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1. Introduction 

Worldwide, gastrointestinal (GI) system tumors are the leading group of cancers in terms of 
incidence and cause of cancer deaths (Parkin, 2005). They are usually diagnosed at an 
advanced stage which is rarely curable, and even if detected early the rate of recurrence is 
quite high. Therefore despite improvements in the diagnosis and treatment of GI cancers, 5-
year survival rates remain disappointing. Effective new treatments are urgently needed, and 
existing therapies need to be individualized to determine patients who are likely to respond 
to a given chemotherapy, as well as to identify patients at risk of developing severe toxicity. 
This approach will enable clinicians to optimize and personalize cancer treatment. 
Pharmacogenetics is, perhaps, the most promising method to provide this (Yalcin, 2009). 
Metabolism of chemotherapy agents varies depending on patient age, gender, diet, 
concomitant drug use, comorbidities, and hepatic and renal functions and moreover GI 
functions may be impaired due to surgery, chemotherapy and the disease or existing 
comorbidities in GI cancer patients. 

Pharmacogenetics focuses on the influence of genetic structure on cancer treatment because 
enzymes that metabolize the drug, proteins that transport the drug and its metabolites, and 
drug receptors are determined by a patient’s genetic profile (Vesell, 1989). However, it is not 
only the genetics of the patient, but also the genetic alterations of the tumor that are critical 
(Yong, 2006, Vesell, 1989). Pharmacogenetics may help to decide the most sensitive and least 
toxic therapy in order to increase survival, reduce treatment related cost and improve 
patient’s quality of life. In this chapter, the most common drugs, combinations thereof, and 
biological agents used for the treatment of GI tumors are reviewed for their relevant 
pharmacogenetic aspects. 

2. 5-Fluorouracil (5-FU) 

The uracil analogue 5-FU has been used in the treatment of GI cancers for over 50 years 
(Meta-Analysis Group in Cancer, 1998). 5-FU acts in several ways, but principally as a 
thymidylate synthase (TYMS) inhibitor. Inhibition of this enzyme blocks synthesis of the 
pyrimidine, thymidine which is a nucleotide required for DNA replication. TYMS 
methylates deoxyuridine monophosphate (dUMP) into deoxythymidine monophosphate 
(dTMP). Administration of 5-FU causes a depletion in dTMP, so that rapidly dividing cancer 
cells undergo cell death. 
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5-FU itself is a prodrug, which must be activated by entering the pyrimidine synthesis 
pathway. Although 5-FU can enter the pathway at 3 different points, the key entry point is 
the conversion of UMP to UDP, which is catalyzed by pyrimidine monophosphate kinase. 5-
FU is given intravenously, because oral bioavailability is limited due to high concentrations 
of dihydropyrimidine dehydrogenase (DPYD) in the gut mucosa. DPYD is an enzyme 
present in the liver, intestinal mucosa and various other tissues. DPYD catabolizes 5-FU to 
5,6-dihydro-5-fluorouracil (DHFU). Capecitabine is an oral analogue of 5-FU which can be 
used instead of intravenous 5-FU. Capecitabine is converted to 5-FU via a 3 step activation 
process. The first two steps occur in the liver and the last step is carried out by the enzyme 
thymidine phosphorylase (TYMP), which is over expressed in a large number of tumors 
(approximately 3 times more compared to normal tissue). Only a fraction of the 
administered 5-FU reaches its target cell and is transformed to active metabolites that is 
converted to 5-fluoro-2'-deoxyuridine-5'-monophosphate (5-FdUMP) within the cell to 
inhibit TYMS. Eighty-five percent of 5-FU is catabolized to its inactive metabolites via 
DPYD. Inherited deficiency of DPYD leads to greatly increased drug sensitivity and toxicity 
(Figure 1) (Daher et al, 1990). 

 

Fig. 1. 5-Fluorouracil metabolism 

2.1 Dihydropyrimidine Dehydrogenase (DPYD) 

5-FU is primarily degraded by the enzyme DPYD. When DPYD enzyme deficiency is 
present, blood levels of 5-FU and its active metabolites increase. DPYD enzyme deficiency 
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can result in fatal myelotoxicity, mucositis, neuro and cardiac toxicity such as myocardial 
infarction, sudden death, unstable angina, hypertension and pulmonary edema (Diasio, 
2001, Fleming et al, 1993, Milano et al, 1999). Although technically difficult, determination of 
DPYD enzyme activity in mononuclear cells may be useful (Lu, Zhang, Diasio, 1993). The 
gene encoding the DPYD enzyme is located at 1p22 and consists of 23-exons (Wei et al, 
1998). The reasons for DPYD deficiency are base substitutions, splicing abnormalities, and 
frame-shift mutations. More than 40 different DPYD polymorphisms have been reported so 
far (Ridge et al, 1998). Severe 5-FU toxicity is associated with 17 of these mutations. 
Homozygote and heterozygote DPYD dysfunction is estimated to be 0.1% and 3% to 5%, 
respectively in the general population. DPYD*2A is the most common DPYD polymorphism 
associated with 5-FU toxicity. Partial loss of the enzyme due to heterogeneous G>A 
transition at the 5’ slicing donor consensus sequence in intron 14 leading to exon 14 skipping 
is associated with increased 5-FU toxicity due to inactive enzyme formation. The 
heterozygote form is characterized by severe toxicity while the homozygote form is 
characterized by mental deficiency. DPYD deficiency was demonstrated in 61% of patients 
with severe 5-FU toxicity. DPYD*2A polymorphism was identified in 50% of patients with 
grade 4 neutropenia. P456L (1358C>T) mutation is a novel DPYD variant associated with 5-
FU related cardiotoxicity in pancreatic cancer patients (Shahrokni et al, 2009). However, 
multiple other factors and genes are thought to be involved in 5-FU toxicity because DPYD 
enzyme activity is normal in most patients with severe 5-FU toxicity (Mattison, Soong, 
Diasio, 2002, Ridge et al, 1998). Genetic variations of other enzymes particularly TYMS and 
TYMP involved in 5-FU metabolism are also important. 

