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1. Introduction

There are various approaches to telecommunication and data networks (see for example
Alderson et al. (2007), Baccelli et al. (2006), Baccelli et al. (2001), Kelly et al. (1998), Tanenbaum
(1999), Willinger et al. (1998)). A first model for data networks, similar to that used for car
traffic, has been proposed in D’Apice et al. (2006), where two algorithms for dynamics at
nodes were considered and existence of solutions to Cauchy Problems was proved. Then
in D’Apice et al. (2008), following the approach of Garavello et al. (2005) for road networks
(see also Coclite et al. (2005); Daganzo (1997); Garavello et al. (2006); Holden et al. (1995);
Lighthill et al. (1955); Newell (1980); Richards (1956)), sources and destinations have been
introduced, thus taking care of the packets paths inside the network.

In this Chapter we deal with the fluid-dynamic model for data networks together with
optimization problems, reporting some results obtained in Cascone et al. (2010); D’Apice et al.
(2006; 2008; 2010).

A telecommunication network consists in a finite collection of transmission lines, modelled
by closed intervals of R connected by nodes (routers, hubs, switches, etc.). Taking the Internet
network as model, we assume that:

1) Each packet seen as a particle travels on the network with a fixed speed and with assigned
final destination;

2) Nodes receive, process and then forward packets which may be lost with a probability
increasing with the number of packets to be processed. Each lost packet is sent again.

Since each lost packet is sent again until it reaches next node, looking at macroscopic level,
it is assumed that the packets number is conserved. This leads to a conservation law for the
packets density ρ on each line:

ρt + f (ρ)x = 0. (1)

The flux f (ρ) is given by v(ρ) · ρ where v is the average speed of packets among nodes, derived
considering the amount of packets that may be lost.
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2 Telecommunications Networks

The key point of the model is the loss probability, used to define the flux function. Indeed
the choice of a non reasonable loss probability function could invalidate the model. To
achieve the goal of the validation of the model assumptions, the loss probability function
has been compared with the behaviour of the packet loss derived from known models used in
literature to infer network performance and the shape of the velocity and flux functions has
been discussed. All the comparisons confirm the validity of the assumptions underlying the
fluid-dynamic model (see D’Apice et al. (2010)).

To describe the evolution of networks in which many lines intersect, Riemann Problems (RPs)
at junctions were solved in D’Apice et al. (2006) proposing two different routing algorithms:

(RA1) Packets from incoming lines are sent to outgoing ones according to their final
destination (without taking into account possible high loads of outgoing lines);

(RA2) Packets are sent to outgoing lines in order to maximize the flux through the node.

One of the drawback of (RA2) is that it does not take into account the global path of packets,
therefore leading to possible cycling to bypass congested nodes. These cyclings are avoided if
we consider that the packets originated from a source and with an assigned destination have
paths inside the network.

Taking this in mind the model was refined in D’Apice et al. (2008). On each transmission line
a vector π describing the traffic types, i.e. the percentages of packets going from a source to
a destination, has been introduced. Assuming that packets velocity is independent from the
source and the destination, the evolution of π follows a semilinear equation

πt + v(ρ)πx = 0, (2)

hence inside transmission lines the evolution of π is influenced by the average speed of
packets.

Different distribution traffic functions describing different routing strategies have been
analysed:

• at a junction the traffic started at source s and with d as final destination, coming from the
transmission line i, is routed on an assigned line j;

• at a junction the traffic started at source s and with d as final destination, coming from the
transmission line i, is routed on every outgoing lines or on some of them.

In particular two ways according to which the traffic at a junction is splitted towards the
outgoing lines have been defined. Starting from the distribution traffic function, and using
the vector π, the traffic distribution matrix, which describes the percentage of packets from
an incoming line that are addressed to an outgoing one, has been assigned. Then, methods
to solve RPs according to the routing algorithms (RA1) and (RA2) have been proposed.
Optimizations results have been obtained for the model consisting of the conservation law
(1). In particular priority parameters and traffic distribution coefficients have been considered
as controls and two functionals to measure the efficiency of the network have been defined in
Cascone et al. (2010):

1) The velocity of packets travelling through the network.

2) The travel time taken by packets from source to destination.
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Simulation and Optimal Routing of Data Flows Using a Fluid Dynamic Approach 3

Due to the nonlinear relation among cost functionals, the optimization of velocity and travel
time can give different control parameters.

The analytical treatment of a complex network is very hard due to the high nonlinearity of the
dynamics and discontinuities of the I/O maps. For these reasons, a decentralized strategy has
been adapted as follows:

Step 1. The optimal controls for asymptotic costs in the case of a single node with constant
initial data is computed.

Step 2. For a complex network, the (locally) optimal parameters at every node are used. Thus,
the optimal control is determined at each node independently.

The optimization problem for nodes of 2× 2 type, i.e. with two entering and two exiting lines,
and traffic distribution coefficient α and priority parameter p as control parameters, constant
initial data and asymptotic functionals has been completely solved.

Then a test telecommunication network, consisting of 24 nodes, each one of 2 × 2 type has
been studied. Three different choices have been tested for the traffic distribution coefficients
and priority parameters: (locally) optimal, static random and dynamic random. The first
choice is given by Step 1. By static random parameters, we mean a random choice done at the
beginning of the simulation and then kept constant. Finally, dynamic random coefficients are
chosen randomly at every instant of time for every node.
The results present some interesting features: the performances of the optimal coefficients
are definitely superior with respect to the other two. Then, how the dynamic random
choice, which sometimes is equal in performance to the optimal ones, may be not feasible
for modelling and robustness reasons has been discussed.

The Chapter is organized as follows. Section 2 reports the model for data networks. Then,
in Section 3, we consider possible choices of the traffic distribution functions, and how to
compute the traffic distribution matrix from the latter functions and the traffic-type function.
We describe two routing algorithms, giving explicit unique solutions to RPs. In Section 4, we
discuss the validity of the assumption on the loss probability function, the velocity and flux.
The subsequent Section 5 is devoted to the analysis of the optimal control problem introducing
the cost functionals. Simulations for three different choices of parameters (optimal, static
and dynamic random) in the case of a complex network are presented. The paper ends with
conclusions in Section 6.

2. Basic definitions

A telecommunication network is a finite collection of transmission lines connected together
by nodes, some of which are sources and destinations. Formally we introduce the following
definition:

Definition 1. A telecommunication network is given by a 7-tuple (N, I , F , J , S , D, R) where

Cardinality N is the cardinality of the network, i.e. the number of lines in the network;

Lines I is the collection of lines, modelled by intervals Ii = [ai, bi] ⊆ R, i = 1, ..., N;

Fluxes F is the collection of flux functions fi : [0, ρmax
i ] �→ R, i = 1, ..., N;

Nodes J is a collection of subsets of {±1, ...,±N} representing nodes. If j ∈ J ∈ J , then the
transmission line I|j| is crossing at J as incoming line (i.e. at point bi) if j > 0 and as outgoing line

423Simulation and Optimal Routing of Data Flows Using a Fluid Dynamic Approach
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4 Telecommunications Networks

(i.e. at point ai) if j < 0. For each junction J ∈ J , we indicate by Inc(J) the set of incoming lines,
that are Ii’s such that i ∈ J, while by Out(J) the set of outgoing lines, that are Ii’s such that −i ∈ J.
We assume that each line is incoming for (at most) one node and outgoing for (at most) one node;

Sources S is the subset of {1, ..., N} representing lines starting from traffic sources. Thus, j ∈ S if
and only if j is not outgoing for any node. We assume that S �= ∅;

Destinations D is the subset of {1, ..., N} representing lines leading to traffic destinations, Thus,
j ∈ D if and only if j is not incoming for any node. We assume that D �= ∅;

Traffic distribution functions R is a finite collection of functions (also multivalued) rJ : Inc(J)×
S ×D → Out(J). For every J, rJ(i, s, d) indicates the outgoing direction of traffic that started at
source s has d as final destination and reached J from the incoming road i.

