
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

8

Efficient VLSI Architecture
for Memetic Vector Quantizer Design

Chien-Min Ou1 and Wen-Jyi Hwang2,*
1Department of Electronics Engineering, Ching-Yun University, Chungli,

2Department of Computer Science and Information Engineering,
National Taiwan Normal University, Taipei,

Taiwan

1. Introduction

Memetic algorithms (MA) (Eiben & Smith, 2003; Molina, Lozano & Herrera, 2010; Moscato,

1999; Santos & Alves, 2010) have been found to be effective for evolutionary computation

(Areibi, Moussa & Abdullah, 2001; Merz & Freisleben, 1999). It can be viewed as the hybrid

genetic algorithms (GA) (Eiben & Smith, 2003) consisting of local refinement to genetic

search results. Because the algorithms involve both the global and local searches, one

challenging issue of the MAs is to reduce the computational complexity. One simple way to

lower the computational time is to reduce the population size. Nevertheless, this approach is

not favorable because small population size usually traps the MA in poor local optimum.

Another way to accelerate the execution of the MA is to implement the algorithm in hardware
(Hwang, Hsu, Li, Weng & Yu, 2010). However, existing hardware architectures are mostly
designed only for GA. No architecture for local refinement is available. In addition, existing
GA hardware implementations (Choi & Chung, 2000; Nedjah & Mourelle, 2005; Tommiska &
Vuori, 1996) have a number of drawbacks. First of all, large storage size is required for
processing the genetic strings. Usually two set of population memories are used for the
regeneration process. One memory contains the parent strings; the other stores the child
strings after the regeneration. Moreover, there is overhead for switching one memory to
another at the beginning of a new generation. The second drawback is that the regeneration
process is based on the fitness function. The selection of parents therefore may need large chip
area for hardware implementation. The mutation and crossover operations also result in high
area cost when concurrent processing over all the genetic strings is desired. The third
drawback is that the existing GA architectures (Choi & Chung, 2000; Nedjah & Mourelle, 2005;
Tommiska & Vuori, 1996) contains only single population. Distributed or parallel evolutions
are usually desired for attaining a near global optimal performance.

The objective of this paper is to present a novel hardware architecture for fast parallel MA

optimization. In this chapter, we consider the applications of MA for vector quantizer (VQ)

(Gersho & Gray, 1992) design. When applied for VQ training, the MA requires large storage

* Corresponding Author

www.intechopen.com

Genetic Algorithms in Applications

152

size and long training time (Hwang & Hong, 1999). Therefore, the VQ design is a good

example for verifying the effectiveness of the proposed MA architecture.

In the proposed architecture, each population of the parallel MA is associated with a
hardware module for independent memetic evolutions. Each hardware module consists of
population memory unit, mutation and crossover unit, C-Means (Gersho & Gray, 1992) unit,
and survival test and update unit. In our design, the mutation and crossover unit is used for
global search, while the C-Means unit is used for local refinement.

Each hardware module contains only one population memory for reducing the area cost.

Both the mutation and crossover operations are performed concurrently for accelerating the

MA. In addition, a pipeline architecture with direct memory access (DMA) operation is

adopted for the C-Means operation. A hardware sorting structure is adopted for survival

test. The proposed architecture has been implemented on field programmable gate array

(FPGA) devices (Hauck & Dehon, 2008) so that it can operate in conjunction with a softcore

CPU (NIOS II Processor Reference Handbook, 2008). Using the reconfigurable hardware, we

are then able to construct a system on programmable chip (SOPC) system for the genetic VQ

design. As compared with its software counterparts, numerical results reveal that the

proposed FPGA-based MA architecture attains higher performance with significantly lower

training time for VQ design. These fact demonstrate the effectiveness of our design.

2. Preliminaries

The goal of a VQ for data clustering is to partition a large data set 1{ ,..., }tX x x into N

non-overlapping clusters 1 ,..., NC C , where .N t The partitioning process is based on a set

of codewords 1{ ,..., },Ny y where the codewords and the vectors in X are of the same

dimension .w Given a vector ,x X the x will be assigned to the cluster iC when

1

() arg min (,),j
j N

i d
 

 x x y (1)

where ()d u, v denotes a distance measure between two vectors u and .v In this paper, the

squared distance is adopted as the distance measure. When applied for data reduction

applications such as data compression, a vector x will be represented by the codeword iy

when ().i a x One cost function for the data reduction is the average distortion for

representing x by ,iy as shown below

  ()
1

1
,

i

t

i
i

D d
wt




  xx y (2)

Given a data set ,x the objective of the VQ design is to find a set of codewords 1{ ,..., }Ny y

minimizing D in eq.(2).

