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1. Introduction 

Memetic algorithms (MA) (Eiben & Smith, 2003; Molina, Lozano & Herrera, 2010; Moscato, 

1999; Santos & Alves, 2010) have been found to be effective for evolutionary computation 

(Areibi, Moussa & Abdullah, 2001; Merz & Freisleben, 1999). It can be viewed as the hybrid 

genetic algorithms (GA) (Eiben & Smith, 2003) consisting of local refinement to genetic 

search results. Because the algorithms involve both the global and local searches, one 

challenging issue of the MAs is to reduce the computational complexity. One simple way to 

lower the computational time is to reduce the population size. Nevertheless, this approach is 

not favorable because small population size usually traps the MA in poor local optimum. 

Another way to accelerate the execution of the MA is to implement the algorithm in hardware 
(Hwang, Hsu, Li, Weng & Yu, 2010). However, existing hardware architectures are mostly 
designed only for GA. No architecture for local refinement is available. In addition, existing 
GA hardware implementations (Choi & Chung, 2000; Nedjah & Mourelle, 2005; Tommiska & 
Vuori, 1996) have a number of drawbacks. First of all, large storage size is required for 
processing the genetic strings. Usually two set of population memories are used for the 
regeneration process. One memory contains the parent strings; the other stores the child 
strings after the regeneration. Moreover, there is overhead for switching one memory to 
another at the beginning of a new generation. The second drawback is that the regeneration 
process is based on the fitness function. The selection of parents therefore may need large chip 
area for hardware implementation. The mutation and crossover operations also result in high 
area cost when concurrent processing over all the genetic strings is desired. The third 
drawback is that the existing GA architectures (Choi & Chung, 2000; Nedjah & Mourelle, 2005; 
Tommiska & Vuori, 1996) contains only single population. Distributed or parallel evolutions 
are usually desired for attaining a near global optimal performance.  

The objective of this paper is to present a novel hardware architecture for fast parallel MA 

optimization. In this chapter, we consider the applications of MA for vector quantizer (VQ) 

(Gersho & Gray, 1992) design. When applied for VQ training, the MA requires large storage 
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size and long training time (Hwang & Hong, 1999). Therefore, the VQ design is a good 

example for verifying the effectiveness of the proposed MA architecture. 

In the proposed architecture, each population of the parallel MA is associated with a 
hardware module for independent memetic evolutions. Each hardware module consists of 
population memory unit, mutation and crossover unit, C-Means (Gersho & Gray, 1992) unit, 
and survival test and update unit. In our design, the mutation and crossover unit is used for 
global search, while the C-Means unit is used for local refinement. 

Each hardware module contains only one population memory for reducing the area cost. 

Both the mutation and crossover operations are performed concurrently for accelerating the 

MA. In addition, a pipeline architecture with direct memory access (DMA) operation is 

adopted for the C-Means operation. A hardware sorting structure is adopted for survival 

test. The proposed architecture has been implemented on field programmable gate array 

(FPGA) devices (Hauck & Dehon, 2008 ) so that it can operate in conjunction with a softcore 

CPU (NIOS II Processor Reference Handbook, 2008). Using the reconfigurable hardware, we 

are then able to construct a system on programmable chip (SOPC) system for the genetic VQ 

design. As compared with its software counterparts, numerical results reveal that the 

proposed FPGA-based MA architecture attains higher performance with significantly lower 

training time for VQ design. These fact demonstrate the effectiveness of our design. 

2. Preliminaries 

The goal of a VQ for data clustering is to partition a large data set 1{ ,..., }tX x x  into N  

non-overlapping clusters 1 ,..., NC C , where .N t  The partitioning process is based on a set 

of codewords 1{ ,..., },Ny y  where the codewords and the vectors in X  are of the same 

dimension .w  Given a vector ,x X  the x  will be assigned to the cluster iC  when 

 
1

( ) arg min ( , ),j
j N

i d
 

 x x y  (1) 

where ( )d u, v  denotes a distance measure between two vectors u  and .v  In this paper, the 

squared distance is adopted as the distance measure. When applied for data reduction 

applications such as data compression, a vector x  will be represented by the codeword iy  

when ( ).i a x  One cost function for the data reduction is the average distortion for 

representing x  by ,iy  as shown below 
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Given a data set ,x  the objective of the VQ design is to find a set of codewords 1{ ,..., }Ny y  

minimizing D  in eq.(2). 