2.1 Dynamics on lines

Following D’Apice et al. (2008), we recall the model used to define the dynamics of packet
densities along lines. We make the following hypothesis:

(H1) Lines are composed of consecutive processors Nk, which receive and send packets. The
packets number at Nk is indicated by Rk ∈ [0, Rmax];

(H2) There are two time-scales: ∆t0, the physical travel time of a single packet from node
to node (assumed to be independent of the node for simplicity); T, the processing time,
during which each processor tries to operate the transmission of a given packet;

(H3) Each processor Nk tries to send all packets Rk at the same time. Packets are lost according
to a loss probability function p : [0, Rmax] → [0, 1], computed at Rk+1, and lost packets are
sent again for a time slot of length T;

(H4) The number of packets not transmitted for a whole processing time slot is negligible.

Since the packet transmission velocity on the line is assumed constant, it is possible to
compute an average velocity function and thus an average flux function.

Let us focus on two consecutive nodes Nk and Nk+1, assume a static situation, i.e. Rk and
Rk+1 are constant. Indicate by δ the distance between the nodes, ∆tav the packets average

transmission time, v̄ = δ
∆t0

the packet velocity without losses and v = δ
∆tav

the average packets
velocity. Then, we can compute:

∆tav =
M

∑
n=1

n∆t0(1 − p(Rk+1))pn−1(Rk+1),

where M = [T/∆t0] (here [·] indicates the floor function) represents the number of attempts
of sending a packet and T is the length of a processing time slot. The hypothesis (H4)
corresponds to assume ∆t0 << T or, equivalently, M ∼ +∞. Making the identification,
M = +∞, we get:

∆tav =
∆t0

1 − p(Rk+1)
,

and
v = v̄(1 − p(Rk+1)). (3)

Let us call now ρ the averaged density and ρmax its maximum. We can interpret the probability
loss function p as a function of ρ and, using (3), determine the corresponding flux function,
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Simulation and Optimal Routing of Data Flows Using a Fluid Dynamic Approach 5

given by the averaged density times the average velocity. A possible choice of p is the
following:

p (ρ) =

{
0, 0 ≤ ρ ≤ σ,
ρmax (ρ−σ)
ρ (ρmax−σ)

, σ ≤ ρ ≤ ρmax,
(4)

from which

v (ρ) =

{
v̄, 0 ≤ ρ ≤ σ,

v̄
σ(ρmax−ρ)
ρ (ρmax−σ)

, σ ≤ ρ ≤ ρmax,
(5)

and

f (ρ) =

{
v̄ρ, 0 ≤ ρ ≤ σ,
v̄σ(ρmax−ρ)

ρmax−σ , σ ≤ ρ ≤ ρmax.
(6)

Σ

2��Ρ � Σ �

Ρ

Ρ

p�Ρ�

Σ Ρmax

v

v
�2�Σ � Ρ�

Ρ

Ρ

v�Ρ�

Σ Ρmax

v Ρ v�2Σ�Ρ�

Ρ

f �Ρ�

Fig. 1. Loss probability, average velocity and flux behaviours for ρmax = 1, σ = 1
2 , v̄ = 1.

To simplify the treatment of the corresponding conservation laws, we will assume the
following:

(F) Setting ρmax = 1, on each line the flux f : [0, 1] → R is concave, f (0) = f (1) = 0 and there
exists a unique maximum point σ ∈]0, 1[.

Notice that the “tent” function

f (ρ) =

{
ρ, 0 ≤ ρ ≤ 1

2 ,

1 − ρ, 1
2 ≤ ρ ≤ 1,

(7)

and the parabolic flux
f (ρ) = ρ (1 − ρ) , ρ ∈ [0, 1] , (8)

satisfy the assumption (F).

2.2 Dynamics on the network

On each transmission line Ii we consider the evolution equation

∂tρi + ∂x fi (ρi) = 0, (9)

where we use the assumption (F). Therefore, the network load evolution is described by a
finite set of functions ρi : [0,+∞[× Ii �→ [0, ρmax

i ].

Moreover, inside each line Ii we define a traffic-type function πi, which measures the portion
of the whole density coming from each source and travelling towards each destination:

425Simulation and Optimal Routing of Data Flows Using a Fluid Dynamic Approach
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6 Telecommunications Networks

Definition 2. A traffic-type function on a line Ii is a function

πi : [0, ∞[×[ai, bi]× S ×D �→[0, 1]

such that, for every t ∈ [0, ∞[ and x ∈ [ai, bi]

∑
s∈S ,d∈D

πi(t, x, s, d) = 1.

In other words, πi(t, x, s, d) specifies the density fraction ρi(t, x) that started from source s and
is moving towards the final destination d.

Assuming, on the discrete model, that a FIFO policy is used at nodes, it is natural that the
averaged velocity, obtained in the limit procedure, is independent from the original sources
of packets and their final destinations. In other words, we make the following hypothesis:

(H5) On each line Ii, the average velocity of packets depends only on the value of the density
ρi and not on the values of the traffic-type function πi.

As a consequence of hypothesis (H5), we deduce the semilinear equation

∂tπi(t, x, s, d) + ∂xπi(t, x, s, d) · vi(ρi(t, x)) = 0. (10)

This equation is coupled with equation (9) on each line Ii. More precisely, equation (10)
depends on the solution of (9), while in turn at junctions the values of πi will determine the
traffic distribution on outgoing lines as explained below.

For simplicity and without loss of generality, we assume from now on that the fluxes fi are all
the same and we indicate them with f . Thus, the model for a single transmission line, consists
in the system of equations: {

ρt + f (ρ)x = 0,
πt + πx · v(ρ) = 0.

To treat the evolution at junctions, let us introduce some notations. Fix a junction J with n
incoming transmission lines, say I1, ..., In, and m outgoing transmission lines, say In+1, ..., In+m

(junction of n × m type). The basic ingredient for the solution of Cauchy Problems by
Wave Front Tracking method is the solution of Riemann Problems (RPs) (see Bressan (2000),
Dafermos (1999), Serre (1999)).

We call RP for a junction the Cauchy Problem corresponding to an initial data ρ1,0, ..., ρn+m,0 ∈

[0, 1], and πs,d
1 , ..., πs,d

n+m ∈ [0, 1] which are constant on each transmission line.

