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1. Introduction 

The effects of electrical stimulation of the body or nervous system have been recognized for 

thousands of years in every culture. It is said that since circa 9000 BC, bracelets and 

necklaces of magnetite and amber were used to prevent headaches and arthritis (Schechter, 

1971). The ancient Egyptians used electrical discharges of the Nile catfish to treat neuralgia, 

headaches and other painful disorders (Kane & Taub, 1975). The first documented attempt 

to use electricity for pain treatment appeared in circa 15 AD. A Roman physician, Scribonius 

Largus, observed torpedo fish shock relieved gout pain and subsequently recommended 

torpedo fish therapy as a general treatment of pain (Stillings, 1971). The first electrostatic 

generator was presented by the German engineer Otto von Guericke in 1672, almost a 

century before the Leyden yar was developed. From then, man was able to generate, store 

and discharge electricity at any time. It extended its application as physicians were able to 

provide on-demand electrotherapy in patients for the treatment of pain syndromes. 

Since the 18th century, electro-analgesia therapy has been embedded in the armamentarium 

of physicians. Its clinical application in English hospitals was called ‘Franklinism’, after the 

American statesman and scientist Benjamin Franklin. He acquired fame after observing that 

lightening and electrostatic charge on a Leyden jar were identical. Moreover, he was the first 

to discriminate positive and negative electricity and investigated the effects of muscle 

contraction after the administration of electrical shocks. The 19th century, also called ‘the 

golden age of medical electricity’, commenced with the discovery of the electrochemical 

battery in 1800. Several years later, Michael Faraday exposed the principles of 

electromagnetic induction which was followed by the introduction of the electric generator 

in 1848 by Du Bois-Raymond. In those years electrical machines could be found in every 

doctors consulting room. However, the number of skeptics who depicted electrotherapy as 

‘medical quackery’ grew. Eventually, the Flexner report led to the legally exclusion of 

electrotherapy from clinical practice in 1910 (Macklis, 1993). The association with ‘quackery’, 

growing influence of drug industry and the appearance of radiographic imaging  

contributed to the loss of interest of science in the phenomenon of electroanalgesia. A 

reawakened interest in the application of electricity for pain treatment was commenced, as 

Chaffee and Light presented a method for remote control of electrical stimulation of the 
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nervous system in the early 1930s (Chaffee & Light, 1934). The contemporary evolution of 

cardiac pacing techniques contributed to the development of original neural stimulators. In 

the early years of the 20th century, the English neurologist Sir Henry Head postulated the 

conceptual basics for a theory of central inhibition of pain by non-painful stimuli. This 

concept was eventually presented as the Gate Control Theory by Melzack and Wall in 1965 

(Melzack & Wall, 1965). The gate control theory, which is further explored in paragraph 2.4, 

states that stimulation of large primary afferent fibers ‘close the gate’ and inhibit nociceptive 

processes. After first stimulating their own infra-orbital nerves, Wall and Sweet initiated 

therapeutic stimulation of peripheral nerves clinically. The initial results were promising, as 

the first patients experienced partial or complete pain alleviation during stimulation (Wall &  

Sweet, 1967; Wall 1985). Shealy et al. documented the first clinical application of spinal cord 

stimulation (SCS) or dorsal column stimulation (DCS)  in 1967 (Shealy, 1967a). It was then 

presented as a novel analgesic method to relieve pain in a variety of chronic pain 

syndromes. The mechanisms of action of SCS are actually a clinically outgrowth of the Gate 

Control Theory (Melzack & Wall, 1965). The supposed mechanisms of action of SCS were 

predominantly described in these ‘gating terms’. Initially, evidence for the efficacy of SCS in 

exerting an significant analgesic effect in a broad spectrum of neuropathic pain syndromes 

was lacking. In the 70’s and 80’s several studies appeared with the aim to unravel the 

mechanisms of action of SCS (Handwerker et al., 1975). Numerous studies investigated the 

effects of SCS on noxious stimuli in healthy animals. SCS was administrated with current 

intensities that cannot be used in a clinical setting on patients who are awake. Thus, 

conclusions obtained from these studies cannot be translated ‘from bench to bedside’ 

without question. The development of an reliable animal model of neuropathic pain made it 

possible to investigate the mechanisms of SCS more thoroughly (Meyerson et al., 1994). As 

more studies appeared there was more convincing evidence that also supraspinal interactions 

have an eminent role in explaining mechanisms in which SCS exerts its analgesic-effects. The 

mechanisms of SCS-induced pain relief became elusive and complex. A significant part of the 

current knowledge is provided by a few prominent laboratories in this field (B. Linderoth M.D 

Ph.D. and B.A Meyerson M.D Ph.D., Department of Clinical Neuroscience, Karolinska 

Institute, Stockholm, Sweden, and Department of Neurosurgery, Karolinska University 

Hospital, Stockholm, Sweden. N.Saadé Ph.D., Professor, American University of Beirut, Beirut, 

Lebanon, and of R. Foreman, Ph.D., Professor and Chair, Department of Physiology, 

Oklahoma Health Sciences Center, Oklahoma, City, Oklahoma). It was not until recently that a 

reawakened interest in exploring the mechanisms of action of SCS was presented by Guan et al 

(Guan et al., 2010]. Over the years, much questions has been answered although certain details 

of the mechanisms of SCS are still controversial and require additional evidence. In the last 

two decennia, SCS is being increasingly used as an neuromodulation technique in a narrowing 

spectrum of pain diagnosis. It is estimated that, currently, more than 30,000 SCS systems are 

implanted every year worldwide (Linderoth & Meyerson, 2010).  

2. Mechanisms of action 

2.1 Physiological anatomy of the spinal cord 

A thorough understanding of the mechanisms of spinal cord stimulation needs a thorough 
knowledge of the anatomy and neurophysiology of the spinal cord and related structures. 
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Furthermore, appreciation of the electrical characteristics of intraspinal structures is 
required. Primary afferent fibers have their cell bodies of the first order located in the dorsal 
root ganglia. Proximal to the dorsal root ganglion the afferent fibers form a single dorsal 
nerve root (Light, 1988). Dorsal root fibers have a curve shape and an average diameter of 15 
μm. As these axons proceed towards the dorsal column they bifurcate into ascending and 
descending pathways. A segregation of innocuous and nociceptive afferents occurs as the 
axons approach the spinal cord. The angle of the fibers varies as they enter the spinal cord, 
which has major consequences on their excitation thresholds. The dorsal horn of the spinal 
cord  encompasses the grey matter of the spinal cord located dorsal to the central canal. In 
the 1950s Rexed distinguished six more-or-less different laminae of the spinal grey matter, 
using cytoarchitectonic criteria (Rexed, 1952). However, based on cytoarchitecture, the 
spinal gray matter is currently divided into 10 laminae (Whitehouse et al., 1983). Collaterals 
of large-diameter fibers, which mediate tactile sense and proprioception, enter the dorsal 
horn and extent mainly to lamina III and IV (Light, 1988). The dorsal column refers to the 
area of white matter in the dorsomedial side of the spinal cord. Collaterals of large-
diameters fibers occupies the largest part, about 85%, of the dorsal columns. Their averaged 
diameter diminishes from 12μm at the origin to 8μm a few segments rostrally (Barolat & 
Sharan, 2004). The fasciculus gracilis contains neurons of the dorsal column-medial 
lemniscus system, which carries primary afferents from the lower extremities, and synapse 
in the nucleus gracilis at the level of the foramen magnum. The fasciculus cuneatus is 
positioned more lateral in the dorsal column and carries primary afferent signals from the 
upper extremities (Barolat & Sharan, 2004). As the primary afferent fibers ascend, they 
gradually shift medially and dorsally. Therefore, the accessibility to dorsal medial-
stimulating electrode changes as their location in the spinal cord varies. Posterior located 
ascending and descending pathways are most accessible at normal stimulation parameters 
(Oakley & Prager, 2002). Hence, the anatomy and physiology of the spinal cord is complex, 
but understanding is essential when discussing the issues around mechanisms of spinal 
cord stimulation. 

