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1. Introduction

Since their invention scanning tunneling microscopy (STM, (Binnig et al., 1982)) and atomic

force microscopy (AFM, (Binnig et al., 1986)) have emerged as powerful and versatile

techniques for atomic and nanometer-scale imaging. In this review we will focus on AFM,

whose methods have found applications for imaging, metrology and manipulation at the

nanometer level of a wide variety of surfaces, including biological ones (Braga & Ricci, 2004;

Garcia, 2010; Jandt, 2001; Jena & Hörber, 2002; Kopniczky, 2003; Morita et al., 2009; 2002;

Yacoot & Koenders, 2008). Today AFM is regarded as an essential tool for nanotechnology

and a basic tool for material science in general.

AFM relies on detecting the interaction force between the sample surface and the apex of a

sharp tip protruding from a cantilever, measuring the cantilever elastic deformation (usually

its bending or twisting) caused by the interaction forces. Fig. 1a shows a schematic interaction

force dependence on tip-sample distance in vacuum (Hölscher et al., 1999). As the distance

between the cantilever and the sample surface is reduced by means of a piezoelectric actuator,

the tip first experiences an attractive (typically van der Waals) force, that increases to a

maximum value. During further approach, the attractive force is reduced until a repulsive

force regime is reached. Therefore the AFM is a sensitive force gauge on the nanometer and

atomic scale (Butt et al., 2005; Cappella & Dietler, 1999; Garcia & Perez, 2002; Giessibl, 2003;

Mironov, 2004).

The use of AFM in such tip-sample force measurements is commonly referred to as force

spectroscopy. The simplest technique used for quantitative force measurements involves

directly monitoring the static deflection of the cantilever as the tip moves towards the

surface (approach curve) and then away (retraction curve), providing a deflection versus

distance plot. To obtain a force-distance curve, the cantilever deflection is converted to

tip-sample interaction force using Hooke’s law (Butt et al., 2005; Cappella & Dietler, 1999),

after calibration of the cantilever spring constant (Hutter & Bechhoefer, 1993; Sader, 1999).

A typical force curve at room temperature and in air is shown in Fig. 1b (Butt et al., 2005;

Cappella & Dietler, 1999). During the approach to the surface, an attractive long-range force

on the probe bends the cantilever toward the surface. Then the tip suddenly jumps into

contact with the surface due to the large gradient of the attractive force near the sample surface
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Fig. 1. a) Schematic diagram of the tip-sample forces as a function of distance in vacuum. b)
Schematic picture of a typical force curve in air, showing the cantilever deflection
(proportional to the applied force) versus the tip-sample distance during approach (red) and
withdrawing (blue). The cantilever interactions in the various zones of the force curve are
illustrated below: 1) attractive long-range interaction, 2) repulsive contact interaction, 3)
adhesive capillary force.

(van der Waals, adhesion, capillary forces, electrical interactions). A further approach of the

cantilever to the sample leads to an increasing cantilever deflection in the opposite direction

due to repulsive contact force. Finally, during the retraction curve, the tip-sample separation

(jump-off contact) occurs at distance larger than the jump to contact distance. The hysteresis

is usually due to adhesive capillary force which keeps the tip in contact to the sample.

Depending on their compliance, the cantilever, tip and sample may experience an elastic

or plastic deformation. In case of elastic interaction, the linear parts of the force-distance

curve recorded during forward and reverse motion coincide. For compliant samples,

such as biological samples, the shape of the curves is more complex due to indentation

effects. Generally, the force-distance curve provides information on the nanoscale tip-surface

interactions, the local elasticity of the sample and the adhesion forces (Andreeva et al., 2010;

Butt et al., 2005; Cappella & Dietler, 1999; Radmacher et al., 1996).

More refined techniques, suitable for atomic scale investigations in vacuum and in liquids,

rely on measuring the dynamic parameters of the cantilever excited at or near its resonant

frequency while experiencing the force field of the sample surface. The interactions of the tip

with the sample surface perturbs the amplitude, frequency, phase or damping of the cantilever

oscillation. The tip-sample interaction force can be inferred by the modifications of these

parameters (Albrecht et al., 1991; Crittenden et al., 2005; Hölscher et al., 1999; Lantz et al.,

2001; Martin et al., 1987; Palacios-Lidón & Colchero, 2006; Sugimoto, Innami, Abe, Custance

& Morita, 2007).

There are two basic methods in dynamic AFM operations, the Amplitude Modulation (AM)

technique (Martin et al., 1987) and the Frequency Modulation (FM) technique (Albrecht et al.,

1991).

AM-AFM detect the variation of amplitude and phase of the excited cantilever oscillations

due to tip-sample interactions and has been successfully implemented in ambient conditions

involving repulsive tip-sample interactions, the so called ”tapping mode” . Though extremely
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Wavelet Transforms in Dynamic Atomic Force Spectroscopy 3

interesting, these techniques will not be considered further in this review and the interested

reader is referred to the bibliography (Garcia, 2010; Garcia & Perez, 2002).

FM-AFM detects with high sensitivity minute changes in the cantilever resonant frequency

under a particular feedback mode, while the tip approaches the surface (Giessibl, 2003; Morita

et al., 2009; 2002). The tip-sample force versus distance can be inferred by inverting the

resonance frequency shift versus distance curves (Giessibl, 2003; Hölscher et al., 1999; Sader

& Jarvis, 2004). This technique detects long-range electrostatic and van der Waals forces as

well as repulsive short-range force providing the chemical identification of single atoms at

surfaces. In fact, short-range interaction depends primarily on the chemical identity of the

atoms involved since they are associated with the onset of the chemical bond between the

outermost atom of the tip apex and the surface atoms. Then precise measurement of such

short-range chemical force allows to distinguish between different atomic species even though

they exhibit very similar chemical properties and identical surface position preferences so

that any discrimination attempt based on topographic measurements is impossible (Gross

et al., 2009; Lantz et al., 2001; Sugimoto, Pou, Abe, Jelinek, Pérez, Morita & Custance, 2007).

Moreover, FM-AFM has recently attained atomic scale resolution in liquids, (Fukuma, 2010;

Fukuma et al., 2010).

Three dimensional frequency shift maps over a surface have been acquired too, a method

known as 3D AFM spectroscopy. Measuring the frequency shift and the topography over

finely spaced planes parallel to the sample surface, allows to apply drift corrections to the data

and retrieve a three dimensional frequency shift grid. From these data, the interaction forces,

by inverting each frequency-shift versus distance curve, the tip-sample potential energy and

the energy dissipated per oscillatory cycle are obtained (Albers et al., 2009).

An interesting alternative to performing force spectroscopy is the broad band excitation (BE)

scheme which takes advantage of the fact that the simultaneous analysis at all frequencies

within the excited band reduces the acquisition time. Broad band excitation can be achieved

by an external driving force (Jesse et al., 2007) or by thermal excitation (Malegori & Ferrini,

2010a; Roters & Johannsmann, 1996; Vairac et al., 2003).