In the basic MA (termed MA (I)) for VQ design, there are P  genetic strings for the genetic 

operations. Each string r  represents a set of N  codewords 1{ ,..., } .N ry y  Note that these 

strings are strings of vectors, not strings of binary numbers. 
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Let ( )S k  and ( )D k  denote the set of P  strings and the value of current minimum distortion 

D after the execution of the k -th generation of the basic MA, respectively. Let *s  be the 

current optimum string during the course of genetic operations. Suppose that the -( 1)k -th 

iteration is completed, and the execution of the k -th ( 1k  ) is to be done. We then perform 

the following operations sequentially on the strings in -( 1).S k  

Regeneration: Since each string in -( 1)S k  for the genetic operations is in fact a codebook of 

VQ, its corresponding D  can be computed using eq.(2). The inverse of D  is used as fitness 

function for each string. The regeneration process is then conducted using the roulette-

wheel technique. Once a string has been selected for reproduction, an exact replica of it is 

made as a regeneration string. In the algorithm, P  regeneration strings are created after the 

regeneration operation. 

Crossover: On each regeneration string ,r  1 2{ , ,..., } ,N ry y y  one point crossover is applied 

with probability .cP  Out of the total population, a partner string ',r  1 2{ , ,..., } ,N rz z z  is 

randomly chosen. Then an integer random number n  between 1 and N  is generated. Both 

strings are cut into two portions at position n  and the portions 1{ ,..., }n Ny y  and 

1{ ,..., }n N rz z  are mutually exchanged. 

Mutation: Mutation is performed on each codeword of each string with a small probability 

.mP  Suppose now the string 1 2{ , ,..., }N rr  y y y  is to be mutated. One of the N  codewords, 

,y  is chosen at random. Among the w  numbers in ,y  we also select one number at 

random. Then a random number, taking the binary values b  or - ,b  is generated, and is 

added to the chosen component. 

Local Refinement: The C-Means algorithm is used for the local refinement in the MA. Each 

string r  in the population after mutation is used as the initial codebook to C-Means 

algorithm. The output codebook of C-Means algorithm then is result of local refinement of 

.r  All the strings after local refinement then form the set ( ).S k  The average distortion of 

each string in ( )S k  is then computed for updating ( ).D k  

In the MA algorithm, the iteration continues until the convergence of the sequence ( ).D k  

The current optimum string *s  after the completion of MA algorithm is then chosen as the 

desired result. 

It may be difficult to implement the MA (I) algorithm in hardware. This is because two 
population memories are required in the algorithm. One population memory contains the 
parent strings. The other is used for storing the strings after the regeneration process. The 
roulette-wheel technique may also become the bottleneck for the hardware. In addition, the 
crossover, mutation and C-Means operations should operate over all the P  regenerated 
strings. The corresponding hardware complexity therefore may be very high. 

3. The proposed MA architecture 

In this chapter, two alternative MA algorithm (termed MA (II) and MA (III) algorithms) is 
adopted for the VQ design. The MA (II) is based on the steady-state GA for global search, 
which has superior performance over the basic generational GA for a number of 
applications (Rasheed & Davisson, 1999). There is no concept of generation in steady-state 
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GA. Let S  be the population of P  genetic strings, which are called the parent strings. 
Initially, the P  strings in S  are randomly generated. Two strings (denoted by 1r  and 2r ) in 
S  will be selected for mutation and crossover for creating a new child string (denoted by 
c ). The new string then is used as the initial codebook to the C-Means algorithm for local 
refinement. 

The fitness value of the child string after local refinement is then evaluated and compared 

with the fitness value of all the parent strings in .S  If the new string is inferior to all the 

parent strings in ,S  no parent string will be removed. Otherwise, the parent string with 

lowest fitness value is replaced by the child string. 

Note that because each string for the VQ design is actually a codebook, the memory access 

time for string retrieval may be long. Consequently, the retrieval process for 1r  and 2r  may 

be time-consuming. To reduce the memory access time, in the algorithm, the previous 1r  

becomes the new 2r  and then the new 1r  is chosen randomly from .S  This selection scheme 

reduces the memory access time by half. 