2.2 Electrical stimulation 

In spinal cord stimulation, a lead is positioned in the dorsal epidural space and connected to 

a subcutaneously implantable pulse generator (IPG). The rostrocaudal position of the lead, 
with multiple contacts, can be altered to enable electrical stimulation at several spinal levels. 

The cathode is positioned between the dorsal median sulcus and the dorsal root entry zone 
area. During a stimulation pulse, current flows from a negatively charged active electrode 

(cathode) to a positively charged electrode (anode). In principle, sufficiently high electrical 
stimulation can activate every neural structure in close proximity of the cathode 

(Holsheimer, 2002). However, current flow chooses the path of lowest resistance and is 
therefore directed through anatomic structures characterized by high electrical conductivity 

(table 1). Cerebrospinal fluid (CSF) obviously has the lowest electrical resistivity and 
therefore conduct approximately 90% of injected current, followed by longitudinal white 

matter. Because its anisotropic characteristics, transverse white matter is proven to be less 
conductive as is grey matter. Epidural fat and dura mater also demonstrates low 

conductivity. Vertebral bone is characterized by having the lowest electrical conductivity. 
Therefore it functions as an insulator and prevents surrounding tissues (e.g the heart and 

pelvic structures) from being stimulated (Oakley & Prager, 2002; Holsheimer 2002). Initially, 
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it was thought that dorsomedial electrical stimulation first activated fibers in the dorsal 
column as the name ‘dorsal column stimulation’ implies (Shealy, 1967a; Struijk et al., 1993]. 

Coburn introduced the hypothesis that dorsal root fibers may be involved as well, based on 
a theoretical study which indicated that dorsal root fibers have lower stimulation thresholds 

than dorsal column fibers (Coburn, 1985). Moreover, the name ‘dorsal column stimulation’ 
has been proven physiologically simplistic. Despite the fact that the distance between 

electrodes and dorsal root fibers is higher compared to the dorsal column fibers, the 
activation threshold is predicted to be lower. Therefore, a correct position of the lead in the 

radiological midline is essential to prevent dorsal roots excitation. Several factors have been 
demonstrated to contribute to lower dorsal root activation threshold, including the curved 

shape and larger fiber diameter of dorsal root fibers. Dorsal root fibers are activated in the 
dorsal root entry zone (DREZ), where fibers enter the dorsal horn, because of its lowest 

activation threshold. Electrical activation of large fiber afferents in the dorsal root or dorsal 
column by configuration of cathodal and anodal contacts cause a tingling sensation, called 

paresthesia. Large fiber afferents are activated during stimulation within the usage range 
and can subsequently ‘close the gate’. Excitation of dorsal root afferent fibers produces 

paresthesias in a few dermatomas, as only rootlets in close proximity of the cathode will be 
activated. Stimulation of one afferent Aǃ fiber may elicit paresthesia in the whole 

corresponding dermatoma. Lemniscal dorsal column fiber stimulation generates an 
extensive area of paresthesia coverage, because all dorsal column fibers below the level of 

the electrode may potentially be activated. A prerequisite for effective pain management is 
to direct generated paresthesias to cover the whole painful area, which is often difficult to 

achieve because optimal lead positioning remains difficult. Several empirical and theoretical 
computer modeling studies were performed in order to obtain a more thorough 

understanding of factors determining optimal lead positioning (Law & Miller 1982; Coburn 
1985). Holsheimer and collegues investigated whether the geometry of a rostrocaudal array 

of electrode contacts and contract combination changes the stimulation threshold ratio of 
dorsal column and dorsal root fibers. Monopolor stimulation with a large cathode favors 

activation of dorsal root fibers. Preferential activation of dorsal column fibers is effectuated 
by tripolar stimulation with small contacts and small contact spacings. The problem of 

optimal lead positioning can be solved by increasing the number of electrode contacts,  
which increases contact points and anode-cathode combinations and therefore the 

probability for generating effective paresthesias. The leads are positioned a few segments 
rostral to the level of where target dorsal roots enter the spinal cord (Barolat et al., 1991). 

Furthermore, several anatomical and technical factors have been described to determine the 

topographical area of induced paresthesias, including; pulse width, pulse amplitude, nerve 
fiber diameter, electrode-spinal cord distance, anode-cathode combination. Empirical 

studies showed that incomplete paresthesia coverage of the painful area can be 
compensated by increasing pulse width as the pulse amplitude extends caudally with 

increasing pulse width (Holsheimer et al., 2011). The therapeutic range of spinal cord 
stimulation is between the perception threshold (PT) and discomfort threshold (DT) (figure 

1). The perception threshold is defined as the lowest stimulus amplitude needed to elicit 
paresthesia. The discomfort threshold is defined as the stimulation amplitude above which 

paresthesia become unendurable. DT is generally reached at a mean stimulus amplitude of 
40-60% above perception threshold. The PT for eliciting paresthesia is related to the 

activation of dorsal root fibers, indicated by the observation of progressively decreased PT 
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as the electrode deviates from the midline (Barolat et al., 1991). At cervical and low thoracic 
level it may occur that some dorsal column fibers are activated when the electrode-to-spinal 

distance is less than 2 mm. At mid-thoracic level (T4-T7) the electrode-to-spinal distance is 
largest in most patients. Therefore, it is unlikely that dorsal column fibers are stimulated 

within the therapeutic range, whereas paresthesiae get a segmentary distribution 
(Holsheimer & Wesselink, 1997). It is well known that the range of stimulation amplitude 

between PT and DT is narrow and therefore stimulation results regularly in incomplete 
paresthesia coverage of the painful area. Only large fiber afferents in the dorsal column and 

dorsal roots are activated during SCS at voltages within the therapeutic range. In the dorsal 
column only superficially oriented fibers (0.20-0.25mm depth) with a diameter > 9.4 μm are 

activated during SCS (Holzheimer, 2002). The mean diameter of large afferents in the dorsal 
root is 15μm. As voltage is increased to approximate DT, smaller fibers (±12μm) are 

excitated as well. These proprioceptive fibers elicit segmental motor effects and 
uncomfortable sensations, which is a major drawback of dorsal root stimulation. This 

prevents stimulation amplitude from being increased in order to recruit more dorsal column 
fibers. To increase SCS efficacy, recruitment of dorsal column fibers is maximized as it 

generally results in a broad paresthesia coverage of the painful area which is the main goal 
of SCS. Despite the fact that SCS techniques developed enormously over the past decennia, 

there are some major drawbacks in the application of SCS that needs to be solved 
(Holsheimer et al., 1997). Computer modeling provides a considerable contribution in  