In the first case, instead of a simple sinusoidal excitation, the BE method uses a driving signal

with a predefined spectral content in the frequency band of interest. The cantilever response to

the BE drive is measured and Fourier transformed to yield the amplitude and phase-frequency

curves at several distances from the surface. The measured response curves allow to calculate

the resonant frequency, amplitude, and Q-factor at each distance and display the data as a

2D image. Again, the force versus distance curve can be inferred from the evolution of the

frequency, the energy dissipation from the phase and quality factor modifications. The fast

Fourier transform/fitting routine replaces the traditional lock-in/low pass filter that provides

amplitude and phase at a single frequency at time. In the BE method the system is excited and

the response is measured simultaneously at all frequencies within the excited band (parallel

excitation/detection). On the contrary, standard lock-in detectors acquire the response over a

broad band by sampling one frequency at time. In both cases the complete spectral acquisition

is carried out at several tip-sample separation. The BE approach allows a significant reduction

of the acquisition time by performing the detection on all frequencies in parallel, so that an

extremely broad frequency range (25-250 kHz) can be probed in ∼1 s. A comparable scan over

the same frequency band using a lock-in would require ∼30 min.
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Another possibility in broad band excitation is the thermal excitation, essentially a random force

of thermal origin due to the interaction of the cantilever with the surrounding environment

(the thermal reservoir). The random force power spectrum does not depend on frequency

and produces the so called Brownian motion or white noise (Callen & Greene, 1952). A

fundamental point is that the Brownian motion of the thermally driven cantilever is modified

by the tip-sample interaction forces. It follows that the temporal trace of the cantilever

thermal fluctuation detected at various distances from the surface contains informations on

the tip-sample interaction and can be analyzed to reconstruct the tip-sample potential and

interaction force.

Three different approaches are possible: (a) to measure the shift of the cantilever resonant

frequency of the first flexural modes as the tip moves toward the surface to retrieve the

gradient of the interaction forces (Roters & Johannsmann, 1996); (b) to detect the mean square

displacement of the tip subjected to thermal motion in order to estimate the interaction force

gradient dependence on the tip-sample distance (Malegori & Ferrini, 2010a); (c) to analyze the

probability distribution of the tip’s position during the Brownian motion. Then the Boltzmann

distribution is used to calculate the Helmholtz free energy of the tip interacting with the

surface as a function of the tip-sample distance. The interaction force gradient is inferred

from the second derivative of the Helmholtz free energy (Cleveland et al., 1995; Heinz et al.,

2000; Koralek et al., 2000). In (Malegori & Ferrini, 2010a) the three methods have been applied

simultaneously to the same experimental session to compare their peculiarities.

BE methods provides the lower limits on the acquisition time required to detect a complete

force versus distance curve (0.1-1 s). Nevertheless, this acquisition time is still too long and

incompatible with the rate of 1-30 ms/pixel which is the value necessary to obtain a complete

force image. This motivated the introduction of the wavelet transform in thermally excited

dynamic spectroscopy, a new approach to spectroscopy measurements that is the topic of

this review. Wavelet transforms allow to reduce the acquisition time to values compatible

with practical dynamic force spectroscopy imaging and to apply the analysis simultaneously

to all the cantilever modes, either flexural and torsional, within the cut-off frequency of the

acquisition system.

2. Thermally excited cantilever: the Brownian motion

2.1 Fluctuation-dissipation theorem

At non zero absolute temperature, a system in thermodynamic equilibrium is not at rest but

continuously fluctuates around its equilibrium state. For example, a mechanical system in

equilibrium at temperature T, continuously exchanges its mechanical energy with the thermal

energy of the thermal bath in which it is immersed.

To analyze the thermal fluctuations of a system, consider an extensive variable x which is

coupled to the intensive parameter F in the Hamiltonian of the system (Callen & Greene,

1952; Paolino & Bellon, 2009). In the frequency domain, the response function G(ω) describes

the response of the system to the driving variable F. It is defined as:

G(ω) =
F(ω)

x(ω)
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The thermal fluctuations of the observable x are described by the Fluctuation-Dissipation

theorem (Gillespie, 1993; 1996) which connects the power spectral density (PSD) of the

fluctuations of the variable x, Sx(ω), to the temperature and the response function G(ω) as:

Sx(ω) =
x2(ω)

∆ω
= −2kBT

ω
ℑ
[

1

G(ω)

]

(1)

Here kB, ∆ω and ω = 2π f are the Boltzmann constant, the angular frequency bandwidth and

the angular frequency or pulsation associated to frequency f and ℑ denotes the imaginary

part. The average shape of a spontaneous fluctuation is identical with the observed shape of

a macroscopic irreversible decay toward equilibrium and is, therefore, describable in terms of

the macroscopic response function.

2.2 Dynamic response of the cantilever

An example of mechanical dissipative system is the AFM cantilever placed in air far from

the surface (free cantilever) and driven by background thermal energy. The cantilever is in

thermal equilibrium with the molecules of the fluid in which it is immersed. In this situation

it fluctuates mainly in response to stochastic forces due to the molecular motion from the

temperature of the thermal bath.

The cantilever is described as an elastic massless beam (with elastic constant k). One end

is fixed to the chip whereas a mass m (the tip) is localized on the free end. Then the

cantilever dynamics can be reasonably modeled as a stochastic harmonic oscillator with

viscous dissipation (Gillespie, 1996; Paolino & Bellon, 2009; Shusteff et al., 2006). In this case

x is the displacement from equilibrium of the tip and F is the force applied to the system.

For a non-interacting cantilever, the external driving force F is the thermal stochastic force

Fth, which accounts for the interaction with the local environment. The resulting Brownian

motion of the tip displacement x is described by the second order Langevin equation

mẍ(t) + γẋ(t) + kx(t) = Fth(t) (2)

where γ is the damping factor.

Fth is defined by its statistic properties (Langevin hypothesis (Gillespie, 1993; 1996)) as a

zero-mean force (〈Fth(t)〉 = 0), completely uncorrelated in time

〈Fth(t)Fth(t + τ)〉 = αδ(τ) (3)

Here the brackets 〈〉 denote time averaging, δ(τ) is the Dirac delta function and α

a proportionality constant which will be determined through the fluctuation-dissipation

theorem.

The Wiener-Khintchine theorem (Callen & Greene, 1952; Gillespie, 1996) states that, for

a stationary random process, the power spectral density and its temporal autocorrelation

function are mutual Fourier transforms. Applying the theorem to the the power spectrum

of the thermal activating force SF(ω) we obtain

SF(ω) = ÂF(ω) = α (4)
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where ÂF(ω) is the Fourier transform of the autocorrelation function AF(τ) =
〈Fth(t)Fth(t + τ)〉. The stochastic force of the physical system is called white noise because

it has no frequency dependence.

Now it is possible to connect the correlation function, that characterizes the fluctuating forces,

to the dissipative part of the equation of motion, i.e. the damping factor γ.

The transfer function of the system is provided by writing Eq. 2 in Fourier space (frequency

domain) as

G(ω) = k

[

1 − ω2

ω2
0

+ i
ω

Qω0

]

(5)

where we introduced the resonant angular pulsation ω0 =
√

k/m and the quality factor Q =
mω0/γ. The PSD of the thermal fluctuations x, using Eq. 1, is given by

Sx(ω) =
2kBT

kω0

1/Q

(1 − ω2/ω2
0)

2 + (ω/ω0Q)2
(6)

which is a Lorentzian curve with linewidth given by ∆ω = ω0/Q.