As the process of selection, crossover, mutation, local refinement, and survival/replacement 

continues, the overall fitness of population will increase and the survival rate of new off-

spring will diminish. At some point, the offspring survival rate will drop to zero. At this 

point, evolution has probably ceased and the algorithm may be terminated. The MA (II) 

algorithm is more effective for the hardware design. Only one population memory is 

required. In addition, crossover and mutation operations only operate on 1r  and 2r  instead 

of all strings in the population memory. Finally, C-Means operation only operate on the new 

child string .c  Therefore, only one crossover and mutation module, and one C-Means 

module are necessary for hardware implementation. These facts effectively reduce the area 

cost for FPGA design. 

 

Fig. 1. The employment of SOPC for the MA (II) architecture 

In the MA (III) algorithm, there are M  populations. Each population evolves independently 

using the MA (II) algorithm. After all the populations are converged, the optimal strings 
from different populations are compared. The string having the highest fitness value is then 
the selected string for the VQ design. 
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The hardware architecture of the MA (II) and MA (III) can be viewed as a user logic in the 
NIOS-based SOPC system (NIOS II Processor Reference Handbook, 2008), as shown in 
Figure 1. Because the proposed architecture is used for the VQ design, the training data is 
required. The goal of using the SOPC is to provide the training data for the hardware 
architecture. The training data can be stored in a SDRAM, and delivered to our architecture 
via the Avalon bus. The DMA can be used to speed up the delivery. Alternatively, the 
training data can be obtained from a remote host via the internet. 

Figure 2 shows the hardware architecture of the MA (II) algorithm. It contains population 

memory, crossover &  mutation unit, C-Means unit, survival test &  update unit, and 

Avalon bus interface. Both the population memory and crossover &  mutation unit contain 

random number generators (RNGs). 

In this architecture, the population memory unit is devoted for storing the genetic strings. 
Moreover, the random selection of parent strings for subsequent crossover and mutation 
operations is also included here. This selection is based on the RNG inside the population 
memory unit. All the crossover and mutation operations are performed concurrently in the 
crossover &  mutation unit for producing a new child string .c  The fitness value of the 
resulting string is then evaluated by the fitness evaluation unit. 

Based on the fitness value, the goal of the survival test &  update unit is to determine 

whether the child string c  will survive. If it is the case, the parent string in the population 

memory unit with the worst fitness value will be replaced by the child string. Each unit in 

Figure 2 will be described in detailed as shown below. 

 

Fig. 2. The proposed hardware architecture for MA (II) 
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Population Memory Unit: The population memory contains a 2-port RAM and a RNG unit. 
The 2-port RAM contains ,S  the set of P  genetic strings. In our design, the implementation 

of the RAM is based on the embedded memory, which is provided by some FPGA devices 
such as Altera Stratix II. The goal of RNG unit in the population memory unit is to select 
randomly a string  for the subsequent crossover and mutation operations. In our design, the 
cellular automata (CA) is adopted for the VLSI implementation of random number 
generator due to its simplicity and regularity of the design. 

Mutation and Crossover Unit: Figure 3 shows the basic structure of the mutation and 

crossover unit, which contains three shift registers for storing the strings 1 ,r  2r  and ,c  

respectively. A number of RNGs, comparators, multiplexers and counters are then used for 

crossover and mutation. The major advantage of this architecture is that the crossover and 

mutation can be performed concurrently with low are a cost. 

As shown in Figure 3, SHIFT REGISTER 1 and SHIFT REGISTER 2 contain strings 1r  and 

2 ,r  respectively. Note that the architecture does not randomly select new 1r  and 2r  from 

the population memory. In fact, only new 1r  is chosen from population memory. The new 

2r  is actually the previous 1.r  The memory access time and routing overhead can then be 

significantly reduced. Based on the algorithm, in the architecture, The SHIFT REGISTER 1 

obtains 1r  from the population memory unit. The SHIFT REGISTER 2 obtains 2r  from 

SHIFT REGISTER 1. 