 

Compartment Conductivity (S m-1) 

Cerebrospinal fluid 1.7
White matter  (longitudinal) 0.60
                          (transversal) 0.083
Grey matter 0.23
Epidural fat 0.04
Vertebral bone 0.04
Dura mater 0.03
Surrounding layer 0.004
Electrode insulation 0.001

Table 1. Conductivity of intraspinal structures. Modified from [Holsheimer et al., 1995] 

 

Fig. 1. Therapeutic range in Spinal Cord Stimulation 
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knowledge of the physiological effects of spinal cord stimulation. Most clinical phenomena 
observed in spinal cord stimulation are predicted by computer modeling studies, which 

emphasizes its usefulness. Because of the large intersubject variation in anatomical 
characteristics, a computer model remains a simplification of reality. Conclusions drawn from 

these studies needs to be questioned for their clinical relevance (Holsheimer et al., 1997). Close 
interdisciplinary collaboration is warranted in order to direct future research and provide a 

better understanding of the effects of electrical stimulation on spinal nerve fibers. 

2.3 Animal models 

At the time of the introduction of spinal cord stimulation in clinical medicine, insights in 
possible underlying mechanisms of action were sparse. Initially, there seemed to be little 
interest in the research community to explore the biological basis of the possible modulatory 
effects of SCS on neuropathic pain. In the beginning of the 1970s some first attempts were 
made in laboratories to explore the pathophysiological mechanisms of pain in animals. 
These studies concentrated on the acute behavioral and electrophysiological responses to a 
short-lived nociceptive (thermal or mechanical) stimulus. Clinical pain syndromes are 
mostly characterized by spontaneous pain and a hyperesthetic state (e.g. hyperalgesia and 
allodynia). Therefore, clinical relevancy of behavioral studies of intact animals subjected to 
acute nociceptive pain is questionable. Simultaneously, the first preclinical studies aimed at 
the elucidation of the effector mechanism of spinal cord stimulation appeared (Handwerker 
et al., 1975). The main shortcoming of these studies is that they used healthy anesthetized 
animals and applied only acute and noxious stimuli. Furthermore, spinal cord stimulation 
was only shortly applied at high current intensities which cannot be used clinically on 
conscious patients. Although these experiments are of limited clinical relevance, they gave 
direction to the design of more appropriate experiments. Of major importance was the 
recognition of distinct pathophysiological mechanisms elicited by peripheral nerve injury, 
which differed from that generated by an acute noxious stimulus (Wall & Gutnick, 1974). 
These findings were followed by numerous attempts to develop a preclinical neuropathic 
pain model, in which clinical pain states should adequately be mimicked. Since then, many 
animal models of peripheral nerve injury (trauma, disease, metabolic disorders, and toxins) 
have been described in literature. Until the chronic constriction model of Bennett was 
presented in 1988, none of them reported to produce disorders of pain sensations like those 
that accompany peripheral neuropathies in humans. The inability to produce these sensory 
disorders in laboratory animals has been a major obstacle to the experimental analysis of the 
problem (Bennett & Xie, 1988). In addition, the neuroma model, in which a peripheral nerve 
is transected completely, showed a limited spectrum of somatosensory disorders normally 
accompanying neuropathies. In particular hyperalgesia and allodynia were not seen after 
complete deafferentation and neuroma formation. Furthermore, high incidences of 
autonomy or self-mutilation were reported for rats with complete transections of the sciatic 
nerve (Wall et al., 1979; Sweet 1981). Bennett developed a model wherein painful peripheral 
mononeuropathy was produced by placing loosely tied constrictive ligatures around the 
common sciatic nerve (Bennett, 1988). A few years later, Selzer presented a slightly different 
behavioral model of neuropathic pain disorders in rats by a tight ligation of a part of the 
sciatic nerve (Selzer et al., 1990). Kim and Chung ligated an entire spinal segmental nerve in 
their experimental model for peripheral neuropathy (Kim & Chung, 1992). Decosterd and 
Woolf presented the ‘spared nerve injury model’ which comprises a partial lesion of the 
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sciatic nerve as only the tibial and common peroneal nerves are ligated, leaving the 
remaining sural nerve intact (Decosterd & Woolf, 2000). This model differs from the 
previously mentioned preclinical neuropathic pain models as it allows behavioral testing of 
intact cutaneous areas adjacent to injured denervated regions (Decosterd & Woolf, 2000). In 
addition to these three extensively used models (the Bennett chronic constriction injury 
model, the Selzer partial sciatic nerve ligation model and the Chung spinal nerve ligation 
model), other animal models based on photochemically induced ischaemia in the spinal 
cord have been described (Watson et al., 1986; Hao et al., 1991; Gazelius et al., 1996). All 
preclinical pain models have been developed in order to mimick clinical pain states in 
humans as closely as possible. It was not until 1994 when a research group from the 
Karolinska Institute concentrated on the effects of spinal cord stimulation on neuropathic 
pain (Meyerson et al., 1994). They produced experimental models of neuropathic pain as 
described by Bennett and Selzer, implanted miniaturized electrodes in the awake animals 
and monitored the effects of stimulation during evoked pain (Bennett & Xie, 1988; Selzer et 
al., 1991; Meyerson et al., 1994). They applied SCS acutely of chronically with stimulation 
parameters similar to those used in patients. Since then, only a few experiments focused on 
the effects of spinal cords stimulation in patients.  