The PSD of the fluctuations Sx(ω) is related to the power spectrum of the stochastic thermal

activating force SF(ω) through the response function G(ω) (Shusteff et al., 2006) by SF(ω) =
Sx(ω)G2(ω). Then from Eq. 5 and Eq. 6 we obtain

SF(ω) = 2kBTγ (7)

The constant α is determined by Eqs. 4 and 7 as α = 2kBTγ, providing an autocorrelation

function of the external stochastic force expressed by:

〈Fth(t)Fth(t + τ)〉 = 2kBTγδ(τ)

The last relation is another expression of the Fluctuation-Dissipation theorem which quantifies

the intimate connection between the viscous coefficient γ and the randomly fluctuating force

Fth(t). It implies that the stochastic fluctuating force is an increasing function of γ and

vanishes if and only if γ vanishes. The dissipative damping force −γẋ and the fluctuating

force Fth are correlated so that one cannot be present without the other one. This is because

the microscopic events that give rise to those two forces simply cannot be separated into one

kind of microscopic event (like the molecular collision) that gives rise only to a viscous effect

and another kind that gives rise only to a fluctuating effect.

The Parseval relation is used to determine the variance of the fluctuations of the observable

x (in our case the cantilever positional fluctuations) by integrating the positional PSD Sx(ω).
Then:

〈

x2
〉

=
∫ +∞

−∞

Sx(ω)dω =
2kBT

kω0Q

∫ +∞

−∞

dω
(

1 − ω2

ω2
0

)2
+

(

ω
Qω0

)2
=

kBT

k
(8)

The potential energy of the cantilever modeled as a damped harmonic oscillator takes the

form of:
1

2
mω2

0

〈

x2
〉

=
1

2
k
〈

x2
〉

=
1

2
kBT
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where
〈

x2
〉

represents the mean square displacement of the cantilever caused by the thermal

motion in the direction normal to the surface. This relation is an expression of the equipartition

theorem, stating that in a system in thermal equilibrium every independent quadratic term in

its total energy has a mean value equal to 1/2kBT. An analysis of the cantilever thermal

motion which explicitly considers all possible vibration modes can be found in (Butt &

Jaschke, 1995).

Finally, we would like to point out that the reverse path is also possible, by demonstrating the

Fluctuation-Dissipation theorem from the equipartition theorem, see (Gillespie, 1993; Shusteff

et al., 2006).

2.3 Cantilever in interaction

Near the surface, the tip experiences an interaction force Fts(z), which depends on the distance

z = z(t) between the probe apex and the surface. The force is positive along the surface

normal direction. The cantilever motion is now described by

mẍ(t) + γẋ(t) + kx(t) = Fth(t) + Fts(z) (9)

where x is the displacement from the equilibrium position of the free cantilever, see Fig. 2.

Fig. 2. Schematic representation of the variables describing the cantilever motion. z is the
instantaneous tip-sample distance, positive along the surface normal direction. x is the
instantaneous displacement from the equilibrium position of the free cantilever, negative
when the cantilever is bent toward the sample. z0 is the average tip-sample distance and x0

the corresponding average tip displacement from the equilibrium under static interaction
forces. x′ = x − x0 = z − z0 is the cantilever displacement from the average equilibrium
position under static interaction.

For small oscillations of x and z around the equilibrium position of the cantilever under

static interaction, indicated as x0 and z0, the derivative of the force can be considered

constant for the whole range covered by the oscillating cantilever. Therefore the force may

be approximated by the first (linear) term in the series expansion (Giessibl, 2003; Mironov,

2004):

Fts(z) = Fts(z0) +
∂Fts

∂z
(z0)(z − z0)

The constant term of the force Fts(z0) statically deflects the cantilever in the new equilibrium

position x0 = Fts(z0)/k. The interaction force gradient influences the cantilever oscillations

around this position. By introducing the displacement from the equilibrium position under

static interaction x′ = x − x0 = z − z0, which incorporates the cantilever static bending, (see
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Fig. 2), we come to the equation

mẍ′(t) + γẋ′(t) +
(

k − ∂Fts

∂z
(z0)

)

x′(t) = Fth(t) (10)

This means that in case of small oscillations, as for instance the thermally excited oscillations,

the presence of a force gradient results in a change of effective stiffness of the system

k∗ = k − ∂Fts

∂z
(11)

Since ω′
0 = 2π f ′0 =

√
k∗/m, the cantilever resonance frequency is modified as

f ′0 = f0

√

1 − 1

k

∂Fts

∂z

In case of small force gradient, |∂Fts/∂z| << k, the shift in eigenfrequency ∆ f = f ′0 − f0

becomes proportional to the force gradient

∂Fts

∂z
= −2k

∆ f

f0
(12)

Therefore, one can determine the tip-sample force gradient by measuring the frequency shift

∆ f . Approaching the surface, the attractive tip-sample force causes a sudden jump-to-contact.

In the quasi-static mode, the instability occurs at a distance zjtc where

∣

∣

∣

∣

∂Fts

∂z
(zjtc)

∣

∣

∣

∣

> k (13)

so that only the long range part of the interaction curve is accessible (Giessibl, 2003; Hutter

& Bechhoefer, 1993). The jump-to-contact effect can be avoided by using stiff cantilevers and

dynamic methods such as FM-AFM.

3. Time meets frequency, the mathematical framework

3.1 Fourier transform

Experimental data in dynamic atomic force spectroscopy frequently appear as a time series.

Time series often are transformed in the frequency domain to describe their spectral content.

A typical method for signal processing is the Fourier transform (FT). As a paradigmatic

example, we will describe how Fourier analysis can be used to analyze the temporal trace of

the cantilever thermal vibrations, detected by a standard AFM optical beam deflection system,

and the kind of information possibly extracted. Finally, the limitations of this approach will

be discussed.

The power spectral density (PSD) spectrum of the time signal, extending over a temporal

interval sufficiently long to assure the needed spectral resolution, reveals peaked structures

corresponding to the various oscillation eigenmodes of the cantilever beam (Fig. 3).
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Wavelet Transforms in Dynamic Atomic Force Spectroscopy 9

Fig. 3. Block diagram of the optical beam detection system. A typical power spectral density
spectrum is shown. From (Malegori & Ferrini, 2010a).

Considering each flexural mode equivalent to a mass-spring system, the tip-sample

interaction elastic constant is related to the frequency shift as kts = −dFts/dz = 2k∆ f / f0,

see Eq. 12. The above relation holds if kts remains constant for the whole range of the

displacements from the equilibrium position covered by the cantilever. This is usually true

in the thermal regime since we are dealing with small oscillations (less than 0.2 nm) (Malegori

& Ferrini, 2010a).

If this analysis is repeated at various separations from the surface, up to the jump-to-contact

distance, the force gradient of the interaction dFts/dz is directly evaluated by the observed

frequency shift of the PSD as a function of z.

From the same PSD, besides the force gradient, it is possible to measure the quality factor Q of

the mode, that is determined by the relative width of the peaked structures corresponding to

the oscillation eigenmodes of the cantilever (∆ω/ω0). Q is usually dependent on the distance

from the surface. Since the quality factor Q is connected to dissipation, important information

on the tip-sample energy exchange can be retrieved.

With this techniques force gradients and quality factors on graphite and in air were measured

by (Malegori & Ferrini, 2010a). It was found that the attractive force gradient data are

well reproduced by a non-retarded van der Waals function in the form HR/(3z3) (H is the

Hamaker constant and R the tip radius of curvature), up to the jump-to-contact distance which

occurs at around 2 nm. In this distance range, Q is almost constant for the first and second

flexural modes. This means that the interaction is conservative at distances greater than the

jump-to-contact distance, the first flexural mode showing an evident decrease of the Q value

just before the jump-to-contact. The dissipation mechanism related to this sharp transition is

due to a local interaction of the tip apex with the surface.