 

Fig. 3. The architecture of crossover and mutation unit 
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The crossover operations are accomplished by concurrently shifting the strings in SHIFT 
REGISTER 1 and SHIFT REGISTER 2 to MUX 1. Each shift register will shift one codeword 
at a time. As shown in Figure 3, MUX 1 is a switch selecting the codewords of either 1r  or 

2 ,r  and route them to SHIFT REGISTER 3, which contains the resulting child string .c  The 
control line of MUX 1 is connected to a comparator, which compares the value of RNG 1 to 
that of a counter. The counter records the number of shifts made by the shift registers. The 
value of RNG 1 serves as a threshold here. When the counter value is less than the 
threshold, codewords of SHIFT REGISTER 1 (i.e., 1r ) goes to SHIFT REGISTER 3. Otherwise, 
codewords of will be selected. Consequently, the value of RNG 1 determines the crossover 
point. The value will be randomly generated prior to the shifting operations. 

We also observe from Figure 3 that the output codeword of MUX 1 will pass through the 
mutation unit before arriving the SHIFT REGISTER 3. Figure 4 shows the architecture of the 
mutation unit. As shown in the figure, all w  components of the output codeword mutate 
concurrently. The mutation circuit for each component i  consists of 2 RNGs (termed RNG 
ia and RNG ib ), one register (termed register i ), one comparator (termed comparator i ), 
one multiplexer (termed mux i ). 

The probability for mutation bP  is stored in a separate register, and is broadcasted to all the 
mutation circuits. In the mutation circuit for each component ,i  the value of RNG ia is first 
compared with the .bP  The component i  will be mutated when the value of RNG ia is less 
than .bP  The mutated value is then determined by RNG .ib  

 

Fig. 4. The architecture of mutation unit 
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C-Means Unit: The goal of the C-Means unit is to locally refine the mutated child string 
stored in SHIFT REGISTER 3 using the C-Means algorithm. As shown in Figure 5, the 
proposed C-Means architecture can be decomposed into two units: the partitioning unit and 
the centroid computation unit. These two units will operate concurrently for the local 
refinement process. The partitioning unit uses the codewords stored in the register to 

partition the training vectors into N  clusters. The centroid computation unit concurrently 

updates the centroid of clusters. Note that, both the partitioning process and centroid 
computation process should operate iteratively in software. However, by adopting a novel 
pipeline architecture, our hardware design allows these two processes operate in parallel for 
reducing the computational time. In fact, our design allows the concurrent computation of 

N +2 training vectors for the C-Means operations. 

Figure 6 shows the architecture of the partitioning unit, which is a N -stage pipeline, where 

N  is the number of codewords (i.e., clusters). The pipeline fetch one training vector per 

clock from the input port. The i -th stage of the pipeline compute the squared distance 

between the training vector at that stage and the i -th codeword of the codebook. The 

squared distance is then compared with the current minimum distance up to the i -th stage. 

If distance is smaller than the current minimum, then the i -th codeword becomes the new 

current optimal codeword, and the corresponding distance becomes the new current 

minimum distance. After the computation at the N -th stage is completed, the current 

optimal codeword and current minimum distance are the actual optimal codeword and the 

actual minimum distance, respectively. The index of the actual optimal codeword and its 

distance will be delivered to the centroid computation unit for computing the centroid and 

overall distortion. 

 

Fig. 5. The architecture of the C-Means unit 

 

Fig. 6. The architecture of the partitioning unit 
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Figure 7 depicts the architecture of the centroid computation unit, which can be viewed as a 
two-stage pipeline. In this paper, we call these two stages, the accumulation stage and 

division stage, respectively. Therefore, there are 2N   pipeline stages in the C-Means unit. 

The concurrent computation of N +2 training vectors therefore is allowed for the local 

refinement operations. 

 

Fig. 7. The architecture of the centroid computation unit 

As shown in Figure 8, there are N  accumulators (denoted by , 1,...,ACCi i N ) and N  

counters for the centroid computation in the accumulation stage. The i -th accumulator 

records the current sum of the training vectors assigned to cluster .i  The i -th counter contains 

the current number of training vectors mapped to cluster .i  The i -th counter contains the 

current number of training vectors mapped to cluster .i  The training_vector_out, D_out and 

index_out in Figure 8 are actually the outputs of the N -th pipeline stage of the partitioning 

unit. The index_out is used as control line for assigning the training vector (i.e. 
training_vector_out) to the optimal cluster found by the partitioning unit. 