Definition 3. A Riemann Solver (RS) for the junction J is a map that associates to Riemann data
ρ0 = (ρ1,0, . . . , ρn+m,0) and Π0 = (π1,0, . . . , πn+m,0) at J the vectors ρ̂ = (ρ̂1, . . . , ρ̂n+m) and
Π̂ = (π̂1, . . . , π̂n+m) so that the solution on an incoming transmission line Ii, i = 1, . . . , n, is given
by the wave (ρi,0, ρ̂i) and on an outgoing one Ij, j = n + 1, . . . , n + m, is given by the waves (ρ̂j , ρj,0)
and (π̂j, πj,0). We require the following consistency condition:

(CC) RS(RS(ρ0, Π0)) = RS(ρ0, Π0).

Once a RS is defined and the solution of the RP is obtained, we can define admissible solutions
at junctions.

426 Telecommunications Networks – Current Status and Future Trends
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Simulation and Optimal Routing of Data Flows Using a Fluid Dynamic Approach 7

3. Riemann Solvers at junctions

Consider a junction J of n × m type. We denote with ρi(t, x), i = 1, ..., n and ρj(t, x), j =
n + 1, ..., n + m the traffic densities, respectively, on the incoming transmission lines and on
the outgoing ones and by (ρ1,0, ..., ρn+m,0) the initial datum.

Define the maximum flux that can be obtained by a single wave solution on each transmission
line as follows:

γmax
i =

{
f (ρi,0), if ρi,0 ∈ [0, σ],
f (σ), if ρi,0 ∈ ]σ, 1] ,

i = 1, ..., n, (11)

and

γmax
j =

{
f (σ), if ρj,0 ∈ [0, σ],

f (ρj,0), if ρj,0 ∈ ]σ, 1] ,
j = n + 1, ..., n + m. (12)

Finally denote with

Ωi = [0, γmax
i ], i = 1, ..., n,

Ωj = [0, γmax
j ], j = n + 1, ..., n + m,

and with γ̂inc = ( f (ρ̂i), ..., f (ρ̂n)), γ̂out = ( f (ρ̂n+1), ..., f (ρ̂n+m)) where ρ̂ = (ρ̂1, ..., ρ̂n+m) is the
solution of the RP at the junction.

Now, we discuss some possible choices for the traffic distribution function:

1) rJ : Inc(J)× S ×D → Out(J);

2) rJ : Inc(J)× S ×D ֒→ Out(J), i.e. rJ is a multifunction.

If rJ is of type 1), then each packet has a deterministic route, it means that, at the junction J,
the traffic that started at source s and has d as final destination, coming from the transmission
line Ii, is routed on an assigned line Ij (rJ(i, s, d) = j).

Instead if rJ is of type 2), at the junction J, the traffic with source s and destination d coming
from a line Ii is routed on every line Ij ∈ Out(J) or on some lines Ij ∈ Out(J). We can define
rJ(i, s, d) in two different ways:

2a) rJ : Inc(J)× S ×D ֒→ Out(J),

rj(i, s, d) ⊆ Out(J);

2b) rJ : Inc(J)× S ×D → [0, 1]Out(J),

rJ(i, s, d) = (αi,s,d,n+1
J , ..., αi,s,d,n+m

J )

with 0 ≤ α
i,s,d,j
J ≤ 1, j ∈ {n + 1, ..., n + m},

n+m

∑
j=n+1

α
i,s,d,j
J = 1.

In case 2a) we have to specify in which way the traffic at junction J is splitted towards the
outgoing lines.

The definition 2b) means that, at the junction J, the traffic with source s and destination d
coming from line Ii is routed on the outgoing line Ij, j = n + 1, ..., n + m with probability

α
i,s,d,j
J .

Let us analyze how the distribution matrix A is constructed using π and rJ .

427Simulation and Optimal Routing of Data Flows Using a Fluid Dynamic Approach
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8 Telecommunications Networks

Definition 4. A distribution matrix is a matrix

A=̇
{

αj,i

}
j=n+1,...,n+m,i=1,...,n

∈ R
m×n

such that

0 < αj,i < 1,
n+m

∑
j=n+1

αj,i = 1,

for each i = 1, ..., n and j = n + 1, ..., n + m, where αj,i is the percentage of packets arriving from the
i-th incoming transmission line that take the j-th outgoing transmission line.

In case 1) we can define the matrix A in the following way. Fix a time t and assume that for all
i ∈ Inc(J), s ∈ S and d ∈ D, πi(t, ·, s, d) admits a limit at the junction J, i.e left limit at bi. For
i ∈ {1, ..., n}, j ∈ {n + 1, ..., n + m}, we set

αj,i = ∑
s∈S ,d∈D,
r J(i,s,d)=j

πi(t, bi−, s, d).

The fluxes fi(ρi) to be consistent with the traffic-type functions must satisfy the following
relation:

f j(ρj(·, aj+)) =
n

∑
i=1

αj,i fi(ρi(·, bi−)),

for each j = n + 1, ..., n + m.

Let us analyze how to define the matrix A in the case 2a). We may assign ϕ(i, s, d) ∈ rJ(i, s, d)
and set

αj,i = ∑
s∈S ,d∈D,

i:ϕ(i,s,d)=j

πi(t, bi−, s, d),

αj,i = 0, if j /∈ rJ(i, s, d).

However, it is more natural to assign a flexible strategy defining a set of admissible matrices
A in the following way

A =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

A : ∃α
i,s,d,j
J ∈ [0, 1],

n+m
∑

j=n+1
α

i,s,d,j
J = 1, α

i,s,d,j
J = 0, if j /∈ rJ(i, s, d) :

αj,i = ∑
s∈S ,d∈D,
j∈r J(i,s,d)

πi(t, bi−, s, d)α
i,s,d,j
J

⎫
⎪⎪⎪⎬
⎪⎪⎪⎭

.

Finally, we treat now the case 2b). In this case the matrix A is unique and is defined by

αj,i = ∑
s∈S ,d∈D

πi(t, bi−, s, d)α
i,s,d,j
J . (13)

We describe two different RSs at a junction that represent two different routing algorithms:

(RA1) We assume that

(A) the traffic from incoming transmission lines is distributed on outgoing transmission lines
according to fixed coefficients;

428 Telecommunications Networks – Current Status and Future Trends
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Simulation and Optimal Routing of Data Flows Using a Fluid Dynamic Approach 9

(B) respecting (A) the router chooses to send packets in order to maximize fluxes (i.e., the
number of packets which are processed).

(RA2) We assume that the number of packets through the junction is maximized both over
incoming and outgoing lines.

3.1 Algorithm (RA1)

We have to distinguish case 2a) and 2b).

In case 2a) first we observe that the set A is convex. The admissible region given by

Ωadm = {γ̂ : γ̂ ∈ Ω1 × ...× Ωn, ∃A ∈ A t.c.Aγ̂ ∈ Ωn+1 × ... × Ωn+m} ,

is convex at least for the case of junctions of 2 × 2.

If the region Ωadm is convex than rules (A) and (B) amount to the Linear Programming
problem:

max
γ̂∈Ωadm

(γ̂1 + γ̂2).

This problem has clearly a solution, which may not be unique.

Let us consider the case 2b). We need some more notations.