In these experiments, the acquisition and storage of the photodiode time signal required tens

of seconds at each tip-sample separation. This implies that the measurement at a single

spatial location (one pixel of an image) may take minutes. The long measurements duration,

besides the problems associated with the control of thermal drifts, is not practical for imaging

purposes.

79Wavelet Transforms in Dynamic Atomic Force Spectroscopy
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This difficulty stems from a precise characteristics of the Fourier analysis, which is devised for

a stationary system i.e. the frequency spectrum is correctly correlated only with a temporally

invariant physical system. For this reason, each measurement must be done in a quasi-steady

state condition, requiring a long acquisition time.

As a consequence, the use of FT leaves aside many applications where the spectral content of

the signal changes during the data collection. The spectral modifications are not revealed by

FT, which only provides an average over the analyzed period of time and prevents correlating

the frequency spectrum with the signal evolution in time. Clearly a different approach is

needed to treat signals with a non-constant spectrum. In the next section, we describe

a mathematical tool extremely useful to describe spectrally varying signals, the wavelet

transforms.

3.2 Wavelet transforms

Perhaps one of the best ways to qualitatively appreciate the wavelet transform (WT) concept

is an example. Consider a signal f (t) = a cos ϕ(t) with time varying phase ϕ(t), where

ϕ(t) = ω0t at negative times and ϕ(t) = ω0t + αt3 at positive times (Fig. 4a). The

instantaneous pulsation ω(t) is the derivative of the phase ω(t) = ϕ
′
(t). It is possible to

see in Fig. 4b that WT analysis combines the time-domain and frequency-domain analysis

so that the temporal evolution of each spectral component is determined. To confirm this, the

calculated instantaneous pulsation (white line) is superposed to the signal amplitude obtained

by the WT which is represented in color scale in the time-frequency plane. It is much like

the concept of a musical score, where the pitch of a note (frequency) and its duration are

displayed by the succession of the notes. In most cases, the wavelet analysis allows to extract

accurately the instantaneous frequency information even for rapidly varying time series. To

visualize the differences between the FT and WT, consider Fig. 4c. Since FT is a time invariant

operator, only an average of the time-dependent spectrum is observed and the FT analysis is

not able to correlate the frequency spectrum with the signal modifications in time. Instead,

the wavelet transform represents the temporal trace in the time-frequency plane, providing

the time dependence of both amplitude and frequency, see Fig. 4b.

To make a WT analysis, it is necessary to select an analyzing function Ψ(t), called mother

wavelet, (Mallat, 1999; Torrence & Compo, 1998). This wavelet must have zero mean and be

localized in both time (unless a Fourier basis) and frequency space. An example is the Gabor

wavelet, consisting of a plane wave modulated by a Gaussian

Ψ(t) =
1

(σ2π)1/4
e

t2

2σ2 +iηt

Here σ controls the amplitude of the Gaussian envelope, η the carrier frequency.

Dilations and translations of a mother wavelet Ψ(t) generates the daughter wavelets as

Ψs,d(t) = Ψ( t−d
s ), where d is the delay and s the adimensional scale parameter. The wavelet

dilations set by the scale parameter s are directly related to the frequency. The wavelet angular

frequency at scale s is given by ωs = η/s. The associated frequency is fs = ωs/2π. The

wavelet translations set by the delay parameter d are obviously related to the time.
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Wavelet Transforms in Dynamic Atomic Force Spectroscopy 11

Fig. 4. Comparison between the Fourier transform and the wavelet transform analysis. a)
The time signal, a cosine function for negative times and a cosine with quadratic chirp for
positive times. Two daughter wavelet functions are superposed to the signal to show their
localized similarity. b) Wavelet Transform of the temporal trace represented in a) showing the
evolution of the frequency. The black line is the calculated instantaneous frequency. c)
Fourier Transform (Power Spectral Density) of the signal represented in a). Only an average
of the signal frequencies is observed. From (Malegori & Ferrini, 2010b).

The WT is defined as the convolution of the signal f (t) with the daughter wavelets:

W(s, d) =
∫ −∞

+∞

f (t)Ψ∗
s,d(t)dt =

∫ −∞

+∞

f (t)
1√

s
Ψ
∗(

t − d

s
)dt

The square modulus of the wavelet coefficients |W(s, d)|2, called the scalogram, represents the

local energy density of the signal as a function of scale and delay (or equivalently frequency

and time). The WT compares the signal with a daughter wavelet, measuring their similarity

(see waveforms superposed to the signal in Fig. 4a ). The coefficients W(s, d) measure

the similitude between the signal and the wavelet at various scales and delays. When the

frequency of a daughter wavelet is close to that of the signal at a certain time, the WT

amplitude reaches the maximum at that time and frequency position.

The instantaneous frequency of the signal is evaluated by the so called wavelets ridges, the

maxima of the normalized scalogram (Mallat, 1999). When the signal contains several spectral

lines whose frequencies are sufficiently apart, the wavelet ridges separate each of these

components, as shown in Fig. 5.

3.2.1 The Heisenberg box

In time-frequency analysis both time resolution and frequency resolution have to be

considered. As a consequence of the Heisenberg uncertainty principle, that holds for all

wavelike phenomena, they cannot be improved simultaneously: when the time resolution

increases, the frequency resolution degrades and vice versa. The time-frequency accuracy of

the WT is limited by the time-frequency resolution of the corresponding mother wavelet. The

WT resolution is confined in a box, the Heisenberg box, one dimension denoting the time
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Fig. 5. a) wavelet transform of a signal that includes a linear chirp whose frequency decreases
and a quadratic chirp whose frequency increases. b) The green points are the ridges
calculated from the time-frequency topography. The black lines display the calculated
instantaneous frequency of the linear and quadratic chirp. Note that the interference of the
two spectral components destroys the ridge pattern.

resolution, the other the frequency resolution. The Heisenberg box delimits an area in the

time-frequency plane over which different WT coefficients cannot be separated, providing a

geometrical representation of the Heisenberg uncertainty principle. We adopt the commonly

used definition of the measure of the uncertainty window ∆ as the root-mean-square extension

of the wavelet in the corresponding time or frequency space, (Malegori & Ferrini, 2010b),

∆
2
ξ =

∫ +∞

−∞
ξ2 |Ψ(ξ − ξ0)|2 dξ

∫ +∞

−∞
|Ψ(ξ)|2 dξ

where ξ0 is a translation parameter and Ψ(ξ) represents the Gabor mother wavelet, expressed

either in time, ξ = t, or circular frequency, ξ = ω = 2πF, Ψ(ω) = FT(Ψ(t)).

Fig. 6. Complex Gabor wavelet with different shaping factors. An increase of GS corresponds
to more oscillations. The "Heisenberg box" depicts the relationship between the time and
frequency resolution, like the uncertainty principle in quantum mechanics (adapted
from (Deng et al., 2005))

The time-frequency resolution of the analyzing Gabor mother wavelet, used in this work, is

determined by the σ parameter. The Heisenberg box associated to the mother Gabor wavelet

is given by a time resolution ∆t = σ/
√

2 and a frequency (or pulsation) resolution ∆ω =
1/(

√
2σ). When the wavelet is subject to a scale dilatation s, the corresponding resolution has
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size ∆s,t = s∆t along time and ∆s,ω = ∆ω/s along frequency. The Heisenberg box centered at

time t and angular frequency ω = 2πF is thus defined as

[t − ∆s,t, t + ∆s,t]× [ω − ∆s,ω , ω + ∆s,ω ]

The Heisenberg box area is four times ∆s,t∆s,ω = 1/2 (time resolution × frequency resolution)

and is constant at all scales. The Gabor wavelet has the least spread in both frequency and time

domain with respect to the choice of every other mother wavelet.