2.2 Thymidylate Synthase (TYMS) 

TYMS is a target of 5-FU. It plays a significant role in folate metabolism. TYMS enables 

conversion of deoxyuridylate to deoxythymidylate (Miller and McLeod 2007, Johnston et al, 

1995). Increased TYMS enzyme expression in tumors has been shown to be associated with 

resistance to 5-FU and capecitabine (Kidd et al, 2005). In particular, intratumoral TYMS 

levels in metastatic lesions are indicative of 5-FU resistance. This is a result of differences 

between TYMS expressions of primary and metastatic lesions (Pullarkat et al, 2001, Marsh et 

al, 2001, Salonga et al, 2000). The 5’untranslated region of the TYMS (5'-UTR) gene contains 

a 28-base pair tandem repeat sequence in the promoter region (TSER) which usually hosts 

double (allele *2) and triple (allele *3) repeats. The *3 allele is associated with a two to four 

fold increased expression of TYMS compared to *2. In patients with stage III colon cancer 

treated with adjuvant therapy, the outcome is poor in the presence of a TSER3 

polymorphism. While the response rate is 50% in those with *2/*2, it is 8% in those with 

*3/*3 (Marsh et al, 2001). TYMS polymorphisms also affect survival. Median survival of 

cases with *2/*2 is 16 months vs. 12 months in cases of *3/*3. (Salonga et al, 2000). TYMS 

polymorphisms are also relevant in predicting response to neoadjuvant 5-FU treatment in 

rectal cancer. Cases of *3/*3 are associated with a poor response to the treatment (Salonga et 

al, 2000, Villafranca et al, 2001). 

2.3 Thymidylate Phosphorylase (TYMP) 

TYMP mRNA levels in patients not responding to 5-FU were 2.6-fold higher than in 
responding patients in pretreatment biopsies of patients with colorectal cancer (Metzger et 
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al, 1998). Survival was significantly increased in patients with both TYMS and TYMP under 
nonresponse cutoff values, and low intratumoral expression of TYMS and TYMP was 
associated with a response to 5-FU and improved survival (Metzger et al, 1998, Meropol et 
al, 2006). 

2.4 Methylenetetrahydrofolate reductase (MTHFR) 

MTHFR generates active folate which is necessary for normal hematopoiesis. Reduced 
MTHFR activity has been associated with increased sensitivity to 5-FU. Low activity 
MTHFR variants 677T and 1298C predispose to severe myelotoxicity in patients treated with 
5-FU (Robien et al, 2005). 

3. Gemcitabine 

Chemotherapy has proved of only limited effectiveness in pancreatic cancer. Gemcitabine is 
a deoxycytidine nucleoside analogue used in the treatment of advanced-stage pancreatic 
cancer (Burris et al, 1997). It has also proved to be of benefit in the adjuvant treatment of 
resected pancreatic cancer. Treatment with gemcitabine produces clinical benefit and 
symptom improvement in 20% to 30% of patients and 1-year survival rate of patients raised 
from 2% to 18% by gemcitabine. Gemcitabine undergoes metabolic activation by kinases to 
form a cytotoxic trinucleotide in the cell. Metabolic inactivation of gemcitabine by 
deamination is catalyzed by cytidine deaminase (CDA) or after phosphorylation by 
deoxycytidylate deaminase (DCTD) (Plunkett et al, 1995, Gandhi et al, 1990). Gemcitabine is 
a hydrophilic molecule and therefore does not cross the cell membrane by diffusion. To 
achieve gemcitabine cytotoxicity functional nucleoside transporters, namely human 
equilibrative nucleoside (hENT1) and human concentrative nucleoside transporters are 
needed. Nucleoside-transporter–deficient cells are highly resistant to gemcitabine (Spratlin 
et al, 2004, Mackey et al, 1998). “SLC29A1” is the most abundant of the nucleoside 
transporters. Intratumoral SLC29A1 protein expression, was related to prolonged survival 
in patients with pancreatic carcinoma treated with gemcitabine. Analysis of SLC29A1 
mRNA expression revealed a significant correlation with longer survival in these patients 
following treatment (Sebastiani V et al, 2006, Giovannetti E, 2006). 