From ‘bench to bedside’. In general, preclinical pain models use a withdrawal response to 
noxious or innoculous stimulations as behavioral endpoint. In contrary, the numeric rating 
pain scale (NRS) or visual analog score (VAS) is commonly used in clinical research. This 
discrepancy makes results from preclinical studies difficult to interpreter, as different pain 
assessment methods focus on different aspects of pain (Mao, 2002). It is important to 
recognize the restraints of basic research as they can provide in guidelines for the 
development of clinically relevant studies. Translational pain research comprises a two-way 
direction. Equitably important as the translation from ‘bench to bedside’ is the translation 
from ‘bedside to bench’. Guarantying a correct initial translation from ‘bedside to bench’ 
makes meaningful translation from ‘bench to bedside’ possible. Mao described some 
examples of structural weaknesses in the interpretation of results obtained in preclinical 
experiments, commonly incorrect generalized to prove their clinical relevancy (Mao, 2002). 
For example, chronic pain conditions are commonly characterized by the existence of 
spontaneous pain which is present without obvious stimulation. Prevention of thermal of 
mechanical stimuli is not sufficient to alleviate this pain. In the clinical setting, thermal 
stimulation is rarely followed by a persistent pain condition. A persistent pain condition is 
generally assessed in animal models using stimulus-induced nociception such as thermal 
hyperalgesia. Clinical significance of these unfiltered results obtained in animal models is 
doubtful, as thermal hyperalgesia is rarely present in the clinical setting. Furthermore, the 
understanding of how a chronic pain condition develops after a transient tissue injury is 
poor. For years clinicians are struggling to explain this phenomenon of central sensitization. 
In basic research most experiments focused on cellular and molecular changes shortly after 
nerve injury or inflammation. These observed changes during the early phase are thought to 
play a key role in explaining pathophysiological mechanisms in persistent pain states. 
However this is not necessarily true. Moreover, most observed cellular and molecular 
changes disappear before pain-like behavior does (Mao, 2002). It is important to 
acknowledge translation pain research as an essential contributor to increase the 
effectiveness and relevance of both preclinical and clinical research and for determining 
future research direction. Furthermore, there needs to be more attention for interaction 
between basic researchers and clinicians. 
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2.4 Neurophysiological mechanisms 

The well-known Gate Control Theory (GCT) was proposed by Melzack and Wall in 1965 
(figure 2). The theory describes in an elegant and concise way, that activation of afferent Aǃ 
fibers attenuates spinal pain transmission (Melzack & Wall, 1965). The GCT hypothesizes 
that an excess of small fiber activity would ‘open’ and an excess of large fiber activity would 
‘close’ the ‘gate’. Moreover, large fibers have a lower activation threshold than small fibers 
for depolarization by an electrical field and they may be stimulated selectively. The GCT 
provided a framework for examining the interactions between local and distant excitatory 
and inhibitory systems in the dorsal horn (Dickenson, 2002). As formerly mentioned, spinal 
cord stimulation is actually a clinical outgrowth of the gate control theory. The exact 
mechanisms of spinal cord stimulation are still largely unknown, but the supposed 
mechanisms of actions are still predominantly described in these ‘gating terms’. One would 
expect, based on the GCT, that spinal cord stimulation could alleviate nociceptive forms of 
pain. However, despite a few reports it is still very controversial whether spinal cord 
stimulation directly attenuates nociceptive pain components. Moreover, spinal cord 
stimulation is clinically most often administrated in specific neuropathic pain conditions. 
Flexion reflex thresholds of the lower limbs (RIII responses) has been reported to be lowered 
in neuropathic pain patients, which is in agreement with former experimental findings in 
rats (Garcia-Larrea et al., 1989). They also showed a close relationship between the threshold 
of flexor responses (RIII) and the subjective sensation of pain. Spinal cord stimulation 
induced an increase of these abnormally lowered withdrawal thresholds, which are 
mediated through alpha and beta fibers. These observations suggests SCS predominantly 
affects pain related to abnormal Aǃ fiber function, as in allodynia ( Handwerker et al., 1975; 
Carstens & Campbell, 1988; Garcia-Larrea et al., 1989; Meyerson et al., 1995; Oakley & 
Prager, 2002). Repetitive noxious stimulation of primary afferent fibers after peripheral 
nerve injury induces long-term changes of the excitability of spinal cord neurons (Rygh et 
al., 1999). These plastic neural changes involve increased spontaneous and evoked firing 
rate of wide dynamic range (WDR) neurons in the dorsal horn and contribute to the 
development of chronic pain. SCS may effectuate a normalization of the hyperexcitability of 
these wide dynamic range cells in de dorsal horn in response to innocuous stimuli 
(Yakhnitsa et al., 1999). Therefore, wide dynamic range neurons in the dorsal horn are 
thought to play a key role in spinal pain transmission and may play the integrative role of 
the ‘transmission’ (T) cells as described in the GCT (figure 2) (Woolf & Salter, 2000; Guan et 
al., 2006; Cervero, 2009; Guan et al., 2010). Since the 70’s multiple studies suggested that the 
mechanisms of action of SCS could not solely be explained by interactions of neurons 
located in the dorsal horn and postulated the existence of supra spinal loops (Nyguist & 
Greenhoot, 1973; Bantli et al., 1975). In a series of studies Saadé and colleagues 
demonstrated the contribution of brainstem pain-modulating centres in inhibiting 
nociceptive processing (Saadé et al., 1985; Saadé et al., 1990; Saadé et al., 1999; El-Khoury et 
al., 2002). Roberts and Rees have shown that SCS in animals activates the anterior pretectal 
nucleus, which has descending pain inhibitory influences on lower segments (Roberts & 
Rees, 1994). Furthermore, SCS produces increased activity in the somatosensory cortex (SI 
and SII areas) and cingulated gyri. These brain areas activated by spinal cord stimulation 
correspond to pain pathways involved in processing of somatosensory (SI, SII) and affective 
components (cingulate gyri) of pain. Hence, during SCS both segmental and supraspinal 
(spinal-brainstem-spinal loops and thalamocortical systems) pathways are activated and 
contribute to the inhibition of neuropathic manifestations. 
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Fig. 2. The Gate Control Theory. Central transmission cell (T) cells, located in the dorsal 

horn of the spinal cord, receive a balanced input of large (Aǃ) and small (Aδ and C) fiber 

activity in peripheral nerves. Inhibitory interneurons, located in the substantia gelatinosa 

(SG), can be activated by large (L) afferents and can modulate pain transmission via 

projection to small (S) fibers and central transmission cells. (Melzack & Wall, 1965).  