In the basic MA (termed MA (I)) for VQ design, there are P genetic strings for the genetic

operations. Each string r represents a set of N codewords 1{ ,..., } .N ry y Note that these

strings are strings of vectors, not strings of binary numbers.

www.intechopen.com

Efficient VLSI Architecture for Memetic Vector Quantizer Design

153

Let ()S k and ()D k denote the set of P strings and the value of current minimum distortion

D after the execution of the k -th generation of the basic MA, respectively. Let *s be the

current optimum string during the course of genetic operations. Suppose that the -(1)k -th

iteration is completed, and the execution of the k -th (1k ) is to be done. We then perform

the following operations sequentially on the strings in -(1).S k

Regeneration: Since each string in -(1)S k for the genetic operations is in fact a codebook of

VQ, its corresponding D can be computed using eq.(2). The inverse of D is used as fitness

function for each string. The regeneration process is then conducted using the roulette-

wheel technique. Once a string has been selected for reproduction, an exact replica of it is

made as a regeneration string. In the algorithm, P regeneration strings are created after the

regeneration operation.

Crossover: On each regeneration string ,r 1 2{ , ,..., } ,N ry y y one point crossover is applied

with probability .cP Out of the total population, a partner string ',r 1 2{ , ,..., } ,N rz z z is

randomly chosen. Then an integer random number n between 1 and N is generated. Both

strings are cut into two portions at position n and the portions 1{ ,..., }n Ny y and

1{ ,..., }n N rz z are mutually exchanged.

Mutation: Mutation is performed on each codeword of each string with a small probability

.mP Suppose now the string 1 2{ , ,..., }N rr  y y y is to be mutated. One of the N codewords,

,y is chosen at random. Among the w numbers in ,y we also select one number at

random. Then a random number, taking the binary values b or - ,b is generated, and is

added to the chosen component.

Local Refinement: The C-Means algorithm is used for the local refinement in the MA. Each

string r in the population after mutation is used as the initial codebook to C-Means

algorithm. The output codebook of C-Means algorithm then is result of local refinement of

.r All the strings after local refinement then form the set ().S k The average distortion of

each string in ()S k is then computed for updating ().D k

In the MA algorithm, the iteration continues until the convergence of the sequence ().D k

The current optimum string *s after the completion of MA algorithm is then chosen as the

desired result.

It may be difficult to implement the MA (I) algorithm in hardware. This is because two
population memories are required in the algorithm. One population memory contains the
parent strings. The other is used for storing the strings after the regeneration process. The
roulette-wheel technique may also become the bottleneck for the hardware. In addition, the
crossover, mutation and C-Means operations should operate over all the P regenerated
strings. The corresponding hardware complexity therefore may be very high.

3. The proposed MA architecture

In this chapter, two alternative MA algorithm (termed MA (II) and MA (III) algorithms) is
adopted for the VQ design. The MA (II) is based on the steady-state GA for global search,
which has superior performance over the basic generational GA for a number of
applications (Rasheed & Davisson, 1999). There is no concept of generation in steady-state

www.intechopen.com

Genetic Algorithms in Applications

154

GA. Let S be the population of P genetic strings, which are called the parent strings.
Initially, the P strings in S are randomly generated. Two strings (denoted by 1r and 2r) in
S will be selected for mutation and crossover for creating a new child string (denoted by
c). The new string then is used as the initial codebook to the C-Means algorithm for local
refinement.

The fitness value of the child string after local refinement is then evaluated and compared

with the fitness value of all the parent strings in .S If the new string is inferior to all the

parent strings in ,S no parent string will be removed. Otherwise, the parent string with

lowest fitness value is replaced by the child string.

Note that because each string for the VQ design is actually a codebook, the memory access

time for string retrieval may be long. Consequently, the retrieval process for 1r and 2r may

be time-consuming. To reduce the memory access time, in the algorithm, the previous 1r

becomes the new 2r and then the new 1r is chosen randomly from .S This selection scheme

reduces the memory access time by half.