The circuit of division stage is shown in Figure 9. There is only one divider in the unit 

because only one centroid computation is necessary at a time. Suppose the final index_out is 

i  for the i -th vector in the training set. The centroid of the i -th cluster then need to be 

updated. The divider and the i -th accumulator and counter are responsible for the 

computation of the centroid of the i -th cluster. Upon the completion of the j -th training 

vector at the centroid computation unit, the i -th counter records the number of training 

vectors (up to j -th vector in the training set) which are assigned to the i -th cluster. The i -

th accumulator contains the sum of these training vectors in the i -th cluster. The output of 

the divider is then the mean value of the training vectors in the i -th cluster. 

It can be observed from the Figure 9 that the division stage also evaluates the overall 
distortion of the codebook. This can be accomplished by simply accumulates all the 
minimum distortion associated with each training vector after the completion of the 
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partitioning process. The overall distortion is used for both the fitness evaluation and the 
convergence test of the C-Means algorithm. 

 

Fig. 8. The architecture of the accumulation stage in the centroid computation unit 

Survival Test and Update Unit: This unit contains a hardware sorting circuit (Hwang, Li, 
Yeh & Chan, 2008), which sorts the parent strings in a descending order according to their 
fitness values. After the fitness evaluation operation is completed, the fitness value of the 
child string is used as the input to the sorting circuit. When the distortion of the string is 
larger than the parent string with lowest fitness value, the child string is not survival, and 
no updating operation is necessary. Otherwise, the parent string with highest distortion is 
replaced by the child string. The sorting circuit is then activated to determine the new 
parent string with the highest distortion. 

Figure 10 depicts the architecture of MA (III) algorithm, which contains modules. Each module 
is a hardware realization of MA (II) algorithm. Therefore, the architecture of each module is 
shown in Figure 2. Although the genetic strings in different modules (i.e., different 
populations) evolve independently, they all need the same set of training vectors for C-means 
algorithm and fitness evaluation. Independent requests for training vector delivery from 
different modules demand very high memory bandwidth. This may become the bottleneck of 
the architecture for MA (III) implementation. To solve the problem, the C-means operation of 
all the architectures operate synchronously. Therefore, training vectors from main memory can 
be broadcasted to all the modules for C-means training. In addition, the DMA is used for 
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further accelerating the data delivery. To implement synchronous C-means operations among 
different modules, we first note that all the string selection, mutation  crossover, and survival 
test operations take fixed number of clock cycles. The same operation will take the same 
number of clocks in different modules. Consequently, when all the modules start MA 
operations at the same time, the synchronization among the modules can be achieved. 

 

Fig. 9. The architecture of the division stage in the centroid computation unit 

3. Experimental results 

This section presents some physical performance measurements of the proposed FPGA 

implementation. The target FPGA device for the hardware design is Altera Stratix II 2S60 

(Stratix II Device Handbook, 2008). The Altera Quartus II version 7.2 with SOPC Builder is 

used as the platform for the system development. The vector dimension of codewords is 

2 2.w    The mutation probability is 0.03125.bP   

Figure 11 compares the average distortion of the proposed MA (II) implementation with 

that of basic MA(I) under the same population size 64P   and number of codewords 

64.N   The software implementation of MA (I) is executed on the 3-GHz Pentium D CPU. 

In the experiment, we execute each implementation 300 times independently. The training 
set contains 65536 training vectors from the image "Lena."  

Based on the training set, the average distortion of each execution is computed according to 
eq.(2). Figure 11 then reveals the distribution of the average distortion. It can be observed 
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from Figure 11 that both implementations have similar average distortion distributions. 
Therefore, our architecture simplifying the string random selection process does not 
degrade the performance of memetic VQ design. 

 

Fig. 10. The architecture of the MA (III) Algorithm. 