2.5 Neurochemistry 

Generally, patients use spinal cord stimulation intermittently to alleviate neuropathic pain. 
It is remarkable that pain-relieving activity continues for several hours after spinal cord 
stimulation has been switched off. These long-term effects are supposed to result from 
modulation of neural activity including neurotransmitter systems at the dorsal horn or 
supra-spinal levels. Little is known about which transmitter systems have a pivotal role in 
the pain-relieving effects of SCS in neuropathic pain. Only a few human studies have been 
performed and current knowledge is mainly based on data obtained from animal 
experiments. As previously mentioned, Meyerson described a suitable animal model 
comprising sciatic nerve injury and tactile allodynia for evaluating the mechanisms of SCS 
as treatment modality for neuropathic pain (Meyerson, 1994). Most of these experiments 
used a microdialysis technique in order to obtain fluid samples during SCS from areas 
involved. These microsamples have provided some insight into neurochemical mechanisms 
at the synaps level (Stiller et al., 1996; Oakley & Prager, 2002). There is evidence that 
substance-P (SP) and serotonin (5-HT) have a inhibitory role in nociceptive transmission in 
the spinal cord and recently the existence of a descending serotonergic pathways has been 
suggested (Song et al., 2009). There is evidence that a descending noradrenergic system is 
involved as well. Analysis of CSF dialysates in decerebrated and intact adult cats showed an 
elevation of the level of SP and 5-HT during SCS (Linderoth et al., 1992) (table 2). Whether 
these substances actually participate in the pain modulating effects of SCS in chronic 
neuropathic pain remains unclear, because most experimental studies investigated intact 
animals. Several behavioral studies appeared, aimed at elucidating the role of amino acids 
in exerting pain alleviation during SCS. The main inhibitory neurotransmitter in the central 
nervous system is gamma amino butyric acid (GABA). Preclinical neuropathic pain studies 
showed that GABA levels in the dorsal spinal cord of animals with allodynia are 
significantly lower in animals than GABA levels in nonallodynic nerve-lesioned and intact 
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animals. It has been suggested that reduced GABA levels might result in hyperexcitability of 
other neurons involved in processing nociceptive information, in particular ‘wide dynamic 
range’ neurons. Experimental studies showed an increased release of GABA during spinal 
cord stimulation (table 2). Strikingly, increased GABA release was only observed in the so-
called ‘responders’, the rats who showed behavior befitting symptom alleviation during SCS 
(Stiller et al., 1996). Thus, SCS normalized withdrawal response thresholds in these 
‘responders’ by restoring normal GABA levels. This increased GABA release could be 
important for the suppression of tactile allodynia in humans. Similar mechanisms could also 
be involved in the SCS-induced alleviation of pain in patients with peripheral neuropathies 
(Stiller et al., 1996). In the ‘non-responders’ group, the rats who did not show behavior 
indicating symptom alleviation, they did not observe an increased GABA release. In these 
studies, alleviation of allodynia was defined as a significant increase in withdrawal 
threshold in response to innocuous stimulation using von Frey filaments administrated to 
the nerve-injured hindpaw. Cui et al. investigated mononeuropathic animals with allodynia, 
that did not respond to SCS (Cui et al., 1996). They showed that after intrathecal injection of  
baclofen, a GABAB receptor agonist, the animals showed increased withdrawal thresholds 
and thus potentiated the effect of SCS on allodynia. Actually, ‘non-responders’ transformed 
into ‘responders’ by manipulation of the GABA receptor with subclinical doses of baclofen. 
Furthermore, the administration of muscimol, a GABAA agonist, resulted in a significant but 
less obvious increase in withdrawal threshold (Cui et al., 1996). The action of GABAA and 
GABAB antagonists were also evaluated during the application of SCS. After the 
administration of a GABAB antagonist, 5-aminovalericacid (5-AVA), a significant reduction 
of the increased withdrawal threshold was observed during SCS. The intrathecal 
administration of the GABAA antagonist bicuculline had no significant effect. Thus, in 
particular the GABAB-receptor system is likely to be linked to the effects of SCS. Allodynia 
and hyperalgesia characterizes peripheral hypersensitivity which in fact reflects underlying 
disturbances in GABA-mediated inhibition and increased levels of excitatory amino acids 
(Woolf & Doubell et al., 1994). The prime excitatory neurotransmitters, glutamate and 
aspartate, have a pivotal role in transmission of nociceptive information (table 2). Dorsal 
horn concentrations of excitatory amino acids have been shown to decrease during SCS, 
concurrently with antiallodynic effects (Cui et al., 1997). When a GABAB antagonist was 
administrated, the SCS-induced reduction of excitatory amino acids was abolished. Thus, 
SCS might exert its pain reducing effects, at least partially due to activation of GABAergic 
mechanisms which inhibit the release of excitatory amino acids which are already elevated 
in neuropathic pain conditions (Cui et al., 1997). Intravenous or intrathecal administration of 
the central neuromodulator adenosine seems to have potentiating effects comparable with 
selective GABAB agonists (e.g. baclofen). Therefore SCS is thought to exert its analgesic 
action by both GABAB and adenosine dependent systems (adenosine A-1 receptor). Some 
studies have showed that the cholinergic system is likely to be involved as well (table 2) 
(Schechtmann et al., 2004; Schechtmann et al., 2008). Subclinical intrathecal doses of 
clonidine enhanced the effect of SCS on tactile hypersensitivity in an animal model of 
neuropathic pain, when solitary SCS appeared to be ineffective. A synergistic effect was 
observed when electrical nerve stimulation and  pharmacotherapy were combined. The way 
in which clonidine exerts its analgesic action is not fully understood. Clonidine, an ǂ2-
adrenoreceptor agonist, is thought to increase dorsal horn acetylcholine release and nitric 
oxide synthesis (Xu et al., 2000). Intrathecal administration of a selective muscarinic M4 
receptor antagonist completely abolished the analgesic action of SCS. Endogenous opioids 
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are not likely to have a significant contribution to the pain alleviating effects of spinal cord 
stimulation (Linderoth & Foreman, 1999). Most convincing evidence is that effects of SCS 
are not blocked by the administration of naloxone, which is an opioid receptor antagonist. 
There are investigators who keep the door open for a potential role of the dynorphin system 
exerting its effect primarily through the κ-opioid receptor, which has a lower affinity for 
naloxone (Han et al., 1991). As already mentioned, most knowledge concerning 
neurochemistry is derived from animal experiments and its clinical significance needs to be 
explored. However, up to 40% of well selected neuropathic pain patients do not experience 
significant pain amelioration during SCS. Hence, adjunct pharmacological therapy can 
provide a major contribution in increasing efficacy of the application of SCS. Lind et al. 
illustrated the administration of intrathecal baclofen in patients increasing the effects of SCS 
in neuropathic pain of peripheral origin. These patients initially responded poorly to SCS 
however they experienced a satisfactory relief during SCS (Lind et al., 2004, Lind et al., 
2008). A promising observation was that follow- up obviously demonstrated a sustained 
pain relieving effect. Most experiments have focused on segmental changes in transmitter 
systems (e.g. excitatory amino acids, adenosine) to explain the mode of action of SCS. 
However, 5-HT and noradrenalin might involve supra-spinal circuits and descending 
inhibitory pathways. The degree of contribution of descending inhibitory pathways 
compared to segmental mechanisms is currently under debate (Song et al., 2009). 

 

Spinal transmitter Influence of SCS

GABA Increased
Serotonin (5-HT) Increased
Substance-P (SP) Increased
Norepinephrine Increased
Acetylcholine (Ach) Increased
Adenosine  Increased
Glutamate Decreased
Asparate Decreased

Table 2. Spinal transmitters possibly involved in alleviating neuropathic pain during Spinal 
Cord Stimulation (SCS). SCS may result in a decreased of increased release of a particular 
transmitter. 