As the process of selection, crossover, mutation, local refinement, and survival/replacement

continues, the overall fitness of population will increase and the survival rate of new off-

spring will diminish. At some point, the offspring survival rate will drop to zero. At this

point, evolution has probably ceased and the algorithm may be terminated. The MA (II)

algorithm is more effective for the hardware design. Only one population memory is

required. In addition, crossover and mutation operations only operate on 1r and 2r instead

of all strings in the population memory. Finally, C-Means operation only operate on the new

child string .c Therefore, only one crossover and mutation module, and one C-Means

module are necessary for hardware implementation. These facts effectively reduce the area

cost for FPGA design.

Fig. 1. The employment of SOPC for the MA (II) architecture

In the MA (III) algorithm, there are M populations. Each population evolves independently

using the MA (II) algorithm. After all the populations are converged, the optimal strings
from different populations are compared. The string having the highest fitness value is then
the selected string for the VQ design.

www.intechopen.com

Efficient VLSI Architecture for Memetic Vector Quantizer Design

155

The hardware architecture of the MA (II) and MA (III) can be viewed as a user logic in the
NIOS-based SOPC system (NIOS II Processor Reference Handbook, 2008), as shown in
Figure 1. Because the proposed architecture is used for the VQ design, the training data is
required. The goal of using the SOPC is to provide the training data for the hardware
architecture. The training data can be stored in a SDRAM, and delivered to our architecture
via the Avalon bus. The DMA can be used to speed up the delivery. Alternatively, the
training data can be obtained from a remote host via the internet.

Figure 2 shows the hardware architecture of the MA (II) algorithm. It contains population

memory, crossover & mutation unit, C-Means unit, survival test & update unit, and

Avalon bus interface. Both the population memory and crossover & mutation unit contain

random number generators (RNGs).

In this architecture, the population memory unit is devoted for storing the genetic strings.
Moreover, the random selection of parent strings for subsequent crossover and mutation
operations is also included here. This selection is based on the RNG inside the population
memory unit. All the crossover and mutation operations are performed concurrently in the
crossover & mutation unit for producing a new child string .c The fitness value of the
resulting string is then evaluated by the fitness evaluation unit.

Based on the fitness value, the goal of the survival test & update unit is to determine

whether the child string c will survive. If it is the case, the parent string in the population

memory unit with the worst fitness value will be replaced by the child string. Each unit in

Figure 2 will be described in detailed as shown below.

Fig. 2. The proposed hardware architecture for MA (II)

www.intechopen.com

Genetic Algorithms in Applications

156

Population Memory Unit: The population memory contains a 2-port RAM and a RNG unit.
The 2-port RAM contains ,S the set of P genetic strings. In our design, the implementation

of the RAM is based on the embedded memory, which is provided by some FPGA devices
such as Altera Stratix II. The goal of RNG unit in the population memory unit is to select
randomly a string for the subsequent crossover and mutation operations. In our design, the
cellular automata (CA) is adopted for the VLSI implementation of random number
generator due to its simplicity and regularity of the design.

Mutation and Crossover Unit: Figure 3 shows the basic structure of the mutation and

crossover unit, which contains three shift registers for storing the strings 1 ,r 2r and ,c

respectively. A number of RNGs, comparators, multiplexers and counters are then used for

crossover and mutation. The major advantage of this architecture is that the crossover and

mutation can be performed concurrently with low are a cost.

As shown in Figure 3, SHIFT REGISTER 1 and SHIFT REGISTER 2 contain strings 1r and

2 ,r respectively. Note that the architecture does not randomly select new 1r and 2r from

the population memory. In fact, only new 1r is chosen from population memory. The new

2r is actually the previous 1.r The memory access time and routing overhead can then be

significantly reduced. Based on the algorithm, in the architecture, The SHIFT REGISTER 1

obtains 1r from the population memory unit. The SHIFT REGISTER 2 obtains 2r from

SHIFT REGISTER 1.

Fig. 3. The architecture of crossover and mutation unit

www.intechopen.com

Efficient VLSI Architecture for Memetic Vector Quantizer Design

157

The crossover operations are accomplished by concurrently shifting the strings in SHIFT
REGISTER 1 and SHIFT REGISTER 2 to MUX 1. Each shift register will shift one codeword
at a time. As shown in Figure 3, MUX 1 is a switch selecting the codewords of either 1r or

2 ,r and route them to SHIFT REGISTER 3, which contains the resulting child string .c The
control line of MUX 1 is connected to a comparator, which compares the value of RNG 1 to
that of a counter. The counter records the number of shifts made by the shift registers. The
value of RNG 1 serves as a threshold here. When the counter value is less than the
threshold, codewords of SHIFT REGISTER 1 (i.e., 1r) goes to SHIFT REGISTER 3. Otherwise,
codewords of will be selected. Consequently, the value of RNG 1 determines the crossover
point. The value will be randomly generated prior to the shifting operations.