A single dimensionless parameter called the Gabor shaping factor GS = ση controls the

time-frequency localization properties of the Gabor mother wavelet (Deng et al., 2005). An

increase of GS means more oscillations under the wavelet envelope and a larger time spread,

the frequency resolution being improved and the time resolution decreased, see Fig. 6

The resolution in time and frequency depends on s in such a way that the

bandwidth-to-frequency ratio ∆s, f / fs is constant. In other words, in WT the window

size changes adaptively to the frequency component by using shorter time supports to

analyze higher frequency components and longer time supports to analyze lower frequency

components. Therefore WT can accurately extract the instantaneous frequency from signals

with wide spectral variation.

4. Wavelets meet Brownian motion: experimental results

Time-frequency analysis by wavelet transform is an effective tool to characterize the spectral

content of signals rapidly varying in time. In this section we review the wavelet transform

analysis applied to the thermally excited dynamic force spectroscopy to get insights into

fundamental thermodynamical properties of the cantilever Brownian motion as well as giving

a meaningful and intuitive representation of the cantilever dynamics in time and frequency

caused by the tip-sample interaction forces.

Fig. 7 shows the time-frequency representation of the thermally excited free cantilever, i.e. a

WT of the thermal noise of the cantilever flexural modes in air and at room temperature.

The distinctive characteristic is the discontinuous appearance of the time-frequency traces,

due to the discreteness and the statistical nature of the cantilever thermal excitation force

Fth. To understand the appearance of the experimental trace and the dimensions of the

observed bumps we need two concepts: the Heisenberg box and the oscillator box, that will

be introduced in the next section.

The Heisenberg box is a visualization of the wavelet resolution (in Fig. 7 the vertical rectangles

represents the Heisenberg boxes). Instead the oscillator box is related to the excitation and

damping of the cantilever modes seen as damped harmonic oscillators, thus limiting the joint

time-frequency response of the oscillator depending on resonant frequency and dissipation

(in Fig. 7 the horizontal rectangles represents the oscillator boxes).

It is remarkable that the dimension of the bumps observed in the experimental time-frequency

traces are accounted for quantitatively by the dimensions of the boxes mentioned above not

only for different flexural modes, but also for contact modes and torsional modes.

Moreover, we would like to emphasize that one of the advantages of the wavelet analysis

lies in the possibility to carry out measurements across the jump-to-contact transition without
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Fig. 7. a)-c) Wavelet transform of the free cantilever thermal vibrations for the three lower
flexural eigenmodes. The wavelet coefficients |W( f , t)| are coded in color scale. The
horizontal white rectangles represent the damped oscillator boxes, the vertical rectangles the
Heisenberg boxes. The dashed lines correspond to the resonant frequencies measured from
the power spectral density. d) Same as a)-c) for the clamped cantilever exerting a positive
load of approximately 1.1 nN on the surface. The rectangle on the left is the Heisenberg box,
that on the right the damped oscillator box. i)-k) Square root of the normalized power
spectral density of the free cantilever Brownian motion zoomed on the lower three resonant
frequencies. The blue line is the frequency linewidth ∆ f = f0/Q. The corresponding color
scale plots are displayed in e)-g). l) Same as i)-k) for the clamped cantilever. The
corresponding colorscale plot is displayed in h). From (Malegori & Ferrini, 2011a).

interruption (Malegori & Ferrini, 2011a), providing information on the long- and short-range

adhesion surface forces. Tip-sample van der Waals interaction, adhesion forces, friction and

elastic properties of the surface can be measured in few 10’s of milliseconds, a time compatible

with practical Dynamic Force Spectroscopy imaging.

4.1 The oscillator box

The dynamics of a free cantilever in air can be reasonably modeled as an harmonic oscillator

with viscous dissipation. If no driving forces are applied, the cantilever is excited by stochastic

forces whose amplitude are connected to the ambient temperature (the thermal reservoir) by

the fluctuation-dissipation theorem, see Sec. 2.2. Microscopically, the external thermal force

Fth can be thought as the action of random thermal kicks (uncorrelated impulsive forces),

with a white frequency spectrum. This thermal force induces cantilever displacements from

the equilibrium position, that show a marked amplitude enhancement in correspondence of

the flexural eigenfrequencies.

The motion of a damped harmonic oscillator after an impulsive force excitation constitutes

a simple model to describe the cantilever dynamics after a single thermal kick. When the

cantilever has a thermally activated fluctuation, each flexural mode responds as a damped

harmonic oscillator whose equation of motion is ẍ + ω0/Qẋ + ω2
0x = 0 where x is the

oscillation amplitude (the dots denotes the derivative with respect to time), Q the quality
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factor and ω0 the resonance frequency (Albrecht et al., 1991; Demtröder, 2003). Considering

for simplicity the initial conditions x(0) = x0, ẋ(0) = 0 and assuming Q ≫ 1, the

solution is an exponentially decaying amplitude oscillating at the resonance frequency: x =
x0e−ω0t/(2Q)cos(ω0t).

The energy E(t) associated to the oscillator is proportional to the maximum of ẋ2 and from

the above relations we see that, in case of small damping, the associated exponential energy

decay time is τ = Q/ω0. The spectral energy density of the damped oscillator (L(ω)) is

proportional to the square modulus of the Fourier transform of x(t), L(ω) = |FT(x(t))|2.

Under the assumption Q ≫ 1, L(ω) is well approximated by a Lorentzian with a full width at

maximum height of ∆ω = 2π∆ f = 1/τ.

Since the cantilever is first thermally excited and then damped to steady state by random

forces that act on a much smaller time scale than its oscillation period, the characteristic

response time for an isolated excitation/decay event cannot be smaller than 2τ, with an

associated Lorentzian full width at half maximum of ∆ω.

From the above reasoning, it is natural to introduce the damped oscillator box, a geometrical

representation of the extension in the time-frequency plane of the wavelet coefficients

associated to a single excitation/decay event, centered at time t and frequency ω, defined

as

[t − τ, t + τ]× [ω − ∆ω/2, ω + ∆ω/2]

The damped oscillator box, contrary to the Heisenberg box, does not represent a limitation in

resolution due to the wavelet choice, but a physical representation of the damped oscillator

time-frequency characteristics. It is important to note that the ultimate resolution limitations

imposed by the Heisenberg box associated with the analyzing wavelet could prevent the

observation of the true dimensions of the damped oscillator box.

Although the free oscillation modes have very different resonant frequencies, mode shapes

and relaxation times, the discrete structures near resonance have dimensions close to the

respective damped oscillator boxes, within the wavelet resolution, suggesting that these

structures are correlated with single thermal excitation events.

From the PSD shown in (Fig. 7 i,j,k), f0 and Q are obtained from a Lorentzian fit of the

resonance peaks (see Tab. 1) and the damped oscillator box dimensions are calculated. For the

first, second and third free flexural eigenmodes τγ = 0.93, 0.38, 0.23 ms and ∆ω = 1.1, 2.7, 4.4

kHz respectively. The Heisenberg box dimensions for the same modes are ∆t = 0.51, 0.18, 0.11

ms and ∆ω = 3.9, 11, 18 kHz respectively. In this case, ∆t < 2τγ, and ∆ω > ∆ω.