3. Spinal cord stimulators 

3.1 Introduction 

Shortly after the gate control theory was proposed by Melzack and Wall, pain research 
focused attention on the dorsal column as a target for pain management. First reports 
described they used a anesthetic needle, which was placed in the cerebrospinal fluid at the 
level of target nerve roots (Melzack & Wall, 1996). An electrode was advanced through the 
needle and positioned along the dorsal column. Patients experienced significant pain relief 
during short periods of gentle electrical stimulation (Wall & Sweet, 1967). After realizing 
electrical stimulation in the close proximity of sensory roots can alleviate chronic pain, more 
radical procedures were developed in order to allow chronic stimulation of the dorsal 
column (Shealy et al., 1967a). Shealy and colleagues first investigated the efficacy of dorsal 
column stimulation in cats in which electrodes were placed by cervical laminectomy. Shortly 
thereafter they reported the abolition of intractable pain in a patient suffering inoperable 
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bronchiogenic carcinoma by electrical stimulation of the dorsal columns of the thoracic 
spinal cord (Shealy et al., 1967b). They placed an intradural electrode dorsal to the spinal 
cord. The circuit design was based on a modified Medtronic device (Medtronic, Inc, 
Minneapolis, MN, USA) for the stimulation of the carotid sinus to control angina and 
hypertension (Govolac, 2010). These procedures comprises major surgical interventions 
which were often complicated with equipment failure (lead breakage), cerebrospinal fluid 
leakage or infection. Furthermore, experienced pain relief appeared to be transient. These 
radicular methods of dorsal column stimulation were replaced in the mid 70’s with 
percutaneously implantable flexible electrodes (Erickson, 1975). A 17G thin-walled Tuohy 
spinal needle allowed leads to be inserted in the spinal cord and positioned close to the 
dorsal columns. The development of percutaneous inserted flexible leads allowed a trial of 
stimulation which mimicks that of the permanent implantable device. During trial 
stimulation, candidate suitability for permanent implantation is determined. However, the 
technique of inserting electrodes into the spinal cord seemed inherent to several 
complications including spinal fluid leaks, postdural punction headache and infection 
(bacterial meningitis) (Erickson, 1975). It was realized that permanent implantation of 
stimulators over the dorsum of the spinal cord under the dura will ultimately fail (Cook, 
1976). The technique of epidural electrode placement evolved, as complications like those 
seen after sub- or intradural electrode implantation, were less likely to occur. 

3.2 Devices 

Spinal cord stimulation systems consist of; trial or permanent (plate) electrodes, implantable 
pulse generators or radiofrequency (RF)-driven passive drivers. SCS systems have been 
produced by multiple manufactures; including Medtronic, Cordis, Advanced 
Neuromodulation Systems, and Boston Scientific. Initially, SCS systems used unipolar 
electrodes to deliver stimulation. Radiofrequency (RF)-driven passive drivers were 
nonprogrammable and could not be implantated. Because of the private industry 
contributions to the development of neuromodulatory systems, equipment improved 
enormously over the last 40 years. Moreover, progressive advances in cardiac pacemaker 
technology were utilized in the design and technology of the implantable pulse generators 
(IPG). Nowadays, systems are composed of complex electrodes arrays, and a implantable 
pulse generator (IPG) or radiofrequency (RF)-driven radio receiver. The basic goal of these 
connected components is to provide an isolated electrical pathway to the neural structures 
being activated. Several electrodes, either percutaneous or plate, with octapolar or even up 
to 16 electrodes are available. Contact spacing and contact points vary according to the 
therapeutic goal (e.g quadripolar electrodes for limb pain and octopolar electrodes for axial 
pain). Furthermore, multi-programmable and even rechargeable power units are available. 
Plate electrodes are implanted permanently and requires an open procedure and direct 
visualization for implantation. In the first phase of spinal cord stimulation, laminectomy 
was required to insert plate electrodes. Over the last years, thinner and more flexible plate 
electrodes were developed allowing insertion via smaller laminotomy.  

3.3 Anesthetic management  

Anesthetic management of spinal cord implantation comprises general anesthesia or local 
anesthetic techniques if necessary combined with sedation. When the procedure is 
performed using general anesthesia, it is difficult for the clinician to achieve optimal lead 
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positioning. The clinician has to rely on radiographic positioning of the electrodes and/or 
somatosensory evoked potentials (SSEP). Moreover, it is difficult to assess whether 
uncomfortable motor effects occur during stimulation. It is well known that dermatomal 
coverage of paresthesia is a prerequisite for successful treatment, which is impossible to 
determine when a patient is anesthetized. In order to obtain immediate feedback of patients 
there are two options remaining; the electrodes are implanted using local anesthetic 
techniques (in combination with short acting sedatives), or waking up anesthetized patients 
in between. During the test phase the patient has to be alert and fully cooperative. Local 
anesthetics are used liberally in order to reduce the need for sedatives (propofol, 
benzodiazepines) and optimize patient comfort (Barolat & Sharan, 2004).  

3.4 Spinal cord stimulator implantation 

3.4.1 Percutaneous techniques 

First of all it is important to emphasize the whole procedure of electrode placement is a 
sterile technique. Infection is potentially hazardous and requires re-operation and/or 
intravenous antibiotic therapy. Percutaneous placement is performed with the patient in 
prone position on a X-ray-compatible table with some pillows under the abdomen in order 
to create a kyphosis which facilitates electrode implantation. Prone position combined with 
sedation may complicate airway management. Some clinicians prefer the lateral decubitus 
position as it facilitates subcutaneous implantation of the pulse generator in de buttock or 
lateral abdominal wall. Moreover, positioning is important as rotation of the spine increases 
difficulty of electrode placement (Barolat & Sharan, 2004). The electrodes are placed under 
fluoroscopy guidance to allow anteroposterior and lateral views to ensure midline lead 
placement and appropriate entry into the epidural space. The insertion point of a 17G Tuohy 
needle is usually in the midline, although a paramedian approach may also be employed. 
Several methods have been used to identify the epidural space. Most clinicians use the loss-
of-resistance technique. This technique comprises the use of a syringe filled with saline or 
air. When the needle is advanced through the ligamentum flavum, a sudden absence of 
resistance to injection is felt. There is no consensus as whether air or a liquid should be used 
for identifying the epidural space when using the loss-of-resistance technique. It has been 
hypothesized that the use of liquid expands the epidural space and therefore predisposes to 
lead migration. Furthermore, liquid flush may attenuate the uniformity of paresthesias 
(Brook et al., 2009). Alternative approaches to needle placement have been described as in 
specific circumstances (e.g congenital underdeveloped ligamentum flavum or defects of the 
ligamentum flavum after spinal surgery) the loss-of-resistance technique seems 
inappropriate. In these conditions identification of the epidural space using the loss-of-
resistance technique is potentially difficult, because the level of resistance is unclear and the 
risk of false loss is present (Zhu et al., 2011). Zhu and colleagues described an approach for 
percutaneous lead placement which relies on lateral views of fluoroscopic landmarks to 
confirm when the needle tip enters the epidural space. When the epidural space is 
identified, electrodes are advanced rostrally under patient feedback in order to optimize 
their position. The lead is inserted at least a few centimeters into the epidural space to 
ascertain its position and prevent migration of the lead. After lead placement it is important 
to confirm its position in the epidural space as accidental subarachnoidal placement have 
been described in literature. Implantation of cervical electrodes is advisable below the 
cervical spine enlargement which extends from about C3 to Th2. For treatment of back and 
lower limb pain, identification of the epidural space at the level of  Th12-L1, L1-2, or L2-3 is 
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preferred (figure 3). Electrode insertion for upper extremity pain is recommended at the level 
of Th1-2 or Th2-3 (Barolat & Sharan, 2004; Brook et al., 2009). When optimal lead position is 
ascertained, for permanent stimulation the leads are anchored and sutured internally. Leads 
may then be tunneled subcutaneously a few centimeter laterally to the flank, where they 
may be externalized for trial stimulation or connected to an implanted pulse generator 
(figure 3) (North et al., 1977). The definite placement of a spinal cord stimulator is preceded 
by a trial stimulation phase of approximately 7 days. The introduction of a test phase and 
thorough preoperative screening increased success rates of the procedure. After the trial 
period, the patient will be asked whether the elicited paresthesias were effective in reducing 
the pain they experienced before the trial phase. A permanent system is implanted if trial 
stimulation reduces the patient's pain by more than 50%. 