Deoxycytidine kinase (DCK) deficiency is one of the most common forms of acquired 
resistance to gemcitabine in vitro (Sebastiani V et al, 2006, Bergman AM, et al, 2002). A 
correlation has been described between higher levels of DCK activity and increased 
gemcitabine sensitivity in patients with advanced pancreatic cancer treated with 
gemcitabine, whereas low tumoral DCK protein expression is associated with a worse 
overall survival (OS) and progression-free survival (PFS) (Sebastiani V et al, 2002, Kocabas 
NA et al, 2009). Ribonucleotide reductase (RR) is a target enzyme for gemcitabine (Goan YG 
et al, 1999). The pharmacology and pharmacogenetics of ribonucleotide reductase subunit 
M1 (RRM1) is of particular interest due to its potential role in gemcitabine chemosensitivity 
and synergy with other chemotherapeutic agents, particularly cisplatin (Sebastiani V, et al, 
Mini E et al, 2006, Ueno H et al, 2007). In genetically modified lung cancer cell lines, RRM1 
expression correlated inversely with gemcitabine sensitivity (Bepler G et al, 2006). 
Deactivating enzymes of gemcitabine include 5', 3'-nucleotidase, cytosolic (NT5C), 
deoxycytidylate deaminase (DCTD), and cytidine deaminase (CDA). Upregulation of CDA 
may play a role in gemcitabine resistance, while impaired activity may result in increased 
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toxicity but not efficacy (Bepler G et al, 2006, Mathijssen RH et al, 2001). In addition to 
impaired tumor-specific mRNAs’/proteins’ expression, a variety of genetic polymorphisms 
can have an impact on gemcitabine efficacy and toxicity. Tumor-specific expression of 
ENT1, RRM1 or ERCC1, and some DNA repair genetic polymorphisms appear to be 
indicators of prognosis in patients receiving gemcitabine chemotherapy. The expression 
level or genetic polymorphism of CDA seems to be a good predictor of adverse side effects 
caused by gemcitabine. SNP, CDA 208A4G, or CDA expression level may be used as 
biomarkers for prediction of gemcitabine-related severe toxicity: germline homozygosity for 
CDA 208A in a Japanese patient with pancreatic cancer treated with gemcitabine and 
cisplatinum resulted in severe hematologic and nonhematologic toxicity (Yonemori K et al, 
2005). This is an important finding since considerable numbers of homozygote carriers of 
CDA 208A exist in Japanese and some African populations (Ueno H et al, 2007, Yonemori K 
et al, 2005). 

4. Irinotecan (CPT-11) 

Irinotecan is a camptothecin analogue which acts as a topoisomerase I inhibitor (Mathijssen 
RH et al, 2001). It is used alone or in combination with 5-FU, and folinic acid, in the 
treatment of colorectal cancer, gastric cancer, and in combination with 5-FU, folinic acid and 
oxaliplatin in advanced pancreatic cancer. Irinotecan may cause unpredictable severe 
toxicity such as diarrhea and neutropenia which may lead to either discontinuation or 
significant dose reduction of the drug. Irinotecan is activated to its cytotoxic metabolite SN-
38 that inhibits the nuclear topoisomerase 1 enzyme, which is critical for DNA replication. 
Activation, transportation, and deactivation of irinotecan are complex and involve several 
enzymes, including carboxylesterase (CE), “CYP3A4”, and uridine diphosphate 
glucuronosyltransferase (UGT1A1). Irinotecan is converted to its active metabolite, SN38, by 
the CE present in the gastrointestinal tract (Figure 2) (Charasson et al, 2004, Khanna et al, 
2000). This enzyme has many allelic variants and genotypes. SN38 is primarily inactivated 
in the liver by UGT1A1 via glucuronidation. Mild hereditary deficiency of UGT1A1 leads to 
Gilberts syndrome which is characterized by intermittent hyperbiliribunemia (Innocenti et 
al, 2004, Iyer et al, 2002). Since patients with Gilbert’s syndrome experienced severe toxicity 
in early phase studies, the association of irinotecan toxicity and the UGT1A1 polymorphism 
has been under thorough investigation (Wasserman et al, 1997). UGT1A1 inactivates SN38 
via a phase II reaction. The wild type UGT1A1 is designated as UGT1A1*1. More than 50 
genetic variations of UGT1A1 have been identified up to now (Tukey et al, 2002). Each of 
these leads to different degrees of functional variations. Among them UGT1A1*6, 
UGT1A1*28, UGT1A1*36 and UGT1A1*37 are functionally important polymorphisms. The 
UGT1A1*28 polymorphism is associated with reduced UGT1A1 expression and, as a result, 
decreased glucuronidation of SN38. This, in turn, increases blood levels of active metabolites 
resulting in increased toxicity (Khanna et al, 2000, Innocenti 2004, Iyer 2002, Hoskins et al, 
2007). The pharmacokinetics of irinotecan is poorly associated with body surface area. Since 
SN38 undergoes glucuronidation to a lesser extent in patients with Gilbert and Crigler 
Najjar syndromes, irinotecan toxicity increases in these patients, because of reduced or 
deficient expression levels of UGT1A1. Gilbert syndrome results from the UGT1A1*28 
homozygote transition of a promoter polymorphism caused by seven TA repetitions. In the 
presence of the UGT1A1*28 polymorphism, transcription is decreased by 70% and toxicity is 
increased. Patients with the 7/7 genotype (homozygous for seven TA repetitions) exhibit a 
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9.3-fold increase in risk of grade 4 neutropenia, and irinotecan is associated with severe side 
effects in this population (Iyer et al, 2002, Hoskins et al, 2007; McLeod et al, 2003). In an early 
study the UGT1A1*28 allele increased the risk of leukopenia and/or diarrhea, however most 
of the later studies found only increased risk of hematological toxicity such as neutropenia 
(Ando et al, 2000). In fact, in a meta-analysis of 10 studies assessing the irinotecan induced 
toxicity in UGT1A1*28 patients, irinotecan dose, and overall toxicity, risk of experiencing 
irinotecan induced hematologic toxicity for homozygous UGT1A1*28 patients was found to 
be a function of the dose of irinotecan administered, and genotyping was recommended at 
only high doses (> 200 mg/m2) of irinotecan (Hoskins et al, 2007). Genotyping has limited 
benefit at intermediate doses, such as 180mg/m2 used in the FOLFIRI (folinic acid/5-
FU/irinotecan) regimen. Unless administered concomitantly with another myelotoxic agent, 
UGT1A1*28 testing is not recommended at doses < 150 mg/m2. 