As a consequence, the temporal width of the smaller structures is about 2τγ, while their

spectral width is determined by the wavelet frequency resolution. The temporal width of

the structures is independent on the time resolution of the wavelet (provided that it is smaller

than 2τγ), indicating that we are observing a real physical feature not related to the choice of

the wavelet representation.

A different case is represented by the thermal oscillations of the surface-coupled cantilever,

shown in Fig. 7d, where the tip is clamped and exerts a constant force of 1.1 nN on the

surface during the measurement. In this case the tip does not oscillate and the temporal trace

recorded by the optical beam deflection system is proportional to the slope at the cantilever
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end. Describing this motion as a damped harmonic oscillator, we have τγ = 0.082 ms and

∆ω = 12 kHz. The Heisenberg box values are ∆t = 0.27, ms and ∆ω = 7.5 kHz. Due to

the lower Q factor the spectral width is wider and the decay time smaller so that, contrary

to the free cantilever case, ∆t > 2τγ and ∆ω < ∆ω. Now the temporal width is limited by

the wavelet temporal resolution while the frequency width is that of the damped oscillator.

Therefore, WT describes more easily the time decay of a single thermal excitation event in

high-Q environments and its frequency linewidth in low-Q environments.

We conclude observing that the discrete time-frequency small structures seen in the

time-frequency representation, related to the cantilever excitation and decay to steady state

by a single thermal fluctuation event, can be regarded as a visualization of the consequences

of the fluctuation-dissipation theorem.

mode f1 f2 f3 f4 fc1 fc2

fn (kHz) 10.908 76.09 222.6 444.4 62.80 195.7
Qn 63 180 320 470 32 89

fn/ f1 exp. 1 6.97 20.4 40.7 5.75 17.9
fn/ f1 teo. 1 6.26 17.5 34.4 4.38 14.2

Table 1. Free ( f1– f4) and clamped ( fc1– fc2) cantilever resonant frequencies and quality
factors. The measured ratio between the frequencies of the higher modes with the first one is
compared with the theoretical prediction of (Butt & Jaschke, 1995).

4.2 Force spectroscopy

The wavelet analysis is applied to the force-distance curves taken with the cantilever subject

to thermal fluctuations while approaching the surface. Fig. 8 shows the scalogram of a 40 ms

sampling of the cantilever Brownian motion around its instantaneous equilibrium position

while the piezo scanner is displaced at constant velocity to move the tip towards the surface,

until it jumps to contact.

Fig. 8. a) Power Spectral Density of the Brownian motion of the first flexural mode as the tip
approaches the surface at constant velocity (9nm/40ms=225 nm/s). b) Wavelet transform of
the same temporal trace. The wavelet coefficients |W( f , t)| are coded in color scale. The
origin of the time axis corresponds to the instant when the jump to contact occurs. The white
box on the left side is the Heisenberg box, the open box delimited by black lines is the
damped oscillator box. From (Malegori & Ferrini, 2010b)

Since the cantilever is at room temperature T, its mean potential energy 1/2k
〈

x2
〉

is

equal to 1/2kBT by the equipartition theorem. This thermal force induces cantilever
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displacements from the equilibrium position, that show a marked amplitude enhancement

in correspondence of the first flexural eigenfrequency. It is clear that the thermally driven

eigenfrequency is affected by the tip-sample interaction forces in a small time interval prior to

the jump-to-contact transition, causing a frequency decrease, as shown by the wavelet analysis

in Fig. 8b. The PSD of the same temporal trace used for the WT, reported in Fig. 8a, shows a

linewidth comparable to the frequency indetermination of the Heisenberg box of the WT and

a structure at low frequency that is reminiscent of the interaction with the surface, when for a

short time the cantilever frequency is lowered.

4.2.1 Force spectroscopy analysis

As observed previously, the instantaneous frequency is evaluated by the wavelet ridges, the

local maxima points of the normalized scalogram. In order to reduce noise effects, only

maxima above a threshold are considered (see the schematic representation in the inset of

Fig. 9).

Fig. 9. Force gradient versus tip-sample distance for the first flexural mode near the
jump-to-contact. The wavelet ridges provide the instantaneous frequencies within the limits
of the scalogram resolution. The wavelet ridges are the local maxima of the normalized
scalogram above a specified threshold, as schematically shown in the inset. The threshold is
represented by a horizontal line and the maximum point is indicated by an arrow for a
vertical cut of the data at constant tip-sample distance. The WT of Fig. 8 is represented in
gray scale on the background together with its ridges (black points). The continuous black
line is an Hamaker-like force gradient function fitted to the wavelet ridges, the dashed line
the force calculated by mathematical integration. From (Malegori & Ferrini, 2010b)

The first flexural mode frequency shift near the surface (Fig. 8b) provides a complete

force-distance curve using the wavelet ridges. From the instantaneous frequency shift

the gradient of the tip-sample interaction forces (dFts/dz) is retrieved, using the relations

previously reported. The time scale is converted into the tip-sample separation by taking into

account the piezoscanner velocity and the cantilever static deflection, to obtain a complete

force gradient versus distance curve (Fig. 9).

The gradient data from WT ridges are well fitted by a non-retarded van der Waals function

in the form HR/3z−3, with HR = 1.2 × 10−27 Jm. Using the typical values of H in graphite

(H = 0.1 aJ), the tip radius is evaluated as R = 12 nm, in good agreement with the nominal

radius of curvature given by the manufacturer (R = 10 nm). To promote this technique from
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proof of principle to a measurement of the Hamaker constant with a good lateral resolution, a

thorough characterization of the tip radius of curvature is needed.

The whole force curve is acquired in less than 40 ms, a time significantly shorter than

that usually needed for force versus distance measurements. With an optimization of the

electronics and reduction of dead times in the acquisition process, it would be possible to

acquire images with the complete information on force gradients and topography compatible

with 1-30 ms/pixel data acquisition times required for practical DFS imaging.

4.2.2 Contact dynamic force spectroscopy

The jump-to-contact (JTC) transition is accompanied by a high-amplitude damped oscillation

of the clamped cantilever started by the impact of the tip on the surface, visible immediately

after the transition. In this case the tip, attracted by the short-range adhesion forces, behaves

like a nano-hammer. The wavelet transform can be carried out across the JTC transition

without interruption and the oscillations induced by the JTC event are shown in the wavelet

representation as a big bump in the time-frequency space (Fig. 10a). From the temporal traces

we estimate that the cantilever takes approximately 10 µs to collapse into the new state with

a clamped end (Fig. 10b), a duration shorter than the system oscillation period that can be

considered as instantaneous on the cantilever typical timescales. The changed boundary

condition (from free to clamped cantilever end) produces a sudden variation of the flexural

resonant frequencies.