  

Fig. 3. Percutaneously inserted epidural electrodes including pulse generator 

3.4.2 Surgical techniques 

Most spinal cord leads are inserted percutaneously, as the technique is easier, less-invasive, 
and less-expensive compared to surgical methods. However, surgical lead placement may 
become a necessity when patients anatomy prevents leads from being implanted 
percutaneously; when lead breakage or dislodgement repeatedly requires lead revision; or 
when trial stimulation of percutaneous leads cannot suffice in adequate paresthesia 
coverage (Kumar et al., 2009). Surgical techniques comprises electrode positioning under 
direct vision, after a small laminotomy is performed. Under fluoroscopic guidance the plate 
electrode is introduced into the epidural space. Laminotomy, up to Th8-Th9, can be 
performed using spinal anesthesia (Lind et al., 2003). Moreover, during spinal anesthesia not 
all sensory transmission is blocked which enables intraoperative testing for proper lead 
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positioning. However, laminotomy is generally performed using general anesthesia 
whereupon accurate lead positioning relies on radiographic imaging, somatosensory evoked 
potentials or patients feedback by waking them up in between. After paresthesia in elicited 
in the anatomic distribution of the patient’s pain, a strain relief loop is placed in the 
epifascial plane and the lead is anchored (Kumar et al., 2009). There are some advantages of 
surgical leads compared to percutaneous leads; higher success rates (up to 80-90%); less 
long-term migration rates; and better long term survival have been described (Villavicencio 
et al., 2000; North et al., 2002). It has been suggested that increased effectiveness of 
stimulation and therefore higher success rates can be explained by the large sized plate 
electrodes which causes compression of the cerebrospinal fluid space and bringing 
electrodes into closer contact to the dorsal column of the spinal cord. 

4. Clinical application of SCS in neuropathic pain syndromes 

Neuropathic pain is often underdiagnosed and mistreated. Chronic neuropathic pain is 
regularly unresponsive to pharmacological and conventional treatment. Therefore, more 
treatment strategies such as neurostimulation techniques were assessed for efficacy in relieving 
neuropathic pain. Despite clear evidence for its efficacy was lacking, neurostimulation 
techniques were increasingly used by clinicians in a variety of neuropathic pain syndromes. The 
last decennia several studies appeared to provide comprehensive evidence for efficacy of SCS in 
specific neuropathic pain syndromes. An important development was the introduction of trial 
stimulation period. During a trial stimulation period the numeric rating pain scale (NRS) or 
visual analog score (VAS) can be used to document patients pain ratings. A trial period is 
considered to be successful when patient-reported pain relief was at least 50% at rest and 
during physical activity. Furthermore, patient satisfaction and potential reduction in analgesic 
consumption could be assessed. The most common painful neuropathies (Failed Back Surgery 
Syndrome and CRPS type I and II) for which SCS is clinically used will be discussed. 

4.1 SCS for failed back surgery syndrome 

Low back pain patients that fail to improve after (repeated) surgery are most commonly 
referred to as having ‘failed back surgery syndrome’. Studies showed 10-40% of patients 
who underwent lumbosacral spinal surgery in order to alleviate neuropathic radicular pain 
experience persistent or recurrent pain. FBSS is thought to be an inaccurate term (Slipman et 
al., 2002). FBSS comprises a diverse group of disorders in which pain symptoms persists or 
recurs after lumbar surgery (Slipman et al., 2002). The etiology of FBSS is complex and 
encompasses multiple possible explanatory etiologies, which can be classified as surgical (e.g 
internal disc disruption, canal stenosis, epidural fibrosis) or non-surgical (e.g radiculopathy, 
degenerative disc, Facet syndrome). Pain in FBSS is most commonly considered to be of 
neuropathic origin. However, several studies showed that neuropathic and nociceptive pain 
are often concurrently present in FBSS patients and it is difficult to isolate the neuropathic 
component. The armamentarium of clinicians comprises pharmacological, physical, 
psychological and interventional techniques. In many FBSS patients pharmacological 
treatment is insufficient and the efficacy of interventional techniques is only modest. 
Neuropathic pain in the Failed Back Surgery Syndrome (FBSS) is the most common indication 
for the administration of SCS. Turner et al were the first to present a systematic literature 
synthesis to analyze the long-term risks and benefits of spinal cord stimulation for patients 
with failed back surgery syndrome (Turner et al., 1995). They concluded that approximately 50 
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to 60% of FBSS experienced a clinically significant pain relief of more than 50% during SCS 
treatment at long-term (mean, 16 months; range, 1-45 months) follow-up visits. Furthermore, 
North et al. presented some evidence in favor of SCS in relieving neuropathic pain compared 
to reoperation for FBSS, although results did not reach significance (North et al., 1994). SCS 
provides significant increased pain alleviation compared to conventional treatment when 
administrated in carefully selected FBSS patients suffering neuropathic pain. Furthermore, SCS 
provides improved functional status and quality of life (Kumar et al., 2007). It appears that SCS 
diminishes continuous and evoked pain (in particular tactile/thermal allodynia), while acute 
nociceptive pain is unaffected (Mailis-Gagnon et al., 2007). According to EFNS (European 
Federation of Neurological Societies) guidelines there is evidence that SCS is efficacious for 
failed back surgery syndrome (FBSS) (grade B recommendation) (Cruccu et al, 2007). The 
indicated evidence is Level II-1 or II-2 for long-term relief in managing patients with failed 
back surgery syndrome (Frey et al., 2009). However, a Cochrane review published in 2004 
concluded there is limited evidence for the effectiveness of SCS in FBSS (and CRPS type I) and 
stated that more randomized clinical trial are needed to determine the effectiveness of SCS in 
specific neuropathic pain syndromes (Mailis-Gagnon et al., 2004).  