 

Fig. 2. Irinotecan Metabolism 

Transport proteins that excrete irinotecan and metabolites have also been investigated for 
their potential association with irinotecan response and toxicity. P-glycoprotein represents 
one of these proteins, and it is encoded by the ATP binding B1 (ABCB1 or MDR1) gene. 
However, the pharmacogenetic results regarding ABCB1 and irinotecan are conflicting to 
date. Genetic variation in ABCB1 was associated with early toxicity and lower response to 
treatment. Specifically, carriers of the ABCB1 1236T-2677T-3435T haplotype responded to 
treatment less frequently with shorter survival (Glimelius et al, 2011). 

5. Platinum compounds (Cisplatin and Oxaliplatin) 

Cisplatin and oxaliplatin are commonly used in gastrointestinal cancers (Vermorken et al, 
1984, Raymond et al, 1998, Levi et al, 2000) Platinum analogues block DNA replication by 
forming different DNA adducts, through intra-strand and inter-strand crosslinks. Platin 
resistance occurs due to detoxification or efficient repair of DNA by the nucleotide excision 
repair system. DNA repair enzymes “ERCC1” and “ERCC2”—also known as “XPD” and 
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glutathione S transferase π (GSTP) enzymes—are involved in the activity of these agents 
(Levi et al, 2000). GSTπ is a phase II metabolic enzyme that inactivates platinum derivatives 
by adding a glutathione to its electrophile group. High expression of the genes that code for 
these enzymes is inversely correlated with therapeutic response in colorectal and gastric 
cancer (Ruzzo et al, 2007). Preclinical models of oxaliplatin resistance have also been studied 
in colorectal cancer cell lines. In these cell lines a total of 6 target genes were identified: 
AKT1, CDK5, RGS11, GARP, TRIP, and UGCGL1. Three of these genes (AKT1, CDK5 and 
TRIP) were shown to be involved in NF-κǃ pathway regulation. It was suggested that low 
levels of TRIP and high levels of AKT1 and CDK5 could contribute to NF-κǃ activation and 
consequently cell antiapoptotic activity and oxaliplatin acquired resistance. These findings 
show that the NF-κǃ pathway plays a pivotal role in mechanisms of acquired oxaliplatin 
resistance (Martinez-Cardus et al, 2009). 

6. Combination chemotherapy 

6.1 Folfox (Oxaliplatin/5-FU/folinic acid) 

Many chemotherapy combinations are used in the treatment of gastrointestinal cancers. 
However, strong evidence of pharmacogenetics is available only in a minority of the 
reference studies (Stoehlmacher et al, 2004; Goldberg et al, 2006). The N9741 trial is a 
randomized phase III trial designed to compare the efficacy of FOLFOX (folinic acid/5-
FU/oxaliplatin), IROX (irinotecan/oxaliplatin), and IFL (irinotecan/bolus 5-FU/folinic acid) 
in patients with metastatic colorectal cancer (Goldberg et al, 2006). The pharmacogenetic 
evaluation of this study revealed that both the objective response rate and incidence of 
grade ¾ side effects, particularly diarrhea, were lower in black patients. The low response 
rate in black patients was especially marked in the FOLFOX arm. Overall, the rate of 
response was 41% and 30% in white and black patients, respectively (P = .015). The rate of 
severe toxicity was 48% in whites and 34% in black patients in the FOLFOX arm (P = .047). 
Despite the lack of significant median survival difference between these two patient groups 
in the FOLFOX arm, median survival was lower in black patients in both the IFL and IROX 
groups. In all arms, black patients experienced less toxicity, particularly less diarrhea, 
compared to white patients. The UGT1A1 7/7 polymorphism was identified at a rate of 21% 
and 9% in black and white patients, respectively, in this study. However, the role of the 
UGT1A1 polymorphism with respect to response and toxicity could not be demonstrated. 
Significant differences were also detected between white and black patients in the 
prevalence of other pharmacogenetic variances such as CYP3A, MDR (multidrug 
resistance), ERCC1, ERCC2, and GSTP. These genes are important in the metabolism and 
detoxification of irinotecan and oxaliplatin (Grothey et al, 2005). Of note, the type of GSTP 
polymorphism was shown to be associated with early development of oxaliplatin 
neuropathy in patients receiving FOLFOX.  