In the experimental data, the time scale is converted to cantilever deflection scale taking into

account the piezotube movement and the position of the surface deduced by the deflection

vs distance curve (the solid-liquid interface). Negative deflection means that the beam is bent

toward the sample. The load of the tip on the sample is directly calculated as Fload = kx where

k and x are the cantilever elastic constant and static deflection, respectively. In this case the

loading is negative since the contact is kept by adhesion force that opposes the elastic force

of the bent cantilever. The transient frequency analysis allows retrieval of the oscillator Q

factor by measuring the ratio of the oscillation frequency to the frequency width of the initial

high-amplitude damped oscillation. Since the Heisenberg box dimension of the analyzing

wavelet is 0.27 ms × 1.2 kHz and the frequency width is of the order of ∆ f = 2kHz, the

frequency width is not limited by the wavelet resolution. With a central frequency of about

60 kHz, the Q factor is obtained as Q = f /∆ f =60kHz/(2kHz)=30. This estimate is quite

consistent with the Q factor found in contact mode under static loading (Table 1), confirming

that the physical oscillator (the cantilever) has the same dissipation dynamics in the various

interaction-force regimes (negative and positive loading) after JTC.

The resonant frequency has an evident increase caused by the decrease in the adhesion forces

due to cantilever moving towards the surface at constant velocity, a behavior reproducible

in all our measurements. The frequency shift is related to the total force (adhesion plus

elastic force) that decreases as the cantilever negative deflection decreases towards zero. This

transient behavior could not be captured with standard or non-dynamical techniques.

It is possible to continue the contact mode WT analysis increasing the load up to higher

positive values. Fig. 11 shows the ridge analysis of the entire spectroscopy curve. After

the transient at negative loading described above, the cantilever passes through the zero-load
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Fig. 10. a) Time-frequency representation of the cantilever evolution immediately after the
jump to contact. Resonant frequency is about six times the free cantilever frequency due to
changed boundary condition (clamped end). The big bump is due to the cantilever
oscillations upon tip impact with the surface. The instantaneous frequency versus load is
provided by the wavelet ridges analysis. Three different measurements (black, gray and light
grey points) are shown to demonstrate reproducibility. In the inset: normalized wavelet
coefficient |W( f , t)| along the vertical dashed line. b) The temporal evolution of the clamped
cantilever oscillations immediately after the jump to contact transition. It is evidenced the
short time interval (approximately 10µs) for the cantilever to collapse into contact. From
(Malegori & Ferrini, 2011a)

neutral point, where it is not deflected, and then continues with increasing positive load on the

surface. The frequency shift can be followed starting from the very beginning of the cantilever

interaction with the surface and with good temporal resolution. The single measure is taken

in approximately 100 ms. With an appropriate analysis, it would be possible to study in detail

both the adhesion forces dynamics of the cantilever (Espinosa-Beltrán et al., 2009; Yamanaka

& Nakano, 1998) and the elasticity parameters (e.g the Young’s modulus) from the contact

region (Hertz contact dynamics) (Dupas et al., 2001; Espinosa-Beltrán et al., 2009; Rabe et al.,

1996; Vairac et al., 2003).

As a final comment to this section, we stress that the wavelet transform approach could

provide quantitative information on the surface elastic properties especially when low force

regimes are needed, i.e. on softer samples such as biological or polymer surfaces.

4.3 Torsional modes

The torsional modes the cantilever oscillate about its long axis and the tip moves nearly

parallel to the surface, being sensitive to in-plane forces. As a consequence, the eigenfrequency

of the torsional modes depends only on the lateral stiffness of the sample, serving as shear
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Fig. 11. Resonant frequency versus load of the first flexural contact mode, spanning the
negative and positive loading regime. The instantaneous frequency versus load is provided
by the wavelet ridges analysis. Three different measurements (black, gray and light gray
points) are shown to demonstrate reproducibility. The continuous line is a guide to the eye.
From (Malegori & Ferrini, 2011a)

stiffness sensors. An increasing shear stiffness increases the lateral spring constant and

consequently the resonant frequency of the system (Drobek et al., 1999). We study the

spectra of thermally excited torsional modes of the cantilever as the tip approaches a graphite

surface in air (Malegori & Ferrini, 2011b). Since we are interested in exploring what happens

immediately after the JTC transition, the forces that predominate in this regime are the

attractive adhesion forces.

Fig. 12. a) Thermal power spectral density of the cantilever torsional fluctuations zoomed on
the first torsional (t1) and first lateral (l1) resonance peaks. The arrow points at a small
contribution from the third flexural mode ( f3) at 223 kHz. b) Same as a) but with the tip in
contact with the sample at constant negative load (-0.5 nN). From (Malegori & Ferrini, 2011b).
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The power density spectrum of the free cantilever first torsional modes is reported in Fig. 12a.

The peak at 239.4 kHz with Q=310 is the first torsional mode (t1). The mode at 210.2 kHz with

Q=590 is the first lateral bending mode (l1) (Espinosa-Beltrán et al., 2009). The lateral modes

are cantilever in-plane flexural modes, in contrast with the usual out-of-plane flexural modes.

In the spectrum is also visible a minute contribution from the third flexural mode at 222 kHz.

When the tip is brought close to the sample, the capillary forces attract the tip to the HOPG

surface until the JTC transition occurs (Luna et al., 1999). Due to the modified mechanical

boundary conditions, the cantilever end is no longer free. A clear shift of the torsional and

lateral contact mode resonances is detected under a negative static load of −0.5 nN, Fig. 12b.

The first contact torsional mode resonance frequency increases to 305.2 kHz with Q=14; the

contact lateral mode resonance frequency increases to 221.7 kHz with Q=200. In both cases

the dissipation increases for contact modes, particularly for the first torsional eigenmode.

The torsional resonance variation of the thermally excited cantilever can be followed across

the JTC transition with the wavelet transforms, as shown in Fig. 13. The JTC transition is

located at time zero, separating the negative times of the free cantilever evolution, from

the positive times of the clamped cantilever evolution. Note that the long-range forces and

capillary phenomena that usually interfere with the oscillations of the flexural modes (Jesse

et al., 2007; Malegori & Ferrini, 2010a;b; Roters & Johannsmann, 1996) do not perturb the

much stiffer torsional free modes until jump-to-contact. The lateral mode frequency displays

a very sharp frequency shift at JTC and remains fairly constant immediately after. Instead,

the torsional contact mode shows a detectable and continuous frequency increase after JTC,

caused by the tip interaction with the graphite surface.

Fig. 13. Wavelet transform of the cantilever thermal torsional oscillation across the
jump-to-contact transition, showing the evolution of the first free torsional mode t1 into the
contact torsional mode tc1 and the first free lateral mode l1 into the contact lateral mode lc1.
The wavelet coefficients |W( f , d)| are coded in color scale. The origin of the time axis is at the
jump-to-contact onset. Both modes have an evident shift as the tip is attracted on the surface.
From (Malegori & Ferrini, 2011b).

It is worth noting the different appearance of the torsional mode frequency structure before

and after JTC in Fig. 13. It is evident a sudden increase of the frequency width (and a

corresponding decrease of the time width) of the time-frequency trace passing through the

JTC point (time zero), that can be qualitatively explained as a sudden increase in dissipation

caused by the interaction with the surface. This demonstrates that there is not a smooth

transition during the JTC between the free and contact oscillations.
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Fig. 14. a) Frequency shift with respect to the free resonant frequency of the first contact
torsional mode tc1 versus the tip load. The ridges (black points) of the wavelet in Fig. 13,
represented in gray scale on the background, provide the instantaneous frequency within the
limit of the scalogram resolution. The continuous vertical line at time zero corresponds to the
jump-to-contact onset. The dotted line is a guide to the eye. b) Ridges of the frequency shift
with respect to the free resonant frequency of the first contact lateral mode lc1 versus the tip
load. The dotted line is the lateral contact resonant frequency. From (Malegori & Ferrini,
2011b).