Definition 5. Let τ : [0, 1] → [0, 1] be the map such that f (τ(ρ)) = f (ρ) for every ρ ∈ [0, 1] and
τ(ρ) �= ρ for every ρ ∈ [0, 1]\{σ}.

We need some assumption on the matrix A (satisfied under generic conditions for m = n).
Let {e1, ..., en} be the canonical basis of R

n and for every subset V ⊂ R
n indicate by V⊥ its

orthogonal. Define for every i = 1, ..., n, Hi = {ei}
⊥, i.e. the coordinate hyperplane orthogonal

to ei and for every j = n + 1, ..., n + m let αj = {αj1, ..., αjn} ∈ R
n and define Hj = {αj}

⊥. Let
K be the set of indices k = (k1, ..., kl), 1 ≤ l ≤ n − 1, such that 0 ≤ k1 < k2 < ... < kl ≤ n + m

and for every k ∈ K set Hk =
l⋂

h=1
Hh. Letting 1 = (1, ..., 1) ∈ R

n, we assume

(C) for every k ∈ K, 1 /∈H⊥
k .

In case 2b) the following result holds

Theorem 6. (Theorem 3.1 in Coclite et al. (2005) and 3.2 in Garavello et al. (2005)) Let (N, I , F , J ,
S , D, R) be an admissible network and J a junction of n × m type. Assume that the flux f : [0, 1]
→ R satisfies (F) and the matrix A satisfies condition (C). For every ρ1,0, ..., ρn+m,0 ∈ [0, 1], and for

every πs,d
1 , ...πs,d

n+m ∈ [0, 1] , there exist densities ρ̂1, ..., ρ̂n+m and a unique admissible centered weak
solution, ρ = (ρ1, ..., ρn+m) at J such that

ρ1(0, ·) ≡ ρ1,0, ..., ρn+m(0, ·) ≡ ρn+m,0,

π1(0, ·s, d) = πs,d
1 , ..., πn+m(0, ·, s, d) = πs,d

n+m, (s ∈ S , d ∈ D).

We have

ρ̂i ∈

{
{ρi,0} ∪

]
τ(ρi,0), 1

]
, if 0 ≤ ρi,0 ≤ σ,

[σ, 1] , if σ ≤ ρi,0 ≤ 1,
i = 1, ..., n, (14)

429Simulation and Optimal Routing of Data Flows Using a Fluid Dynamic Approach
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10 Telecommunications Networks

ρ̂j ∈

{
[0, σ], if 0 ≤ ρj,0 ≤ σ,

{ρj,0} ∪
[
0, τ(ρj,0)

[
, if σ ≤ ρj,0 ≤ 1,

j = n + 1, ..., n + m, (15)

and on each incoming line Ii, i = 1, ..., n, the solution consists of the single wave (ρi,0, ρ̂i), while on
each outgoing line Ij, j = n + 1, ..., n + m, the solution consists of the single wave (ρ̂j, ρj,0). Moreover

π̂i(t, ·, s, d) = πs,d
i for every t ≥ 0, i ∈ {1, ..., n}, s ∈ S , d ∈ D and

π̂j(t, aj+, s, d) =

n
∑

i=1
α

i,s,d,j
J πs,d

i (t, bi−, s, d) f (ρ̂i)

f (ρ̂j)

for every t ≥ 0, j ∈ {n + 1, ..., n + m}, s ∈ S , d ∈ D.

3.2 Algorithm (RA2)

To solve RPs according to (RA2) we need some additional parameters called priority and
traffic distribution parameters. For simplicity of exposition, consider, junction J of 2 × 2
type. In this case we have only one priority parameter q ∈ ]0, 1[ and one traffic distribution

parameter α ∈ ]0, 1[. We denote with (ρ1,0, ρ2,0, ρ3,0, ρ4,0) and (πs,d
1,0, πs,d

2,0, πs,d
3,0, πs,d

4,0) the initial
data.

In order to maximize the number of packets through the junction over incoming and outgoing
lines we define

Γ = min {Γmax
in , Γmax

out } ,

where Γmax
in = γmax

1 + γmax
2 and Γmax

out = γmax
3 + γmax

4 . Thus we want to have Γ as flux through
the junction.

One easily see that to solve the RP, it is enough to determine the fluxes γ̂i = f (ρ̂i), i = 1, 2.
In fact, to have simple waves with the appropriate velocities, i.e. negative on incoming lines
and positive on outgoing ones, we get the constraints (14), (15). Observe that we compute
γ̂i = f (ρ̂i), i = 1, 2 without taking into account the type of traffic distribution function.

We have to distinguish two cases:

I Γmax
in = Γ,

II Γmax
in > Γ.

In the first case we set γ̂i = γmax
i , i = 1, 2.

Let us analyze the second case in which we use the priority parameter q. Not all packets can
enter the junction, so let C be the amount of packets that can go through: qC packets come
from first incoming line and (1 − q)C packets from the second. In the space (γ1, γ2), define
the following lines:

rq : γ2 =
1 − q

q
γ1, rΓ : γ1 + γ2 = Γ,

and P the point of intersection of rq and rΓ. Recall that the final fluxes should belong to the
region:

Ωin = {(γ1, γ2) : 0 ≤ γi ≤ γmax
i , i = 1, 2} .

We distinguish two cases:

a) P belongs to Ωin,
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Fig. 2. P belongs to Ωin and P is outside Ωin.

b) P is outside Ωin.

In the first case we set (γ̂1, γ̂2) = P, while in the second case we set (γ̂1, γ̂2) = Q, with
Q = projΩin∩rΓ

(P) where proj is the usual projection on a convex set, see Figure 2.

As for the algorithm (RA1) π̂s,d
i = πs,d

i,0 , i = 1, 2.

Let us now determine γ̂j, j = 3, 4. We have to distinguish again two cases :

I Γmax
out = Γ,

II Γmax
out > Γ.

In the first case γ̂j = γmax
j , j = 3, 4. Let us determine γ̂j in the second case, using the traffic

distribution parameter α. Since not all packets can go on the outgoing transmission lines,
we let C be the amount that goes through. Then αC packets go on the outgoing line I3 and
(1 − α)C on the outgoing line I4. Consider the space (γ3, γ4) and define the following lines:

rα : γ4 =
1 − α

α
γ3,

rΓ : γ3 + γ4 = Γ.

We have to distinguish case 2a) and 2b) for the traffic distribution function.

3.2.1 Case 2a)

Let us introduce the connected set

G =
{

Aγ̂T
inc : A ∈ A

}
,

and G1 and G2 its endpoints. Since in case 2a) we have an infinite number of matrices A, each
of one determines a line rα, we choose the most “natural” line rα , i.e. the one nearest to the
statistic line determined by measurements on the network.

Recall that the final fluxes should belong to the region:

Ωout =
{
(γ3, γ4) : 0 ≤ γj ≤ γmax

j , j = 3, 4
}

.

Define P = rα ∩ rΓ , R = (Γ − γmax
4 , γmax

4 ), Q = (γmax
3 , Γ − γmax

3 ). We distinguish 3 cases:
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a) G ∩ Ωout ∩ rΓ �= ∅,

b) G ∩ Ωout ∩ rΓ = ∅ and γ3(G1) < γ3(R),

c) G ∩ Ωout ∩ rΓ = ∅ and γ3(G1) > γmax
3 .