We also observe from Figure 3 that the output codeword of MUX 1 will pass through the
mutation unit before arriving the SHIFT REGISTER 3. Figure 4 shows the architecture of the
mutation unit. As shown in the figure, all w components of the output codeword mutate
concurrently. The mutation circuit for each component i consists of 2 RNGs (termed RNG
ia and RNG ib), one register (termed register i), one comparator (termed comparator i),
one multiplexer (termed mux i).

The probability for mutation bP is stored in a separate register, and is broadcasted to all the
mutation circuits. In the mutation circuit for each component ,i the value of RNG ia is first
compared with the .bP The component i will be mutated when the value of RNG ia is less
than .bP The mutated value is then determined by RNG .ib

Fig. 4. The architecture of mutation unit

www.intechopen.com

Genetic Algorithms in Applications

158

C-Means Unit: The goal of the C-Means unit is to locally refine the mutated child string
stored in SHIFT REGISTER 3 using the C-Means algorithm. As shown in Figure 5, the
proposed C-Means architecture can be decomposed into two units: the partitioning unit and
the centroid computation unit. These two units will operate concurrently for the local
refinement process. The partitioning unit uses the codewords stored in the register to

partition the training vectors into N clusters. The centroid computation unit concurrently

updates the centroid of clusters. Note that, both the partitioning process and centroid
computation process should operate iteratively in software. However, by adopting a novel
pipeline architecture, our hardware design allows these two processes operate in parallel for
reducing the computational time. In fact, our design allows the concurrent computation of

N +2 training vectors for the C-Means operations.

Figure 6 shows the architecture of the partitioning unit, which is a N -stage pipeline, where

N is the number of codewords (i.e., clusters). The pipeline fetch one training vector per

clock from the input port. The i -th stage of the pipeline compute the squared distance

between the training vector at that stage and the i -th codeword of the codebook. The

squared distance is then compared with the current minimum distance up to the i -th stage.

If distance is smaller than the current minimum, then the i -th codeword becomes the new

current optimal codeword, and the corresponding distance becomes the new current

minimum distance. After the computation at the N -th stage is completed, the current

optimal codeword and current minimum distance are the actual optimal codeword and the

actual minimum distance, respectively. The index of the actual optimal codeword and its

distance will be delivered to the centroid computation unit for computing the centroid and

overall distortion.

Fig. 5. The architecture of the C-Means unit

Fig. 6. The architecture of the partitioning unit

www.intechopen.com

Efficient VLSI Architecture for Memetic Vector Quantizer Design

159

Figure 7 depicts the architecture of the centroid computation unit, which can be viewed as a
two-stage pipeline. In this paper, we call these two stages, the accumulation stage and

division stage, respectively. Therefore, there are 2N  pipeline stages in the C-Means unit.

The concurrent computation of N +2 training vectors therefore is allowed for the local

refinement operations.

Fig. 7. The architecture of the centroid computation unit

As shown in Figure 8, there are N accumulators (denoted by , 1,...,ACCi i N) and N

counters for the centroid computation in the accumulation stage. The i -th accumulator

records the current sum of the training vectors assigned to cluster .i The i -th counter contains

the current number of training vectors mapped to cluster .i The i -th counter contains the

current number of training vectors mapped to cluster .i The training_vector_out, D_out and

index_out in Figure 8 are actually the outputs of the N -th pipeline stage of the partitioning

unit. The index_out is used as control line for assigning the training vector (i.e.
training_vector_out) to the optimal cluster found by the partitioning unit.

The circuit of division stage is shown in Figure 9. There is only one divider in the unit

because only one centroid computation is necessary at a time. Suppose the final index_out is

i for the i -th vector in the training set. The centroid of the i -th cluster then need to be

updated. The divider and the i -th accumulator and counter are responsible for the

computation of the centroid of the i -th cluster. Upon the completion of the j -th training

vector at the centroid computation unit, the i -th counter records the number of training

vectors (up to j -th vector in the training set) which are assigned to the i -th cluster. The i -

th accumulator contains the sum of these training vectors in the i -th cluster. The output of

the divider is then the mean value of the training vectors in the i -th cluster.