The polymorphism that causes a single nucleotide change of C to T, at codon 118, converts a 
codon of common usage (AAC) to a less used codon (AAT), both coding for asparagine. 
This change results in decreased ERCC1 gene expression, which impairs repair activity. A 
small study showed that the ERCC1 codon 118 polymorphism predicted response to 
oxaliplatin/5-FU chemotherapy in patients with advanced colorectal cancer (Viguier et al, 
2005). In this retrospective study including 91 patients, response rate was 61.9%, 42.3%, and 
21.4% in T/T, C/T, and C/C groups, respectively (P= 0.018). However, the results of the 
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studies regarding the ERCC1 codon 118 polymorphism are somewhat contradictory, likely 
due to a variety of factors such as ethnicity, environment (smoking or diet), the number of 
patients enrolled and/or linkage to other polymorphisms (Ryu, 2006). A SNP in codon 751 
of the ERCC2 gene which leads to glutamine instead of lysine, was associated with a 
reduced response rate (Park et al, 2001, Stoehlmacher et al, 2004). Additionally, patients with 
the GSTπ 105 Val/Val genotype had a better progression free survival (PFS) and overall 
survival (OS) than patients carrying the GSTπ 105 Ile allele (Stoehlmacher et al, 2004). In a 
more recent study analyzing the pharmacogenetic factors in patients with advanced 
colorectal cancer treated with FOLFOX chemotherapy PFS was related only to genes 
involved in oxaliplatin pharmacodynamics, with a tendency for a better outcome in patients 
bearing the GSTπ 105 Val/Val genotype or the XPD 751Lys allele (Etienne-Grimaldi et al, 
2010). Lymphocytic activity of GSTπ has been shown to be significantly reduced in GSTπ 
105 Val/Val patients compared with GSTπ 105 Ile/Ile patients (Dusinská et al, 2001). 

However, the functional impact of XPD 751 LysGln at the protein level is not clearly 
established.  

6.2 Cisplatin/5-fluorouracil 

Combination of cisplatin and 5-FU (CF) constitutes the backbone of chemotherapy regimens 

commonly used for upper gastrointestinal system tumors including gastric and 

hepatobiliary cancer (Kilickap et al, 2011). In gastric cancer TYMS and ERCC gene 

expression has been studied individually as the predictors of chemoresistance (Lenz et al, 

1996, Metzger et al, 1998). In another study although TYMS and ERCC1 expression 

associated with poor prognosis, it did not reach statistical significance (P = 0.076) (Metzger 

et al, 1998). Kim et al, developed a three gene predictor of clinical outcome for metastatic 

gastric cancer patients treated with cisplatin and 5-FU (Kim et al, 2010). The combined 

expression of MYC, epidermal growth factor receptor (EGFR) and fibroblast growth factor 

receptor 2 (FGFR2) was found to be an independent predictor of decreased OS of CF treated 

metastatic gastric cancer patients (Kim et al, 2010). The findings of the study showed that 

over expression of these 3 genes was associated with chemoresistance and the results were 

consistent with the experimental studies showing that inhibitors of EGFR act synergistically 

with cisplatin and 5-FU, while an FGFR2 inhibitor acts synergistically with 5-FU and MYC 

over expression is associated with cisplatin resistance (Kim et al, 2010). Taken together, 

combined expression of MYC, EGFR and FGFR2 is predictive of poor survival in patients 

with metastatic gastric cancer treated with CF chemotherapy. 

The xCT gene, which codes for part of the plasma membrane cysteine/glutamate 
transporter, contributes to tumor cell protection against immune defense mechanisms 
(Huang et al, 2010). The plasma membrane xc-cysteine/glutamate transporter mediates 
cellular uptake of cysteine in exchange for intracellular glutamate and is highly expressed 
by pancreatic cancer cells. In advanced pancreatic cancer Huang et al, looked at the 
prognostic significance of SNPs in the xCT gene in patients treated with a combination of 
gemcitabine and platinum (Huang et al, 2010). The xCT gene, encodes the cysteine-specific 
xCT protein subunit of xc-, which is important in regulating intracellular glutathione levels, 
critical for cancer cell protection against oxidative stress, tumor growth and resistance to 
chemotherapeutic agents. A statistically significant correlation was noted between the 3' 
UTR xCT SNP rs7674870 and OS: Median survival time (MST) was 10.9 and 13.6 months, 
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respectively, for the TT and TC/CC genotypes (P = 0.027). In another study Pacetti et al, 
investigated polymorphisms in genes involved in activity and resistance to drugs, mainly 
DNA repair gene polymorphisms, in an effort to link them to treatment response. The 
substitution of glutamine for lysine in position 751 of the XPD gene (Figure 2) led to 
increased overall survival from 262 days to 446 days (Pacetti et al, 2010). These studies 
suggest that genetic polymorphisms in xCT gene may serve as a predictor of treatment 
outcome in advanced pancreatic cancer. 

7. Biologic agents 

7.1 Overview 

Biologic agents used in GI cancers alone or in combination with chemotherapy include 
bevacizumab (Avastin, Roche), cetuximab (Erbitux, KGaA), panitumumab (Vectibix, 
Amgen), and erlotinib (Tarceva, Roche), sunitinib (Sutent, Pfizer), imatinib (Glivec, Gleevec, 
Novartis). These drugs do not act only through different mechanisms of action but also 
demonstrate differences in their pharmacokinetics and pharmacodynamics. Meanwhile, 
data on their pharmacogenetics are only now emerging. 