If the set G has a priority over the line rΓ we set (γ̂3, γ̂4) in the following way. In case a) we
define (γ̂3, γ̂4) = projG∩Ωout∩rΓ

(P), in case b) (γ̂3, γ̂4) = R, and finally in case c) (γ̂3, γ̂4) = Q.

Otherwise, if rΓ has a priority over G we set (γ̂3, γ̂4) = min
γ∈Ωout

F (γ, rα,G) where F is a convex

functional which depends on γ, rα and on the set G of the routing standards.

The vector π̂s,d
i , j = 3, 4 are computed in the same way as for the algorithm (RA1).

3.2.2 Case 2b)

In case 2b) we have a unique matrix A. The fluxes on outgoing lines are computed as in the
case without sources and destinations.

We distinguish two cases:

a) P belongs to Ω,

b) P is outside Ω.

In the first case we set (γ̂3, γ̂4) = P, while in the second case we set (γ̂3, γ̂4) = Q, where
Q = projΩadm

(P). Again, we can extend to the case of m outgoing lines.

Finally we define π̂s,d
i , j = 3, 4 as in the case 2a):

π̂j(t, aj+, s, d) =

n
∑

i=1
α

i,s,d,j
J πs,d

i (t, bi−, s, d) f (ρ̂i)

f (ρ̂j)

for every t ≥ 0, j ∈ {n + 1, ..., n + m}, s ∈ S , d ∈ D.

Once solutions to RPs are given, one can use a Wave Front Tracking algorithm to construct a
sequence of approximate solutions.

4. Model assumptions

The aim of this section is to verify that the assumptions underlying the data networks
fluid-dynamic model (shortly FD model) are correct. Here we focus on the fixed-point models
to describe TCP, and considering various set-ups with TCP traffic in a single bottleneck
topology, we investigate queueing models for estimating packet loss rate. In what follows
we suppose ρmax = 1 and σ = 1

2 .

4.1 Loss probability function

It is reasonable to assume that the loss probability function p is null for some interval, which
is a right neighborhood of zero. This means that at low densities no packet is lost. Then p
should be increasing, reaching the value 1 at the maximal density, the situation of complete
stuck. With the above assumptions the loss probability function in (4) can be written as:

p (ρ) =

{
0, 0 ≤ ρ ≤ 1/2,
2ρ−1

ρ , 1/2 ≤ ρ ≤ 1.
(16)
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We analyze some models used in literature to evaluate the packets loss rate with the aim to
compare its behaviour with the function depicted in Figure 1.

4.1.1 The proportional-excess model

Let us consider the transmission of two consecutive routers. The node that transmits packets
is called sender, while the receiving one is said receiver. Among the nodes, there is a link or
channel, with limited capacity. Assume that the sender and the receiver are synchronized
each other, i.e. the receiver is able to process in real time all packets, sent by the sender. In
few words, no packets are lost. The packets loss can occur only on the link, due to its finite
capacity. Under the zero buffer hypotheses the loss rate is defined as the proportional excess of
offered traffic over the available capacity. If R is the sender bit rate and C is the link capacity,
we have a loss if R > C. The model is said proportional-excess or briefly P/E and suppose
deterministic arrivals. The packets bit rate is:

p =

{
0, R < C,
R−C

C , R > C.
(17)

In Figure 3, loss probability for P/E model (continuous curve) and FD model (dashed curve)
are shown, assuming C = σ = 1/2. For values C < ρ < 2C, the FD model overestimates the
loss probability.

0.1 0.3 0.7 0.9
Ρ

0.2

0.4

0.6

0.8

1

p�Ρ�

C�Σ Ρmax

Fig. 3. Loss probabilities. Dashed line: FD model. Continuous line: P/E model.

Observe that the P/E model is not realistic. In fact, the sender and the receiver are never
synchronized each other and whatever transmission protocol is used by the transport layer,
the receiver has a finite length buffer, where the packets wait to be processed and eventually
sent to the next node. Thus queueing models are needed, to infer about network performance.

4.1.2 Models with finite capacity

Queueing models are good at predicting loss in a network with many independent users,
probably using different applications. Consider the traffic from TCP sources that send packets
through a bottleneck link. The traffic is aggregated and used as an arrival process for the
link. The arrival process, being the aggregation of independent sources, is approximated as a
Poisson process, and the aggregated throughput is used as the rate of the Poisson process (see
Wierman et al. (2003)). These considerations justify the assumption that the times between the
packets arrivals are exponentially distributed. Depending on the hypothesis on the length of
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14 Telecommunications Networks

packets arriving to the queue the data transmission can be modelled with different queueing
models, as M/D/1/B and M/M/1/B, characterized by deterministic and exponentially
distributed lengths, respectively, and a buffer with capacity B − 1. From the queue length
distribution, known in closed formulas or iteratively in the finite buffer case, expected time in
queue and in the system, as well as packet loss rate can be derived. In what follows we denote
the arrival intensity by λ, the service intensity by µ and define the load as ρ = λ/µ.

4.1.2.1 Fixed packets dimension

In a scenario where all senders use the same data packets size, the queueing model M/D/1/B
is the most natural choice. The probability that the buffer is full gives the loss rate:

p(ρ) =
1 + (ρ − 1) αB (ρ)

1 + ραB (ρ)
, (18)

where

αB (ρ) =
B−2

∑
k=0

eρ(B−k−1) (−1)k (B − k − 1)k ρk

k!
, B ≥ 2.

0.7 0.9 1.1
Ρ

0.05

0.1

0.15

0.2
p�Ρ�

Σ

Fig. 4. Loss rates. Dashed line: M/D/1/B model. Continuous line: FD model.

Figure 4 shows a comparison among the loss rate (16) and (18), assuming B = 10. However,
an M/D/1/B queue predicts a lower loss rate and higher throughput than is seen in the
true network. This is due to fact that in real routers packet sizes are not always fixed to
the maximum segment size, therefore packet sizes are more variable than a deterministic
distribution.

4.1.2.2 Exponentially distributed packets size

Assume the packet size is exponentially distributed. This assumption is true if we consider
the total amount of traffic as the superposition of traffic fluxes, coming from different TCP
sources, each configured to use its own packet size. The M/M/1/B queue is a good
approximation of the simulated bottleneck link shared among TCP sources under any traffic
load (Wierman et al. (2003)). The loss rate for the M/M/1/B queueing model is:

p(ρ) =
ρB (1 − ρ)

1 − ρB+1
. (19)

In Figure 5, left, the loss bit rate for different values of the buffer (B = 10, 20, 30) is reported.
Notice that, increasing the B values, dashed lines tend to the continuous one.
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Fig. 5. Left: Loss bit rate for different values of the buffer. Right: Loss probability function.
Dashed lines: M/M/1/B. Continuous line: P/E model.

In fact, the loss probability of the FD model represents for σ = 1 (up to a scale factor equal to
2) a limit case of (19):

lim
B→∞

ρB (1 − ρ)

1 − ρB+1
=

{
0, 0 < ρ ≤ 1,
ρ−1

ρ , ρ > 1.