It can be observed from the Figure 9 that the division stage also evaluates the overall
distortion of the codebook. This can be accomplished by simply accumulates all the
minimum distortion associated with each training vector after the completion of the

www.intechopen.com

Genetic Algorithms in Applications

160

partitioning process. The overall distortion is used for both the fitness evaluation and the
convergence test of the C-Means algorithm.

Fig. 8. The architecture of the accumulation stage in the centroid computation unit

Survival Test and Update Unit: This unit contains a hardware sorting circuit (Hwang, Li,
Yeh & Chan, 2008), which sorts the parent strings in a descending order according to their
fitness values. After the fitness evaluation operation is completed, the fitness value of the
child string is used as the input to the sorting circuit. When the distortion of the string is
larger than the parent string with lowest fitness value, the child string is not survival, and
no updating operation is necessary. Otherwise, the parent string with highest distortion is
replaced by the child string. The sorting circuit is then activated to determine the new
parent string with the highest distortion.

Figure 10 depicts the architecture of MA (III) algorithm, which contains modules. Each module
is a hardware realization of MA (II) algorithm. Therefore, the architecture of each module is
shown in Figure 2. Although the genetic strings in different modules (i.e., different
populations) evolve independently, they all need the same set of training vectors for C-means
algorithm and fitness evaluation. Independent requests for training vector delivery from
different modules demand very high memory bandwidth. This may become the bottleneck of
the architecture for MA (III) implementation. To solve the problem, the C-means operation of
all the architectures operate synchronously. Therefore, training vectors from main memory can
be broadcasted to all the modules for C-means training. In addition, the DMA is used for

www.intechopen.com

Efficient VLSI Architecture for Memetic Vector Quantizer Design

161

further accelerating the data delivery. To implement synchronous C-means operations among
different modules, we first note that all the string selection, mutation crossover, and survival
test operations take fixed number of clock cycles. The same operation will take the same
number of clocks in different modules. Consequently, when all the modules start MA
operations at the same time, the synchronization among the modules can be achieved.

Fig. 9. The architecture of the division stage in the centroid computation unit

3. Experimental results

This section presents some physical performance measurements of the proposed FPGA

implementation. The target FPGA device for the hardware design is Altera Stratix II 2S60

(Stratix II Device Handbook, 2008). The Altera Quartus II version 7.2 with SOPC Builder is

used as the platform for the system development. The vector dimension of codewords is

2 2.w   The mutation probability is 0.03125.bP 

Figure 11 compares the average distortion of the proposed MA (II) implementation with

that of basic MA(I) under the same population size 64P  and number of codewords

64.N  The software implementation of MA (I) is executed on the 3-GHz Pentium D CPU.

In the experiment, we execute each implementation 300 times independently. The training
set contains 65536 training vectors from the image "Lena."

Based on the training set, the average distortion of each execution is computed according to
eq.(2). Figure 11 then reveals the distribution of the average distortion. It can be observed

www.intechopen.com

Genetic Algorithms in Applications

162

from Figure 11 that both implementations have similar average distortion distributions.
Therefore, our architecture simplifying the string random selection process does not
degrade the performance of memetic VQ design.

Fig. 10. The architecture of the MA (III) Algorithm.

(a) (b)

Fig. 11. Distribution of average distortion of various MA algorithms:(a) MA(I) algorithm,(b)
MA(II) algorithm

Figure 12 shows the distribution of the mean-squared distortion of MA(II) algorithm

implemented by our proposed architecture for 100 independent runs with 64N  and

64.P  Each run starts with different set of genetic strings randomly selected from training

images. The distribution of distortion of C-Means algorithm and steady-state GA algorithm

www.intechopen.com

Efficient VLSI Architecture for Memetic Vector Quantizer Design

163

for 100 independent runs are also included in Figure 12 for comparison purpose. From

Figure 12, it can be observed that the C-Means algorithm has a broad distribution of local

optima. On Figure 12: Distortion Distribution of proposed MA(II) architecture, C-Means

architecture and steady-state GA architecture.