Taking into account the piezo-scanner vertical velocity, it is possible to obtain a linear relation

between time and cantilever deflection, allowing calculation of the contact loading force of

the tip on the surface. The frequency evolution is provided by the wavelet ridges, showing

the instantaneous frequencies within the transform resolution limits in Fig. 14 as black points.

Using the wavelet ridges, after JTC the time-frequency representation is transformed into a

contact-interaction-force vs frequency-shift representation.

Immediately after JTC the force acting on the cantilever is negative (negative loading). In

this case the tip is acted on by adhesion forces that attracts the tip towards the surface. The

frequency shift of resonance frequencies with respect to the free cantilever oscillations is thus

caused by the decrease in strength of adhesion forces, a transient that could not be easily

captured with standard or non-dynamical techniques.

With a suitable model this technique could allow a thorough measurement of the adhesion

force properties (Drobek et al., 2001; Espinosa-Beltrán et al., 2009; Yamanaka & Nakano,

1998). Analytical and numerical models describing the free cantilever-vibration as well as

the contact-resonances are well known and provide quantitative evaluation when complete

contact-resonance spectra are measured. The contact-resonance frequencies of the cantilever

are linked to the tip-sample contact stiffness, which depends on the elastic indentation moduli

of the tip and the sample and on the shape of the contact. The spatial resolution depends on

the tip-sample contact radius, which is usually in the range from 10 to 100 nm. Lateral stiffness

determined from the contact resonant frequencies of the first torsional vibration obtained from

noise spectra have already been investigated in (Drobek et al., 2001) using quasi-static force

curve cycles. The improvement provided by WT analysis is related to the time required to
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detect the frequency shift vs load curve which is in the order of few ms. This acquisition

time is significantly shorter than that of the quasi-static techniques and compatible with the

development of real-time measurement.

To analyze a further example of the interplay between the wavelet resolution and the thermal

excitation, we now consider two extreme cases: the free cantilever and the clamped cantilever

with positive loading.

Fig. 15. a) Wavelet transform of the free cantilever thermal fluctuations of the first lateral (l1)
and first torsional (t1) mode. The wavelet coefficients |W( f , d)| are coded in color scale. The
dotted lines are centered on the resonant frequencies of the modes. b) Same image as in a)
but coded in saturated gray scale to appreciate the shape of the discontinuous structures. c)
and d) Same as a) and b) but for the first lateral (lc1) and first torsional (tc1) contact mode at
constant positive load of approximately 1.6 nN. In b) and d) the red rectangles with a white
border represent the Heisenberg boxes. The red rectangles represent the damped oscillator
boxes. From (Malegori & Ferrini, 2011b).

The wavelet transform of the free thermal oscillations of the cantilever detected by the

left-right sections of the quadrant photodiode shows the time evolution of the first torsional

mode and the first lateral mode (see Fig. 15a). When the Q factor of a mode is high (see Tab. 2),

the corresponding frequency linewidth is small. In this case the frequency resolution of a

wavelet may be not sufficient to resolve the intrinsic linewidth of the mechanical resonance.

The Heisenberg box dimensions are 0.050 ms × 6.35 kHz for the first torsional mode (t1) and

0.057 ms × 5.6 kHz for the first lateral mode (l1). The damped oscillator boxes for the same

modes are 0.41 ms × 0.77 kHz (t1) and 0.90 ms × 0.35 kHz (l1). Thus the frequency width of

the time-frequency distribution is limited by the wavelet resolution (the frequency width of

the Heisenberg box) which is much higher than the frequency width of the oscillator box (see
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mode t1 t2 tc1 tc2 l1 lc1

Frequency (kHz) 239.4 763.4 305 782 210.1 221.6
Quality factor (Q) 310 570 14 120 590 200

Frequency ratio exp. 22.0 70.0 28.0 71.7 19.3 20.3
Frequency ratio teo. 23.4 70.1 – – 19.0 –

Table 2. Comparison between measured and calculated (Butt & Jaschke, 1995;
Espinosa-Beltrán et al., 2009) free cantilever resonant frequencies. The theoretical results are
expressed as ratios with respect to the first flexural frequency, f1 = 10.908 kHz. The Q factors
are measured from the power density spectra. t and l refers to the free torsional and lateral
eigenmodes. tc and lc refers to the contact torsional and lateral eigenmodes. In this case the
contact measurements refers to a negative load on the tip of -0.5 nN.

Fig. 15b). On the other hand, a high Q implies a long decay time associated to the oscillator

energy. In this case the time associated to the damped oscillator box is larger than the temporal

wavelet resolution, i.e. the time width of the oscillator box is larger than the time width of the

Heisenberg box. In Fig. 15b the oscillator boxes (red) and the Heisenberg boxes (red with

a white border), have been superposed on the time-frequency representation of the wavelet

coefficients. In this case the Heisenberg box, i.e the wavelet resolution, limits the frequency

width while the temporal extension of the structures is similar to the oscillator box time width.

Such structures can be interpreted as the cantilever excitation and decay to steady state after

a single thermal fluctuation event (Malegori & Ferrini, 2011a).

Fig. 15c shows the contact cantilever vibrations after JTC at a static positive load of the tip on

the graphite surface of approximately 1.6 nN. The Q factor of the first torsional contact mode

(t1c) decreases and the oscillator box re-shapes accordingly, reducing the damping time and

increasing its frequency width (Fig. 15d). We found the Q factors of the contact modes to be

almost independent from the tip loading in the studied range and similar to those reported

in Tab. 2 for negative loading. In this case the Heisenberg box dimensions are 0.053 ms × 6.0

kHz for the first torsional contact mode (tc1) at 316.72 kHz and 0.075 ms × 4.2 kHz for the

first lateral mode (lc1) at 221.6 kHz. The damped oscillator boxes for the same modes are 0.013

ms × 23.3 kHz (tc1) and 0.28 ms × 1.25 kHz (lc1). As can be seen from the data reported

above, the frequency resolution of the wavelet for the mode tc1 is sufficient to reconstruct

the linewidth profile of the time-frequency trace, i.e. the Heisenberg box spectral width is

smaller than the frequency width of the oscillator box. In contrast to the other modes, the time

resolution of the wavelet does not allow to follow the temporal evolution of the single thermal

excitation, because the time width of the oscillator box is smaller than the corresponding

Heisenberg box dimension.

5. Conclusions

The wavelet analysis applied to dynamic AFM is especially useful in capturing the temporal

evolution of the spectral response of the interacting cantilever. In this respect, the

applications of wavelet analysis to the thermally driven cantilever to detect forces rapidly

and continuously varying across the jump-to-contact transition must be seen as just examples

and do not exhaust all the possible utilizations. Traditional AFM techniques enable the

construction of the spectral response by modifying the cantilever interaction step by step.

However, in this way, it is not possible to analyze transients. Instead, the wavelet analysis
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allows detection of transient spectral features that are not accessible through steady state

techniques. Moreover, the ability to capture the relevant spectral evolution in a time frame

of tens of milliseconds enables surface chemical kinetics or surface force modification to be

tracked in real time with dynamic force spectroscopy. More fundamentally, the wavelet

transforms highlight the thermodynamic characteristics of the cantilever Brownian motion,

enabling the tip-sample fluctuation-dissipation interactions to be investigated. In conclusion,

although the results reviewed in the present work must be considered as preliminary, the

proposed technique is interesting in view of its simplicity and connection with fundamental

thermodynamic quantities.
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