The loss probability for the queueing model (dashed line) and the P/E one (continuous line)
is shown in Figure 5, right. The two curves almost match for small bit rate values, i.e. in the
load range 0.9σ < ρ < 1.1σ. For greater loads values, the P/E model overestimates the loss
probability.

Theoretical and simulative studies pointed out that M/D/1/B and M/M/1/B queueing
models give good prediction of the loss rate in network with many independent users
performing short file transfers (shorts FTP). In literature other queueing models have been
considered to describe different scenarios, as bach arrivals. For a comparison among different
models see Figure 6, where the packet loss rate for M/D/1/B, M/M/1/B, M2/M/1/B,
M5/M/1/B and the P/E models are reported for the case B = 100 and loads in the interval
0.8 < ρ < 1.1. Observe that Mr/M/1/B denotes a queue with Poisson batch arrivals of size
r and describes the fact that TCP traffic is likely to be quite bursty due to synchronized loss
events that are experienced by multiple users.
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Ρ
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M 5�M �1�B

M 2�M �1�B

M �D�1�B

M �M �1�B

P�E

Fig. 6. Comparison of different queueing models.

Significant difference are restricted to the range 0.9σ < ρ < 1.1σ. As the load increases above
1.1 the loss estimates become very close in the different queueing models. Any of these models
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predict the loss rate equally well. However, under low loss environments, the best queueing
model depends on the type of transfers by TCP sources, i.e. persistent or transient. It is shown
in Olsen (2003) that M/D/1/B queues estimations of the loss rate can be used for transient
sources. However, for sources with a slightly longer on and off periods, M/M/1/B queues
best predict the loss rate, and for (homogeneous) persistent sources, Mr/M/1/B queues give
better performance inferences, due to the traffic burstiness stemming from the TCP slow-start
and source synchronization effect. Even if some models are more appropriate in situations
of low load, others when the load is heavy, Figure 6 shows that the assumption on the loss
probability function of the FD model is valid.

4.2 Velocity

The loss probability, influencing the average transmission time, has effects on the average
velocity of packets:

v(ρ) = v̄ (1 − p(ρ)) .

The behaviour of the average velocity in the FD model

v (ρ) =

{
v̄, 0 ≤ ρ ≤ /2,

v̄
1−ρ

ρ , 1/2 ≤ ρ ≤ 1,
(20)

is depicted in Figure 1. Notice that the velocity is constant if the system is free (no losses). Over
the threshold, losses occur, and the average travelling time increasing reduces the velocity.
The average packet velocity for the P/E model and the M/M/1/B model is plotted in Figure
7. Such two curves fit the curve of the FD model, confirming the goodness of its assumptions.
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Fig. 7. Average velocity. Left: P/E model. Right: M/M/1/B model.

4.3 Flux

Once the velocity function is known, the flux is given by:

f (ρ) = v(ρ)ρ.

In case of the FD model

f (ρ) =

{
v̄ρ, 0 ≤ ρ ≤ 1/2,
v̄(1 − ρ), 1/2 ≤ ρ ≤ 1,

(21)
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see Figure 1. For the P/E model, we get

f (ρ) =

{
ρv̄, 0 � ρ � σ,

(2σ−ρ)v̄ρ
σ , σ � ρ � ρmax.

(22)
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Fig. 8. Flux. Left: P/E model. Right: M/M/1/B (for B = 5, B = 15, B = 25).

The flux in the P/E model and M/M/1/B model are depicted in Figure 8. Note the effects of a
finite buffer on the maximal value of the flux. If B tends to infinity, the flux best approximates
the FD model flux. For small B values, the maximal flux decreases and the load value in which
the maximum is attained is shifted on the right due to the fact that packets are lost for load
values smaller than the threshold.

5. Optimal control problems for telecommunication networks

Now we state optimal control problems on the network.
We have a network (I ,J ), with nodes of at most 2 × 2 type, and an initial data ρ0 =
(ρi,0)i=1,...,N . The evolution is determined by equation (9) on each line Ii and by Riemann
Solvers RSJ , depending on priority and traffic distribution parameters, q and α, respectively.
For the definition of RSJ see the case when the traffic distribution function is of type 2b).

We now consider α and q as controls. To measure the efficiency of the network, it is natural to
consider two quantities:

1) The average velocity at which packets travel through the network.

2) The average time taken by packets from source to destination.

Clearly, to optimize 1) and 2) is the same if we refer to a single packet, but the averaged values
may be very different (since there is a nonlinear relation among the two quantities). As the
model consider macroscopic quantities, we can estimate the averages integrating over time
and space the average velocity and the reciprocal of average velocity, respectively. We thus
define the following:

J1(t) = ∑
i

∫

Ii

v(ρi(t, x)) dx,

J2(t) = ∑
i

∫

Ii

1

v(ρi(t, x))
dx,
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and, to obtain finite values, we assume that the optimization horizon is given by [0, T] for
some T > 0.
Notice that this corresponds to the following operation:

- average in time and then w.r.t packets, to compute the probability loss function;

- average in space, to pass to the limit and get model (9);

- integrate in space and time to get the final value.

The value of such functionals depends on the order in which averages and integrations are
taken.

Summarizing, we get the following optimal control problems:

Data. Network (I ,J ); initial data ρ̄ = (ρ̄i)i=1,...,N ; optimization horizon [0, T], T > 0.

Dynamics. Equation (9) on each line I ∈ I and Riemann Solver RSJ for each J ∈ J ,
depending on controls α and q.

Control Variables. Traffic distribution parameter t �→ αJ(t) and priority parameter t �→ qJ(t),
i.e. two controls for every node J ∈ J .

Control Space. {(αJ , qJ) : J ∈ J , αJ , qJ ∈ L∞([0, T], [0, 1])}.

Cost functions. Integrated functionals:

max
∫ T

0
J1(t) dt, min

∫ T

0
J2(t) dt.

Definition 7. We call (Pi) the optimal control problem referred to the functional Ji:

(P1) max
(α,q)

J1, subject to (9).

(P2) min
(α,q)

J2, subject to (9).

The direct solution of problems (Pi) corresponds to a centralized approach. We propose the
alternative approach of decentralized algorithm more precisely:

Step 1 For every node J and Riemann Solver RSJ , solve the simplified optimal control
problem:

max (or min) Ji(T),

for T sufficiently big, on the network formed only by J with constant initial data, taking
approximate solutions when there is lack of existence.

Step 2 Apply the obtained optimal control at every time t in the optimization horizon and at
every node J, taking the value at J on each line as initial data.

Notice that, for T sufficiently big, we can assume that the datum is constant on each line: this
strongly simplifies the approach.