7.2 Bevacizumab 

Bevacizumab is a humanized monoclonal antibody (MoAB) that binds the vascular 
endothelial growth factor (VEGF). Increased VEGF expression is involved in tumoral 
angiogenesis and associated with poor prognosis. Bevacizumab prevents receptor binding 
of VEGF, and inhibits VEGF signaling pathways, thus stops angiogenesis and tumor 
growth. The therapeutic benefit of bevacizumab has been shown in the treatment of patients 
with advanced-stage colorectal cancer. Thus far, however, adequate pharmacogenetic data 
have not been produced to predict toxicity, response, or resistance. 

7.3 EGFR monoclonal antibodies (Cetuximab and Panitumumab)  

Cetuximab and panitumumab are MoAB used as single agents or in combination with 
chemotherapy for the treatment of advanced colorectal cancer. Cetuximab is a MoAB that 
binds to the EGFR and blocks EGF signaling pathway and tumor growth. Panitumumab is 
the anti-EGFR MoAB similar to cetuximab, binds EGFR and inhibits downstream of EGF 
signaling. Panitumumab is a fully human MoAB in contrast to cetuximab which is chimeric. 
The pioneering studies of BOND trials, showed that cetuximab may provide benefit in 
patients with chemotherapy refractory advanced colorectal cancer (Saltz et al, 2007). In the 
BOND 2 trial metastatic colorectal cancer patients progressing after irinotecan-based 
chemotherapy were randomized to receive irinotecan plus bevacizumab plus cetuximab 
(CBI) or bevacizumab and cetuximab (CB) (Lenz et al, 2007). In this trial, germline 
polymorphisms of the genes involved in angiogenesis (VEGF, interleukin-8 [IL-8], 
transforming growth factor [TGF]-ǃ), the EGFR pathway (EGFR, cyclooxygenase-2, E-
cadherin), DNA repair (ERCC1, ERCC2, XRCC1, XPD), and drug metabolism pathway 
(GSTP, UGT1A1) were investigated. Genomic DNA was extracted for genotyping from 65 
patients (31: CBI arm and 34: CB arm). Thirty five patients had tissue samples available for 
the gene expression assay (18: CBI arm and 17: CB arm). High intratumoral gene expression 
levels of EGFR, VEGFR2 and NRP1 were associated with longer OS in patients receiving 
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combined monoclonal antibodies with or without irinotecan. The FCGR3A V158F, cyclinD1 
A870G and EGFR R497K polymorphisms were associated with clinical outcome in patients 
receiving the cetuximab and bevacizumab combination independent of KRAS mutation 
status (Lenz et al, 2007, Zhang et al, 2007). Patients with high intratumoral EGFR gene 
expression levels had a median survival time of 21.8 (range, 9.6-28.2) months, compared to 
patients with low EGFR gene expression levels, whose median survival was 10.2 (range, 8.3-
13.6) months (P = 0.033). In the RP analysis, the EGFR gene expression level was found to be 
the best single determinant of survival (Zhang et al, 2007) 

Initially anti-EGFR antibodies were tested in patients with metastatic colorectal cancer 
which showed elevated EGFR expression, as determined by immunohistochemistry. 
However, response to EGFR MoAB was not found to be correlated to EGFR expression. 
Retrospective data suggested that the severity of skin rash might be positively correlated 
with tumor response to anti-EGFR MoAB, but only in patients with tumors expressing wild 
type K-RAS. In the NCIC CTG CO17 study a rash of grade 2 or higher was strongly 
associated with improved survival in patients treated with cetuximab (Jonker et al, 2007). A 
correlation between K-RAS mutation and resistance to the EGFR antibodies cetuximab and 
panitumumab has been demonstrated. K-RAS mutations account for approximately 30% to 
40% of patients with mCRC. (Van Cutsem et al, 2008, Amado et al, 2008, Bokemeyer et al, 
2008). Patients with a K-RAS mutation in codons 12, 13 and 61 in their tumor tissue have 
lower rates of response to cetuximab and panitumumab and shorter PFS time. The benefit of 
anti-EGFR MoAB monotherapy is limited to only the patients with K-RAS wild type CRC 
except patients with the codon 13 D13G K-RAS mutation benefit from the therapy similar to 
the wild type tumors (De Roock et al, 2010). Therefore, K-RAS mutation analysis is required 
before prescribing EGFR MoAB therapies. 

The B-type Raf kinase BRAF V600E mutation was detected in 11 of 79 patients who had wild 
type K-RAS (Di Nicolantonio et al, 2008). This BRAF mutation is associated with resistance 
to cetuximab and panitumumab with significantly shorter PFS and OS compared to wild 
type patients (Di Nicolantonio et al, Di Fiore et al, 2008). Mutations of genes other than K-
RAS and BRAF, such as the phosphatase and tensin homologue (PTEN), and 
phosphatidylinositol 3-kinase (PI3K) were also associated with shorter survival of MCRC 
patients receiving EGFR antagonists (Karapedis et al, 2008). Thus, these mutations may 
serve as additional biomarkers to predict resistance of EGFR antagonists. 