On the other hand, from Figure 12, we see that the distribution of distortion of the MA(II)

has a better concentration. The worst case of MA(II) has distortion Only 9 of the distortion

of VQs designed by C-Means algorithm are lower than that of the worst case of the MA(II)

algorithm. The best case of the MA(II) has The difference between the worst and best cases

is only 2. Moreover, we can observe from Figure 12 that the MA(II) algorithm significantly

outperforms the steady-state GA algorithm for 100 independent runs.

Fig. 12. Distortion Distribution of proposed MA(II) architecture, C-Means architecture and
steady-state GA architecture.

Table 1 shows the area costs, average distortion and execution time of the proposed SOPC

system for various population size We fix for the experiment. The distortion and execution

time are obtained by averaging those of 100 independent executions. It can be observed

from Table 1 that the area cost of the entire system becomes only slightly higher as increases.

The average execution time grows linearly with In addition, the average distortion can be

effectively reduced as becomes larger.

Table 1 shows the area costs, average distortion and execution time of the proposed SOPC

system for various population size .P We fix 64N  for the experiment. The distortion and

execution time are obtained by averaging those of 100 independent executions. It can be

observed from Table 1 that the area cost of the entire system becomes only slightly higher as

www.intechopen.com

Genetic Algorithms in Applications

164

P increases. The average execution time grows linearly with .P In addition, the average

distortion can be effectively reduced as P becomes larger.

Table 2 investigates the impact of the number of codewords N on the area cost, average

distortion and execution time of the proposed SOPC system for MA (II) implementation.

The population size P is fixed to 64 for this experiment. The distortion and execution time

are obtained by averaging those of 100 independent executions. From Table 2, we see that

the number of ALMs and embedded memory bits consumed by the circuit grows with .N

The average distortion is effectively lowered as N increases.

P Average Average ALMs Embedded Memory

Distortion CPU Time (Entire SOPC) Bits(Entire SOPC)

16 26.88 366.8ms 22,487 629,504

32 26.65 580.5ms 22,793 662,272

64 26.50 1001.0ms 23,456 727,808

128 26.48 1801.4ms 24,935 858,880

Table 1. The area costs, average distortion and execution time of the proposed SOPC system

for MA (II) algorithm for various population size P

N Average Average ALMs Embedded Memory

Distortion CPU Time (Entire SOPC) Bits (Entire SOPC)

8 85.15 909.8ms 9,068 613,120

16 54.49 933.7ms 10,444 629,504

32 37.12 971.0ms 14,569 662,272

64 26.50 1001.0ms 23,456 727,808

Table 2. The area costs, average distortion and execution time of the proposed SOPC system

for MA (II) for various number of codewords N

We can also observe that the average CPU time only slightly increase with .N Note that the
computational complexity of C-Means algorithm may be large when the number of
codewords is high, due to the fact that the partitioning process is based on exhaustive
search. However, in the proposed architecture, the C-Means algorithm is implemented by

www.intechopen.com

Efficient VLSI Architecture for Memetic Vector Quantizer Design

165

an efficient (2)N  -stage pipeline. Therefore, the average CPU time for the VQ design can

still be low even when N increases, as shown in Table 2.

Table 3 shows the average CPU time and average distortion of various SOPC systems for
VQ design. The measurements are based on the average values of 100 independent runs. All
the SOPC systems are running on the same NIOS II softcore CPU with 50 MHz operating

frequency. The number of codewords is 64.N  Moreover, the MA(II) and steady-state GA

have the same population size 64.P 

For comparison purpose, we also implement the software counterpart of each SOPC system
using only C code running on Pentium D 3.0 GHz CPU. Note that, the SOPC system and its
software counterpart may not have the same distortion for each algorithm shown in the
table. This is because the SOPC system and its software counterpart are based on different
RNG for initial codewords selection and genetic operations. Nevertheless, the difference in
distortion is very small.

 SOPC systems Software

 MA (II) C-Means
(Hwang,
Hsu, Li,

Weng & Yu,
2010)

Steady-State
GA(Ou, 2010a)

MA(II) C-Means Steady-State
GA(Ou, 2010b)

CPU Time
(ms)

1001.0 7.36 400.2 366669.3 1922.35 37495.47

Distortion 26.50 35.10 37.62 27.67 37.40 37.48

Table 3. The average CPU time and average distortion of various SOPC systems and
software programs for VQ design

It can be observed from the table that each SOPC system has significantly lower CPU time

than its software counterpart. In particular, the CPU time of the SOPC system and software

for MA(II) design are 1001.0 ms and 366669.3 ms, respectively. The speedup of the proposed

SOPC over its software counterpart is 366.3. In addition, as shown in Table 3, the MA(II)

algorithm has lowest average distortion as compared with the C-Means and steady-state GA

algorithms.