We consider a single node J with incoming lines, labelled by 1 and 2, and with outgoing lines,
labelled by 3 and 4.
Since ρ̂ = γ̂, 0 ≤ ρ̂ ≤ 1

2 , and ρ̂ = 1 − γ̂, 1
2 ≤ ρ̂ ≤ 1, we have that v

(
ρ̂ϕ

)
= H

(
−sϕ

)
+
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1−ρ̂ϕ

ρ̂ϕ
H
(
sϕ
)

, ϕ = 1, 2, v
(
ρ̂ψ

)
= H

(
−sψ

)
+

1−ρ̂ψ

ρ̂ψ
H
(
sψ
)

, ψ = 3, 4, where H(x) is the Heavyside

function and sϕ and sψ are determined by the solution to the RP at J:

sϕ =

{
−1, if ρϕ,0 ≤ 1

2 and Γ = Γin, or ρϕ,0 ≤ 1
2 , qϕΓ = γmax

ϕ and Γ = Γout,

+1 if ρϕ,0 >
1
2 , or ρϕ,0 ≤ 1

2 , qϕΓ < γmax
ϕ and Γ = Γout,

ϕ = 1, 2,

sψ =

{
−1, if ρψ,0 <

1
2 , or ρϕ,0 ≥ 1

2 , αψΓ < γmax
ψ and Γ = Γin,

+1 if ρψ,0 ≥ 1
2 and Γ = Γout, or ρψ,0 ≥ 1

2 , αψΓ = γmax
ψ and Γ = Γin.

ψ = 3, 4,

with:

qϕ =

{
q, if ϕ = 1,
1 − q, if ϕ = 2,

αψ =

{
α, if ψ = 3,
1 − α, if ψ = 4.

Then, for T sufficiently big,

J1(T) = 2 [v (ρ̂1) + v (ρ̂2) + v (ρ̂3) + v (ρ̂4)] ; (23)

J2(T) = t (ρ̂1) + t (ρ̂2) + t (ρ̂3) + t (ρ̂4) , (24)

with

t (ρ̂x) =
ρ̂x

H (sx) + ρ̂x [H (−sx)− H (sx)]
.

We want to maximize the cost J1(T) and to minimize the cost J2(T) with respect to the
parameters α and q. In Marigo (2006) and Cascone et al. (2007), you can find a similar approach
for telecommunication networks and road networks, respectively, modelled with flux function
(8). Let

β− =
Γ − γmax

3

γmax
3

, β+ =
γmax

4

Γ − γmax
4

,

p− =
Γ − γmax

1

γmax
1

, p+ =
γmax

2

Γ − γmax
2

.

Theorem 8. Consider a junction J of 2 × 2 type. If Γ = Γin = Γout and T is sufficiently big, the cost
functionals J1(T) and J2(T) depend neither on α nor q. If Γ = Γin, the cost functionals J1(T) and
J2(T) depend only on α. The optimal values for J1(T) are the following:

(i) if s3 = s4 = +1, and β− ≤ 1 ≤ β+, β−β+ > 1, or 1 ≤ β− ≤ β+, α ∈
[
0, 1

1+β+

]
;

(ii) if s3 = s4 = +1, and β− ≤ 1 ≤ β+, β−β+ = 1, α ∈
[
0, 1

1+β+

[
∪
]

1
1+β− , 1

]
;

(iii) if s3 = s4 = +1, and β− ≤ 1 ≤ β+, β−β+ < 1, or β− ≤ β+ ≤ 1, α ∈
[

1
1+β− , 1

]
;

(iv) if s3 = −s4 = −1, α ∈
[
0, 1

1+β+

[
in the cases: β− ≤ 1 ≤ β+, 1 ≤ β− ≤ β+, or β− ≤ β+ ≤ 1;

(v) if s3 = −s4 = +1, α ∈
]

1
1+β− , 1

]
in the cases: β− ≤ 1 ≤ β+, 1 ≤ β− ≤ β+, or β− ≤ β+ ≤ 1.

If Γ = Γin, the optimal values for J2(T) are the following:

(i) if s3 = s4 = +1 or sc = −sd = −1, and β− ≤ 1 ≤ β+, α = 1
2 ;

(ii) if s3 = s4 = +1, and β− ≤ β+ ≤ 1, α ∈
[
0, 1

1+β+

]
;

(iii) if s3 = s4 = +1, and 1 ≤ β− ≤ β+, α ∈
[

1
1+β− , 1

]
;

(iv) if s3 = −s4 = −1, and 1 ≤ β− ≤ β+, or β− ≤ β+ ≤ 1, α ∈
[
0, 1

1+β+

[
;
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(v) if s3 = −s4 = +1, and β− ≤ 1 ≤ β+, or 1 ≤ β− ≤ β+, or β− ≤ β+ ≤ 1, α ∈
]

1
1+β− , 1

]
.

If Γ = Γout, the cost functionals J1(T) and J2(T) depend only on q. The optimal values for J1(T) and
J2(T) are the same for α when Γ = Γin, if we substitute α with q, β− with p−, and β+ with p+.

5.1 A case study

In what follows, we report the simulation results of a test telecommunication network, that
consists of nodes of 2 × 2 type. The network, represented in Figure 9, is characterized by:

• 24 nodes;

• 12 incoming lines: 1, 2, 5, 8, 9, 16, 19, 20, 31, 32, 45, 46;

• 12 outgoing lines: 6, 17, 29, 43, 48, 50, 52, 54, 56, 58, 59, 60;

• 36 inner lines: 3, 4, 7, 10, 11, 12, 13, 14, 15, 18, 21, 22, 23, 24, 25, 26, 27, 28, 30, 33, 34, 35, 36, 37,
38, 39, 40, 41, 42, 44, 47, 49, 51, 53, 55, 57.
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Fig. 9. Network with 24 nodes.

We distinguish three case studies, that can be called, case A, B, and C. In Table 1, we report
the initial conditions ρi,0 and the boundary data (if necessary) ρbi,0 for case A.

As for case B, instead, we consider the same initial conditions of case A, but boundary data
equal to 0.75.

Table 2 contains initial and boundary conditions for case C. An initial condition of 0.75 is
assumed for the inner lines of the network, that are not present in Table 2.

As in Bretti et al. (2006), we consider approximations obtained by the numerical method of
Godunov (Godunov (1959)), with space step ∆x = 0.0125 and time step determined by the
CFL condition (Godlewsky et al. (1996)). The telecommunication network is simulated in a
time interval [0, T], where T = 50 min. We study four simulation cases, choosing the flux
function (7) or the flux function (8):
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Line ρi,0 ρbi,0 Line ρi,0 ρbi,0 Line ρi,0 ρbi,0

1 0.4 0.4 21 0.3 / 41 0.1 /
2 0.35 0.35 22 0.2 / 42 0.1 /
3 0.3 / 23 0.1 / 43 0.25 0
4 0.2 / 24 0.1 / 44 0.3 /
5 0.35 0.35 25 0.2 / 45 0.4 0.4
6 0.2 0 26 0.1 / 46 0.3 0.3
7 0.25 / 27 0.2 / 47 0.2 /
8 0.4 0.4 28 0.25 / 48 0.4 0
9 0.35 0.35 29 0.2 0 49 0.35 /
10 0.3 / 30 0.4 / 50 0.3 0
11 0.2 / 31 0.35 0.35 51 0.2 /
12 0.1 / 32 0.3 0.3 52 0.1 0
13 0.1 / 33 0.2 / 53 0.1 /
14 0.25 / 34 0.35 / 54 0.2 0
15 0.3 / 35 0.2 / 55 0.1 /
16 0.4 0.4 36 0.25 / 56 0.2 0
17 0.3 0 37 0.4 / 57 0.25 /
18 0.2 / 38 0.35 / 58 0.2 0
19 0.4 0.4 39 0.3 / 59 0.15 0
20 0.35 0.35 40 0.2 / 60 0.15 0

Table 1. Initial conditions and boundary data for the lines of the network for case A.