7.4 Erlotinib 

Erlotinib belongs to a group of drugs called EGFR tyrosine kinase inhibitors. EGF has 
receptors on cancer cell surfaces. Stimulation of this receptor activates the tyrosine kinase 
enzyme inside the cell. The drugs that inhibit this enzyme, and stop the growth factor 
receptor are known as tyrosine kinase inhibitors (TKIs). Erlotinib is a small-molecule TKI 
targeting EGFR (Hidalgo et al, 2001; Li et al, 2007). Erlotinib, similarly to other EGFR-
directed therapies, is associated with toxicity involving skin rash and diarrhea. The 
molecular basis of these side effects is under investigation. Basal layers of both the 
epidermis and the GI mucosa express EGFR, and EGFR signaling has been implicated in the 
physiological regulation of these tissues. Inhibition of this physiological pathway is 
implicated in toxicity. Erlotinib is metabolized predominantly by CYP3A4, so inhibitors of 
this enzyme would be expected to increase systemic availability and inducers would be 
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expected to decrease it (Moore et al, 2007a). Potent inducers of CYP3A4 may reduce the 
efficacy of erlotinib, whereas potent inhibitors of CYP3A4 may lead to increased toxicity 
(Hidalgo et al, 2001, Li et al, 2007, Rudin et al, 2008). For example, concomitant use of 
ketacanozole, a CYP3A4 and ABCB1 inhibitor, increases the AUC of erlotinib by 66% which 
will result in increased erlotinib toxicity. Meanwhile pre- or co-treatment with rifampicin, a 
CYP3A4 inducer, increases erlotinib clearance by three-fold and reduces AUC by 66%, 
which will result in the loss of clinical activity. Therefore concomitant use of inhibitors and 
inducers of CYP3A4 should be avoided. 

Besides CYP genes the inhibition of glucuronidation may also cause interactions between 
erlotinib and substrates of UGT1A1. Patients with low expression of UGT1A1 or genetic 
glucuronidation disorders may have hyperbilirubinemia (Rudin et al, 2008). In advanced 
pancreatic cancer, erlotinib in combination with gemcitabine showed statistically superior 
overall survival compared with gemcitabine alone (6.4 months vs. 5.9 months, respectively) 
(Moore MJ et al, 2007). In this study, patients responded equally well to treatment with 
erlotinib regardless of whether their tumors expressed abnormal levels of EGFR. In a 
subgroup of analyses in this study the mutation status of the K-RAS and EGFR gene copy 
number (GCN) were evaluated as predictive markers in 26% of patients who had tumor 
samples available for analysis. The K-RAS mutation status was evaluated by direct 
sequencing of exon 2, and EGFR GCN was determined by fluorescence in situ hybridization 
(FISH) analysis. The results were correlated with survival, which was the primary endpoint 
of the trial. K-RAS mutations were identified in 78.6% of the patients and EGFR 
amplification or high polysomy (FISH-positive results) was identified in 46.7% of the 
patients. The hazard ratio of death between gemcitabine/erlotinib and gemcitabine/placebo 
was 0.66 (95% confidence interval [CI], 0.28-1.57) for patients with wild type K-RAS and 1.07 
(95% CI, 0.68-1.66) for patients with mutant K-RAS (P value for interaction = .38), and the 
hazard ratio was 0.6 (95% CI, 0.34-1.07) for FISH-negative patients and 0.90 (95% CI, 0.49-
1.65) for FISH-positive patients (P value for interaction = .32). Although survival was longer 
in patients with wild type K-RAS in comparison to K-RAS mutated patients, in this 
molecular subset analysis of patients from NCIC CTG PA.3, EGFR GCN and K-RAS 
mutation status were not identified as markers predictive of a survival benefit from the 
combination of erlotinib with gemcitabine for the first-line treatment of advanced pancreatic 
carcinoma (da Cunha Santos et al, 2010, Moore MJ et al, 2007b). 

In the AViTA study, patients with advanced stage pancreatic cancer were treated with 
gemcitabine plus erlotinib with or without bevacizumab. In this study, although no 
molecular pharmacogenetic marker has been identified yet, survival was positively 
correlated with severity of erlotinib induced skin rash (Verslype C et al, 2009). Therefore, 
reassessment of erlotinib treatment is recommended in patients who do not develop rash 
within the first 4 to 8 weeks of treatment. 