4.2 SCS for complex regional pain syndrome 

Evan introduced the name reflex sympathetic dystrophia (RSD) in 1946, formerly known as 
causalgia in the 19th century. Synonyms for RSD include; Sudeck’s atrophy, posttraumatic 
pain syndrome, painful posttraumatic dystrophy, algodystrophia and algoneurodystrophia 
(Albazaz et al., 2008). RSD did not correctly reflected the symptoms the syndrome comprises 
and it assumes involvement of a sympathetically maintained reflex arc, which is 
controversial. Therefore, it was replaced with the name Complex Regional Pain Syndrome 
(CRPS) by the International Association for the Study of Pain (IASP). Symptoms and signs 
includes sensory, motor, autonomic dysfunction and trophic changes. CRPS can be divided 
into two categories: Type 1 (RSD), in which there is no evident nerve trunk injury but all the 
clinical features are present. Type 2 (causalgia), in which nerve trunk injury can be 
demonstrated. Additional differentiation is the distinction of ‘sympathetically maintained 
pain syndrome’ (SMPS) and ‘sympathetically independent pain syndromes’ (SIPS), based on 
the role of the sympathetic nerve system. SMPS is characterized by an augmented activity of 
the sympathetic nerve system which maintains neuropathic pain. SMPS can be 
differentiated from SIPS by the observation of pain alleviation following blockage of the 
sympathetic outflow tract. Several other factors, psychological, viral infections, peripheral 
nerve injury and systemic neuropathic processes, are important in maintaining neuropathic 
pain in SIPS. In 10% of the patients, possible maintaining factors remain unclear. CRPS is 
characterized by a minor injury (trauma of surgery) followed by severe pains which are 
disproportionate compared to the inciting event. The IASP developed explicit criteria to 
facilitate and demarcate the complex diagnosis of CRPS. However, the clinical diagnosis of 
CRPS remains difficult and is mainly based on the combination of a suggestive history and 
thorough physical examination. The pathophysiology of CRPS is largely unknown. 
Increased regional sympathetic tone was initially suggested to be of major importance in 
clarifying pathophysiological mechanisms. However, several alternative hypotheses have 
been presented based on current evidence. There is growing evidence that 
pathophysiological mechanisms of CRPS I are sited in central pathways, which is probably 
illustrated best by the presence of myoclonic activity (Sandroni et al., 1998). One hypothesis 
suggests the existence of a vicious circle, which is initiated by peripheral tissue injury 
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leading to augmented afferent input to the dorsal horn. This increased activity is 
subsequently followed by increased sympathetic activity, which is thought to maintain 
augmented input of afferent signals to the dorsal horn. Another hypothesis suggests that 
activation of peripheral Aδ and C-fibers following tissue injury excites wide dynamic range 
(WDR) neurons, which subsequently become sensitized to afferent input (Roberts, 1986). 
Currently, there is no curative treatment for CRPS available. Numerous studies investigated 
the efficacy of pharmacological treatment (e.g. opioids, nonsteroidal inflammatory drugs, 
NMDA antagonists, antidepressants, antiepileptics, free radical scavengers and 
corticosteroids)  in CRPS patients. Most pharmacological therapies are used to provide some 
analgesia during physical therapy, which is generally recommended as  first-line treatment. 
Physical therapy can be helpful for reducing pain and improving active mobility in patients 
with CRPS I compared to occupational therapy (Oerlemans et al., 1999). Furthermore, 
several regional anesthesia techniques (e.g sympathetic blockade, sympathectomy) have 
been investigated. Patients who experience pain reduction after a diagnostic sympathetic 
blockade may be candidates for regional anesthetic blockade. Although evidence for its 
effectiveness is lacking, sympathetic blockade (e.g epidural infusion of anesthetics) is an 
important element in the armamentarium of clinicians. Invasive sympathectomy (chemical, 
surgical or radiofrequent) can provide long-term sympathetic blockage and long-term pain 
reduction in significant number of CRPS patients (Bandyk et al., 2002). However, recurrence 
of pain symptoms, possible due to regeneration of sympathetic chains, have also been 
described (Bandyk et al., 2002). However, because of its irreversibility and relative high 
complication rate (e.g. Horner syndrome, compensatory hyperhidrosis) it is generally 
considered as final therapeutic option. SCS can modulate neuropathic pain pathways and 
has therefore extensively been investigated for its efficacy in relieving pain in CRPS patients. 
Several attempts were made trying to elucidate the mechanisms by which SCS provides 
pain alleviation in CRPS patients. These possible mechanisms have been extensively 
described in preceding paragraphs. Several studies showed SCS to be effective in alleviating 
pain in CRPS patients in up to 80% and is a generally accepted treatment modality for CRPS 
(Bennet & Cameron, 2003; North et al., 2007). Kemler showed SCS in combination with 
physiotherapy provides a significant alleviation of neuropathic pain in CRPS patients at 6 
months and 2 years compared to physiotherapy alone (Kemler et al., 2006). Ongoing 
research demonstrated SCS is also effective in the treatment of CRPS I in the medium-term. 
There is some recent evidence it also provides long-term efficacy, high percentages of 
patient satisfaction and the ability to improve functional status (Kumar et al., 2011). The first 
years of SCS treatment are more expensive compared to conventional therapies, mainly 
because of one-time purchasing the costly equipment and conducting a screening period. In 
life-time analysis showed favorable cost-effectiveness of SCS compared to conventional 
treatment modalities (Kemler et al, 2002). SCS is a safe, minimally invasive and reversible 
procedure. A major advantage is the possibility of patient selection during a trial 
stimulation period, before definite implantation is commenced. The majority of 
complications that occur are minor and correctable in which infection, lead breakage, 
battery failure and electrode migration were most common (Bennet & Cameron, 2003; 
Cameron, 2004). Its advantages compared to invasive sympathectomy are obvious. 
However, most studies have been retrospective or comprises small-cohorts with a limited 
follow-up period. There is some evidence in favor of SCS in CRPS type II patients. No firm 
recommendation can be made because literature comprises only class IV studies (Bennet & 
Cameron, 2003). Therefore, no clear-cut conclusion can be drawn at present and its 
application in CRPS I and II patients is still under debate.  
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4.3 Conclusion 

In conclusion, most systematic reviews focused on the efficacy of SCS in failed back surgery 
syndrome and CRPS I. SCS has a grade B recommendation for administration in FBSS and 
CRPS I. However, the value of these systematic review is limited because of the 
heterogeneity of the literature. Several other specific neuropathic syndrome have not been 
extensively studied and more randomized clinical trials are urgently needed, before the use 
of SCS can be recommended without question in specific neuropathic pain syndromes. At 
present it is unclear at which point in treatment SCS must be considered, which patient 
factors can predict treatment successful and optimal stimulation parameter needs to be 
explored (Frey et al., 2009). 
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