 
(a)     (b) 

Fig. 11. Distribution of average distortion of various MA algorithms:(a) MA(I) algorithm,(b) 
MA(II) algorithm 

Figure 12 shows the distribution of the mean-squared distortion of MA(II) algorithm 

implemented by our proposed architecture for 100 independent runs with 64N   and 

64.P   Each run starts with different set of genetic strings randomly selected from training 

images. The distribution of distortion of C-Means algorithm and steady-state GA algorithm 
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for 100 independent runs are also included in Figure 12 for comparison purpose. From 

Figure 12, it can be observed that the C-Means algorithm has a broad distribution of local 

optima. On Figure 12: Distortion Distribution of proposed MA(II) architecture, C-Means 

architecture and steady-state GA architecture. 

On the other hand, from Figure 12, we see that the distribution of distortion of the MA(II) 

has a better concentration. The worst case of MA(II) has distortion  Only 9 of the distortion 

of VQs designed by C-Means algorithm are lower than that of the worst case of the MA(II) 

algorithm. The best case of the MA(II) has  The difference between the worst and best cases 

is only 2. Moreover, we can observe from Figure 12 that the MA(II) algorithm significantly 

outperforms the steady-state GA algorithm for 100 independent runs. 

 

Fig. 12. Distortion Distribution of proposed MA(II) architecture, C-Means architecture and 
steady-state GA architecture. 

Table 1 shows the area costs, average distortion and execution time of the proposed SOPC 

system for various population size We fix for the experiment. The distortion and execution 

time are obtained by averaging those of 100 independent executions. It can be observed 

from Table 1 that the area cost of the entire system becomes only slightly higher as increases. 

The average execution time grows linearly with In addition, the average distortion can be 

effectively reduced as becomes larger. 

Table 1 shows the area costs, average distortion and execution time of the proposed SOPC 

system for various population size .P  We fix 64N   for the experiment. The distortion and 

execution time are obtained by averaging those of 100 independent executions. It can be 

observed from Table 1 that the area cost of the entire system becomes only slightly higher as 
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P  increases. The average execution time grows linearly with .P  In addition, the average 

distortion can be effectively reduced as P  becomes larger. 

Table 2 investigates the impact of the number of codewords N  on the area cost, average 

distortion and execution time of the proposed SOPC system for MA (II) implementation. 

The population size P  is fixed to 64 for this experiment. The distortion and execution time 

are obtained by averaging those of 100 independent executions. From Table 2, we see that 

the number of ALMs and embedded memory bits consumed by the circuit grows with .N  

The average distortion is effectively lowered as N  increases. 

 

P  Average Average ALMs Embedded Memory 

Distortion CPU Time (Entire SOPC) Bits(Entire SOPC) 

16 26.88 366.8ms 22,487 629,504 

32 26.65 580.5ms 22,793 662,272 

64 26.50 1001.0ms 23,456 727,808 

128 26.48 1801.4ms 24,935 858,880 

Table 1. The area costs, average distortion and execution time of the proposed SOPC system 

for MA (II) algorithm for various population size P  

 

N  Average Average ALMs Embedded Memory 

Distortion CPU Time (Entire SOPC) Bits (Entire SOPC) 

8 85.15 909.8ms 9,068 613,120 

16 54.49 933.7ms 10,444 629,504 

32 37.12 971.0ms 14,569 662,272 

64 26.50 1001.0ms 23,456 727,808 

Table 2. The area costs, average distortion and execution time of the proposed SOPC system 

for MA (II) for various number of codewords N  

We can also observe that the average CPU time only slightly increase with .N  Note that the 
computational complexity of C-Means algorithm may be large when the number of 
codewords is high, due to the fact that the partitioning process is based on exhaustive 
search. However, in the proposed architecture, the C-Means algorithm is implemented by 
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an efficient ( 2)N  -stage pipeline. Therefore, the average CPU time for the VQ design can 

still be low even when N  increases, as shown in Table 2. 

Table 3 shows the average CPU time and average distortion of various SOPC systems for 
VQ design. The measurements are based on the average values of 100 independent runs. All 
the SOPC systems are running on the same NIOS II softcore CPU with 50 MHz operating 

frequency. The number of codewords is 64.N   Moreover, the MA(II) and steady-state GA 

have the same population size 64.P   

For comparison purpose, we also implement the software counterpart of each SOPC system 
using only C code running on Pentium D 3.0 GHz CPU. Note that, the SOPC system and its 
software counterpart may not have the same distortion for each algorithm shown in the 
table. This is because the SOPC system and its software counterpart are based on different 
RNG for initial codewords selection and genetic operations. Nevertheless, the difference in 
distortion is very small. 

