 

factors that can influence the magnitude and direction of plastic changes induced 

during and after non-invasive brain stimulation. These include; age, sex, genetic profile, 

regular daily activity level, attention, use of neuropharmacological drugs and time of 
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day (for review see Ridding & Ziemann, 2010). Future therapeutic application of brain 

stimulation will most likely be part of personalized medicine which takes into account 

all these variable factors. 

6. Effect size: Reports so far on the effectiveness of brain stimulation on various motor 
tasks indicate an improvement of only 10-30% over placebo (for review see Khedr & 
Abo-El Fetoh, 2010). The transient nature of these improvements is also a shortcoming 
and raises the question that if these outcomes are obvious improvements to daily 
activities of patients. As the controversies outlined above are resolved in time, the effect 
size of clinical measures will also improve and produce accepted meaningful functional 
improvements after stroke. 

5. Conclusion 

In the last two decades, non-invasive brain stimulation techniques have been increasingly 
employed as a therapeutic tool in the rehabilitation of stroke patients. However, these 
methods are still experimental and there are many questions and unknowns to be addressed 
before agreed intervention prescriptions are determined for optimal and desired outcomes. 
In conclusion, non-invasive brain stimulation techniques are novel and promising but still in 
their infancy as universally accepted clinical tools. 
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