7.5 Imatinib 

Imatinitib mesylate is approved for the treatment of advanced and also resected high risk 
patients with cKIT or platelet derived growth factor receptor alpha (PDGFRA) activating 
mutation positive gastrointestinal stromal tumors (GIST). Sensitivity of imatinib in GIST 
correlates to exon mutations of cKIT and PDGFRA. The outcome of patients with cKIT exon 
11 mutations are more favorable compared to exon 9 mutations and to wild type tumors. 
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Approximately 80% of GISTs harbor an activating mutation in the cKIT gene and another 
5% to 7% have a PDGFRA gene mutation (Heinrich MC et al, 2008). These mutations are not 
only important in tumorigenesis, but also predict treatment response to imatinib, and 
provide prognostic information. If the tumors have a c-KIT exon 11 mutation the response 
rate is 69% to 86%, but only 17% to 48% in patients with tumors harboring a c-KIT exon 9 
mutation (Heinrich MC et al, 2008). These patients respond better to the dose of 800 mg 
imatinib compared to the standard 400 mg dose. Most of PDGFRA gene mutations are 
associated with imatinib response, with the most notable exception of D842V. In wild type 
GIST without any c-KIT and PDGFRA mutations, the response rate to imatinib is only 0% to 
45% (Heinrich MC et al, 2008). Median time to progression (TTP) is 25, 17, and 13 months for 
patients with tumor mutations in c-KIT exon 11, c-KIT exon 9, and neither c-KIT nor 
PDGFRA genes, respectively (Heinrich et al, 2008). Median OS is 60, 38, and 49 months, 
respectively. Although patients may experience prolonged disease control while on 
imatinib, most patients will develop imatinib resistance within 2-3 years on therapy. 
Lowered plasma levels of imatinib over time is often responsible for disease progression. 
This phenomenon is called as "acquired pharmacokinetic drug resistance". This may be 
because of an altered expression pattern or activity of drug transporters such as efflux 
transporters (ATP-binding cassette transporters, such as ABCB1 and ABCG2) and uptake 
transporters [solute carriers such as organic cation transporter 1 (OCT1) and organic anion 
transporting polypeptide 1A2 (OATP1A2)]. ABCB1 and ABCC1 expression was shown in 
GIST, whereas ABCB1, ABCG2, and OCT1 were found in mononuclear cells in CML 
patients. Despite increasing accumulation of preclinical data, clinical studies on imatinib 
pharmacogenetics are still insufficient and the results are somewhat contradictory. 

7.6 Sunitinib 

Sunitinib is an oral, multitargeted TKI. It inhibits VEGF receptors (VEGFRs) 1, 2, and 3, 
PDGFR ǂ and ǃ KIT, Fms-like tyrosine kinase 3 receptor (FLT3), and the receptor encoded 
by the RET proto-oncogene. Among the GI tumors sunitinib is approved for first-line 
treatment of metastatic pancreatic neuorendocrine tumours (PNET) and in imatinib-
resistant metastatic GIST. In a multicenter study including patients with GIST, metastatic 
renal cell cancer or other cancers, genetic markers in the pharmacokinetic and 
pharmacodynamic pathways of sunitinib that predispose to development of toxicity were 
investigated (van Erp et al, 2009). The study was performed in 219 patients treated with 
single-agent sunitinib. A total of 31 SNPs in 12 candidate genes were analyzed for a possible 
association with toxicity. The risk for leukopenia was increased when the G allele in 
CYP1A1 2455A/G (odds ratio (OR), 6.24; P = .029) or the T allele in FLT3 738T/C (OR, 2.8; P 
= .008) were present or CAG in the NR1I3 (5719C/T, 7738A/C, 7837T/G) haplotype (OR, 
1.74; P = .041) was absent. Any toxicity higher than grade 2 prevalence was increased when 
the T allele of VEGFR2 1191C/T (OR, 2.39; P = .046) or a copy of TT in the ABCG2 (-
15622C/T, 1143C/T) haplotype (OR, 2.63; P = .016) were present. The risk for mucosal 
inflammation was increased in the presence of the G allele in CYP1A1 2455A/G (OR, 4.03; P 
= .021) and the prevalence of hand-foot syndrome was increased when a copy of TTT in the 
ABCB1 (3435C/T, 1236C/T, 2677G/T) haplotype (OR, 2.56; P = .035) was present. This 
study suggested that polymorphisms in specific genes encoding for metabolizing enzymes, 
efflux transporters, and drug targets are associated with sunitinib-related toxicity. The 
response of patients with advanced GIST to sunitinib is related to the type of primary 
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mutation. Patients with original (pre-imatinib) exon 9 mutant or wild type tumor had a 
significantly longer duration of response compared to patients with exon 11 mutations. The 
median time to progression was 14.3 months for patients with original exon 9 mutations, 
13.8 months for patients with wild type cKIT and PDGFRA, and 5.1 months for patients 
whose original mutation was in exon 11 (Heinrich MC et al, 2008). 

8. Conclusion 

Despite progress in the development of new chemotherapy agents and targeted therapies, 
and the improved outcome in patients with GI cancers, there is still need for development of 
more efficacious treatments. Meanwhile, individualization of management of cancer 
patients is also crucial because only a portion of patients respond to a given treatment, 
usually with a low complete response rate. Therefore oncologists are seeking ways to 
predict whether a selected chemotherapy will be effective and tolerable in patients prior to 
treatment. Coupled with the complexity and diversity of each individual patient and the 
disease, each case should be handled uniquely and treatment should be tailor made. At this 
point pharmacogenetic plays a pivotal role. Recent progress in our understanding of 
carcinogenesis and molecular biology led to development of sophisticated pharmacogenetic 
assays to facilitate the delivery of more effective, less toxic chemotherapy regimens by 
individualizing treatments for patients with relatively resistant tumors of the GI tract. Based 
on the results of pharmacogenetic studies of clinical trials new tests are on the horizon and, 
data from these tests will enable cancer physicians to treat their patients better and save 
more lives. In this chapter recent pharmacogenetic studies relevant to the treatment of 
patients with GI cancer are reviewed. Genetic polymorphisms and tumor gene expression 
patterns are discussed. Many of the trials reviewed herein are expected to result in approval 
of new pharmacogenetic tests. 
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