The performance of MA(II) algorithm can be further improved by the employment of
MA(III) algorithm. Table 4 compares the performance of the proposed MA(II) and MA(III)
architectures, and their software counterparts. The number of modules for MA(III)

implementation is 3.M  The CPU time and average distortion measurements are based on

the average values of 100 independent runs. The area cost of the hardware implementations
are also included in the table for comparison purpose. To achieve meaningful comparisons,

both the architectures have the same number of codewords 16N  and the same number of

total genetic strings 24.P  They are also implemented on the same target FPGA device

Altera Stratix II 2S60. The software counterpart executes on the processor 4GHz Intel I7.

www.intechopen.com

Genetic Algorithms in Applications

166

It can be observed from Table 4 that the MA(III) architecture has lowest average CPU time

and lowest average distortion. The average CPU time of the MA(III) architecture is 0.47

second, which is only 43.93% and 1.36% of the CPU time of the MA(II) architecture and the

software counterpart of MA(III), respectively. Note that, each module for MA(III)

architecture has only 8 genetic strings. By contrast, the MA(II) architecture has 24 genetic

strings. Therefore, because each module for MA(III) architecture has smaller population, its

memetic operations are able to achieve faster convergence. In addition, the best string is

selected from multiple populations. Its average distortion is lower than that of the basic

memetic algorithm containing only one population, as shown in Table 4.

Although each module has smaller population for MA(III) architecture, the total number

ofgenetic strings of the MA(III) architecture is identical to that of the MA(II) architecture.

As a result, we can see from Table 4 that both the hardware architectures consume the

same number of embedded memory bits. On the other hand, the MA(III) architecture uses

more ALMs and DSP blocks for hardware implementation. This is because the

architecture consists of 3 modules, and each module has independent mutation and

crossover unit, and C-means units. These units utilizes large number of ALMs and DSP

blocks. Therefore, when both the area cost and speed are the important concerns, the MA

(II) architecture can be used. All these facts demonstrate the effectiveness of the proposed

architectures.

Algorithms ALMs Embedded
Memory Bits

DSP Blocks Average
CPU Time

Average
Distortion

MA (III)
Architecture

19281 12288 288 0.47 (sec) 54.62

MA (II)
Architecture

7203 12288 96 1.07 (sec) 55.27

Software 34.55(sec) 55.23

Table 4. Comparisons of the performance of various MA implementations

4. Conclusion

The proposed MA (II) and MA (III) architectures have been shown to be effective for fast VQ

training. Selections of genetic strings one at a time for crossover and mutation are able to

reduce area cost for hardware implementation while maintaining the performance for VQ

training. Moreover, the DMA for training vector delivery and pipeline architecture for C-

Means algorithm are beneficial for local refinement and fitness evaluation. Experimental

results show that the proposed architectures attains high speedup over its software

counterpart. It also has lower average distortion as compared with C-means and steady-

state GA algorithms.

www.intechopen.com

Efficient VLSI Architecture for Memetic Vector Quantizer Design

167

5. References

Areibi, S., Moussa, M., & Abdullah, H., (2001). A Comparison of Genetic/Memetic

Algorithms and Heuristic Searching, Proc. International Conference on Artificial

Intelligence, pp.660-666, June 2001.

Choi, Y. H., & Chung, D.J., (2000) VLSI Processor of Parallel Genetic Algorithm, IEEE Asia

Pacific Conf. on ASICs, pp.143-146, 2000.

Eiben, A. E., & Smith, J. D., (2003) Introduction to Evolutionary Computing, Springer,

2003.

Gersho, A., and Gray, R.M., (1992). Vector Quantization and Signal Compression, Kluwer,

Norwood, Massachusetts, 1992.

Hwang W.J., Hsu C.C., Li H.Y., Weng S.K., & Yu T.Y., (2010). High Speed C-means

Clustering in Reconfigurable Hardware, Microprocessors and Microsystems, pp.237-

246, 2010. (SCI)

Hwang, W.J., & Hong, S. L., (1999). Genetic entropy-constrained vector quantization, Optical

Engineering, Vol. 38, pp.233-239, 1999.