 

 SOPC systems Software 

 MA (II) C-Means 
(Hwang, 
Hsu, Li, 

Weng & Yu, 
2010) 

Steady-State 
GA(Ou, 2010a)

MA(II) C-Means Steady-State 
GA(Ou, 2010b) 

CPU Time 
(ms) 

1001.0 7.36 400.2 366669.3 1922.35 37495.47 

Distortion 26.50 35.10 37.62 27.67 37.40 37.48 

Table 3. The average CPU time and average distortion of various SOPC systems and 
software programs for VQ design 

It can be observed from the table that each SOPC system has significantly lower CPU time 

than its software counterpart. In particular, the CPU time of the SOPC system and software 

for MA(II) design are 1001.0 ms and 366669.3 ms, respectively. The speedup of the proposed 

SOPC over its software counterpart is 366.3. In addition, as shown in Table 3, the MA(II) 

algorithm has lowest average distortion as compared with the C-Means and steady-state GA 

algorithms. 

The performance of MA(II) algorithm can be further improved by the employment of 
MA(III) algorithm. Table 4 compares the performance of the proposed MA(II) and MA(III) 
architectures, and their software counterparts. The number of modules for MA(III) 

implementation is 3.M   The CPU time and average distortion measurements are based on 

the average values of 100 independent runs. The area cost of the hardware implementations 
are also included in the table for comparison purpose. To achieve meaningful comparisons, 

both the architectures have the same number of codewords 16N   and the same number of 

total genetic strings 24.P   They are also implemented on the same target FPGA device 

Altera Stratix II 2S60. The software counterpart executes on the processor 4GHz Intel I7. 
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It can be observed from Table 4 that the MA(III) architecture has lowest average CPU time 

and lowest average distortion. The average CPU time of the MA(III) architecture is 0.47 

second, which is only 43.93%  and 1.36%  of the CPU time of the MA(II) architecture and the 

software counterpart of MA(III), respectively. Note that, each module for MA(III) 

architecture has only 8 genetic strings. By contrast, the MA(II) architecture has 24 genetic 

strings. Therefore, because each module for MA(III) architecture has smaller population, its 

memetic operations are able to achieve faster convergence. In addition, the best string is 

selected from multiple populations. Its average distortion is lower than that of the basic 

memetic algorithm containing only one population, as shown in Table 4. 

Although each module has smaller population for MA(III) architecture, the total number 

ofgenetic strings of the MA(III) architecture is identical to that of the MA(II) architecture. 

As a result, we can see from Table 4 that both the hardware architectures consume the 

same number of embedded memory bits. On the other hand, the MA(III) architecture uses 

more ALMs and DSP blocks for hardware implementation. This is because the 

architecture consists of 3 modules, and each module has independent mutation and 

crossover unit, and C-means units. These units utilizes large number of ALMs and DSP 

blocks. Therefore, when both the area cost and speed are the important concerns, the MA 

(II) architecture can be used. All these facts demonstrate the effectiveness of the proposed 

architectures. 

 

Algorithms ALMs Embedded  
Memory Bits 

DSP Blocks Average  
CPU Time 

Average 
Distortion 

MA (III) 
Architecture 

19281 12288 288 0.47 (sec) 54.62 

MA (II) 
Architecture 

7203 12288 96 1.07 (sec) 55.27 

Software    34.55(sec) 55.23 

Table 4. Comparisons of the performance of various MA implementations 

4. Conclusion 

The proposed MA (II) and MA (III) architectures have been shown to be effective for fast VQ 

training. Selections of genetic strings one at a time for crossover and mutation are able to 

reduce area cost for hardware implementation while maintaining the performance for VQ 

training. Moreover, the DMA for training vector delivery and pipeline architecture for C-

Means algorithm are beneficial for local refinement and fitness evaluation. Experimental 

results show that the proposed architectures attains high speedup over its software 

counterpart. It also has lower average distortion as compared with C-means and steady-

state GA algorithms. 
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