Line ρi,0 ρbi,0 Line ρi,0 ρbi,0 Line ρi,0 ρbi,0

1 0.4 0.4 19 0.4 0.4 48 0.5 0.7
2 0.5 0.5 20 0.5 0.5 50 0.5 0.7
5 0.5 0.5 29 0.4 0.7 52 0.4 0.7
6 0.4 0.7 31 0.4 0.4 54 0.5 0.7
8 0.4 0.4 32 0.4 0.4 56 0.4 0.7
9 0.5 0.5 43 0.4 0.7 58 0.5 0.7
16 0.4 0.4 45 0.4 0.4 59 0.5 0.7
17 0.4 0.7 46 0.5 0.5 60 0.5 0.7

Table 2. Initial conditions and boundary data for the lines of the network for case C.

1. at each node parameters, that optimize the cost functionals J1 and J2 (optimal case);

2. random α and q parameters (static random case) chosen in a random way at the beginning of
the simulation process (for each simulation case, 100 static random simulations are made);

3. dynamic random parameters (dynamic random case) which change randomly at every step
of the simulation process.

In the following pictures, we show the values of the functionals J1 and J2, computed on
the whole network, as function of time. A legend for every picture indicates the different
simulation cases.

The algorithm of optimization, which is of local type, can be applied to complex networks,
without compromising the possibility of a global optimization. This situation is evident if we
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Fig. 10. J1 for flux function (8), case A, and zoom around the optimal and dynamic random
case (right).
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Fig. 11. J2 for flux function (8), case B, and zoom around the optimal and dynamic random
case (right).
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Fig. 12. J1 and J2 for flux function (7), case C.

consider the behaviour of J1 for case A and J2 for case B. For cases A and B, the cost functionals
simulated with flux function (7) are constant, which is not surprising since the initial data on
the lines is less than 1

2 . In case C, we present the behaviour of the cost functionals J1 and J2

for flux function (7). Boundary data are of Dirichlet type (unlike case A and B where we have
considered Neumann boundary conditions) and the network is simulated with high incoming
fluxes for the incoming lines and high initial conditions for inner lines. We can see, from Figure
12, that J1 and J2 are not constant as in cases A and B. Moreover, we have to take in mind
that we have two different optimization algorithms for J1 and J2. Notice that the dynamic
random case follows the optimal case for J2 and not for J1. Indeed, the optimal algorithm for
J1 presents an interesting aspect. When simulation begins, it is worst than the static random
configuration. In the steady state, instead, the optimal configuration is the highest.
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As for the dynamic random simulation, its behaviour looks very similar to the optimal one
for cases A and B (for case C, only J2 presents optimal and dynamic random configurations,
that are very similar). Hence, we could ask if it is possible to avoid the optimization of
the network, and operate in dynamic random conditions. Indeed, this last case originates
strange phenomena, that cannot be modelled, hence it is preferred to avoid such a situation
for telecommunication network design. To give a confirmation of this intuition, focus the
attention on line 13, that is completely inside the network and it is strongly influence by the
dynamics at various nodes. In Figure 13, we see that, using optimal parameters, the density on
line 13 shows a smoother profile than the one obtained through a dynamic random simulation.

0.2 0.4 0.6 0.8 1
x

0.55

0.6

0.65

0.7

0.75
Ρ�10,x�

Fig. 13. Behaviour of the density on line 13 of the network of Figure 9, for t = 10, flux
function (7), case C, in optimal and dynamic random simulations. Dashed line: optimal
simulation for J2; solid line: dynamic random simulation.

6. Conclusions

A fluid-dynamic model for data networks has been described. The main advantages of this
approach, with respect to existing ones, can be summarized as follows. The fluid-dynamic
models are completely evolutive, thus they are able to describe the traffic situation of a
network every instant of time, overcoming the difficulties encountered by many static models.
An accurate description of queues formation and evolution on the network is possible. The
theory permits the development of efficient numerical schemes for very large networks. The
model is based on packets conservation at intermediate time scales, whose flux is determined
via a loss probability function (at fast time scales) and on a semilinear equation for the
evolution of the percentage of packets going from an assigned source to a given destination.
The choice of the loss probability function is of paramount importance in order to achieve
a feasible model. The fluid dynamic model has been compared with those obtained
using various queueing paradigms, from proportional/excess to models with finite capacity,
including different distributions for packet sizes. The final result is that such models give rise
to velocity profiles and flux functions which are quite similar to the fluid dynamic ones.
In order to solve dynamics at node,Riemann Solvers have been defined considering different
traffic distribution functions (which indicate for each junction J the outgoing direction of
traffic that started at source s, has d as final destination and reached J from an assigned
incoming road) and rules RA1 and RA2. The algorithm RA1, already used for road traffic
models, requires the definition of a traffic distribution matrix, whose coefficients describe the
percentage of packets, forwarded from incoming lines to outgoing ones. Using the algorithm
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RA2, not considered for urban traffic as redirections are not expected from modelling point of
view (except in particular cases, as strong congestions or road closures), priority parameters,
indicating priorities among flows of incoming lines, and distribution coefficients have to be
assigned.
The main differences between the two algorithms are the following. The first one simply
sends each packet to the outgoing line which is naturally chosen according to the final packet
destination. The algorithm is blind to possible overloads of some outgoing lines and, by some
abuse of notation, is similar to the behaviour of a “switch”. The second algorithm, on the
contrary, sends packets to outgoing lines in order to maximize the flux both on incoming and
outgoing lines, thus taking into account the loads and possibly redirecting packets. Again by
some abuse of notation, this is similar to a “router” behaviour. Hence, RA1 forwards packets
on outgoing lines without considering the congestion phenomena, unlike RA2. Observe that
a routing algorithm of RA1 type working through a routing table, according to which flows
are sent with prefixed probabilities to the outgoing links, is of “distance vector” type. Reverse,
an algorithm of RA2 type can redirect packets on the basis of link congestions, so it works on
the link states (hence on their congestions) and so it is of “link-state” type.
The performance analysis of the networks was made through the use of different cost
functionals, measuring average velocity and average travelling time, using the model
consisting of the conservation law. The optimization is over parameters, which assign priority
among incoming lines and traffic distribution among outgoing lines. A complete solution is
provided in a simple case, and then used as local optimal choice for a complex test network.
Three different choices of parameters have been considered: locally optimal, static random,
and dynamic random (changing in time). The local optimal outperforms the others. Then, the
behaviour of packets densities on the lines, that permits to rule out the dynamic random case
has been analyzed.
All the optimization results have been obtained using a decentralized approach, i.e. an
approach which sets local optimal parameters for each junction of the network. The
cooperative aspect of such decentralized approach is the following. When a router optimizes
the (local) functionals, it takes into considerations entering and exiting lines. Such lines
reach other nodes, which benefit from the optimal choice. This in fact reflects in good
global behavior as showed by simulations, described below. In future we aim to extend the
optimization results to more general junctions and to explore global optimization techniques.
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