Hwang, W.J., Li, H.Y., Yeh, Y.J. & Chan, K.F., (2008). FPGA Implementation of Competitive

Learning with Partial Distance Search in the Wavelet Domain, Progress in

Neurocomputing Research, pp.203-221, NOVA Science Publisher, 2008.

Hauck, S., & Dehon, A., (2008). Reconfigurable Computing, Morgan Kaufmann, 2008.

Merz, P., & Freisleben, B., (1999). A Comparison of Memetic Algorithms, Tabu Search, and

Ant Colonies for the Quadratic Assignment Problem, Proc. the IEEE Congress on

Evolutionary Computation, pp.2063-2070, 1999.

Molina, D.; Lozano, M., & Herrera, F., (2010). MA-SW-Chains: Memetic algorithm based on

local search chains for large scale continuous global optimization, the IEEE Congress

on Evolutionary Computation, pp.1-8, 2010.

Moscato, P., (1999). Memetic Algorithms: A Short Introduction,” New Ideas in Optimization,

pp.219-234, McGraw-Hill, 1999.

Nedjah, N., & Mourelle, L., (2005). Hardware Architecture for Genetic Algorithms, Lecture

Notes in Computer Science, pp. 554-556, Vol. 3533, 2005.

Ou, C.M., (2010a). FPGA implementation of genetic vector quantizers, Neurocomputing, pp.

2125-2131, vol. 73, no. 10-12, Jun. 2010.

Ou, C.M., (2010b). Vector Quantization Based on Steady-State Memetic Algorithm, Journal of

Marine Science and Technology (JMST), vol. 18, no. 4, pp. 553-557, Aug. 2010.

Rasheed, K., & Davisson, B.D., (1999). Effect of global parallelism on the behave of a steady

state genetic algorithm for design optimization, In Proceedings of the Congress on

Evolutionary Computation, Washington, DC, 1999.

Tommiska, M., & Vuori, J., (1996). Implementation of genetic algorithms with

programmable logic devices, Proc. 2nd Nordic Workshop on Genetic Algorithms and

Their Applications, pp.111-126, 1996.

Santos, P.V.; Alves, J.C., (2010). FPGA Based Engines for Genetic and Memetic Algorithms,

Field Programmable Logic and Applications (FPL), pp.251-254, 2010.

Stratix II Device Handbook, 2008, Altera Corporation. http:// www.altera.com/ literature/

lit-nio2.jsp.

www.intechopen.com

Genetic Algorithms in Applications

168

NIOS II Processor Reference Handbook, 2008, Altera Corporation. http://www.altera.com/

literature/ lit-nio2.jsp.

www.intechopen.com

Genetic Algorithms in Applications

Edited by Dr. Rustem Popa

ISBN 978-953-51-0400-1

Hard cover, 328 pages

Publisher InTech

Published online 21, March, 2012

Published in print edition March, 2012

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

Genetic Algorithms (GAs) are one of several techniques in the family of Evolutionary Algorithms - algorithms

that search for solutions to optimization problems by "evolving" better and better solutions. Genetic Algorithms

have been applied in science, engineering, business and social sciences. This book consists of 16 chapters

organized into five sections. The first section deals with some applications in automatic control, the second

section contains several applications in scheduling of resources, and the third section introduces some

applications in electrical and electronics engineering. The next section illustrates some examples of character

recognition and multi-criteria classification, and the last one deals with trading systems. These evolutionary

techniques may be useful to engineers and scientists in various fields of specialization, who need some

optimization techniques in their work and who may be using Genetic Algorithms in their applications for the first

time. These applications may be useful to many other people who are getting familiar with the subject of

Genetic Algorithms.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Chien-Min Ou and Wen-Jyi Hwang (2012). Efficient VLSI Architecture for Memetic Vector Quantizer Design,

Genetic Algorithms in Applications, Dr. Rustem Popa (Ed.), ISBN: 978-953-51-0400-1, InTech, Available from:

http://www.intechopen.com/books/genetic-algorithms-in-applications/efficient-vlsi-architecture-for-memetic-

vector-quantizer-design

© 2012 The Author(s). Licensee IntechOpen. This is an open access article

distributed under the terms of the Creative Commons Attribution 3.0

License, which permits unrestricted use, distribution, and reproduction in

any medium, provided the original work is properly cited.

