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1. Introduction

Fluid models are powerful tools for evaluating the performance of packet telecommunication
networks. By masking the complexity of discrete packet based systems, fluid models are in
general easier to analyze and yield simple dimensioning formulas. Among fluid queuing
systems, those with arrival rates modulated by Markov chains are very efficient to capture
the burst structure of packet arrivals, notably in the Internet because of bulk data transfers.
By exploiting the Markov property, very efficient numerical algorithms can be designed to
estimate performance metrics such as the overflow probability, the delay of a fluid particle or
the duration of a busy period.

In the last decade, stochastic fluid models and in particular Markov driven fluid queues,
have received a lot of attention in various contexts of system modeling, e.g. manufacturing
systems (see Aggarwal et al. (2005)), communication systems (in particular TCP modeling;
see vanForeest et al. (2002)) or more recently peer to peer file sharing process (see Kumar et al.
(2007)) and economic systems (risk analysis; see Badescu et al. (2005)). Many techniques exist
to analyze such systems.

The first studies of such queuing systems can be dated back to the works by Kosten
(1984) and Anick et al. (1982), who analyzed fluid models in connection with statistical
multiplexing of several identical exponential on-off input sources in a buffer. The above
studies mainly focused on the analysis of the stationary regime and have given rise to a
series of theoretical developments. For instance, Mitra (1987) and Mitra (1988) generalize
this model by considering multiple types of exponential on-off inputs and outputs. Stern &
Elwalid (1991) consider such models for separable Markov modulated rate processes which
lead to a solution of the equilibrium equations expressed as a sum of terms in Kronecker
product form. Igelnik et al. (1995) derive a new approach, based on the use of interpolating
polynomials, for the computation of the buffer overflow probability.

Using the Wiener-Hopf factorization of finite Markov chains, Rogers (1994) shows that the
distribution of the buffer level has a matrix exponential form, and Rogers & Shi (1994) explore
algorithmic issues of that factorization. Ramaswami (1999) and da Silva Soares & Latouche
(2002), Ahn & Ramaswami (2003) and da Silva Soares & Latouche (2006) respectively exhibit
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2 Will-be-set-by-IN-TECH

and exploit the similarity between stationary fluid queues in a finite Markovian environment
and quasi birth and death processes.

Following the work by Sericola (1998) and that by Nabli & Sericola (1996), Nabli (2004)
obtained an algorithm to compute the stationary distribution of a fluid queue driven by a finite
Markov chain. Most of the above cited studies have been carried out for finite modulating
Markov chains.

The analysis of a fluid queue driven by infinite state space Markov chains has also been
addressed in many research papers. For instance, when the driving process is the M/M/1
queue, Virtamo & Norros (1994) solve the associated infinite differential system by studying
the continuous spectrum of a key matrix. Adan & Resing (1996) consider the background
process as an alternating renewal process, corresponding to the successive idle and busy
periods of the M/M/1 queue. By renewal theory arguments, the fluid level distribution is
given in terms of integral of Bessel functions. They also obtain the expression of Virtamo and
Norros via an integral representation of Bessel functions. Barbot & Sericola (2002) obtain an
analytic expression for the joint stationary distribution of the buffer level and the state of the
M/M/1 queue. This expression is obtained by writing down the solution in terms of a matrix
exponential and then by using generating functions that are explicitly inverted.

In Sericola & Tuffin (1999), the authors consider a fluid queue driven by a general Markovian
queue with the hypothesis that only one state has a negative drift. By using the differential
system, the fluid level distribution is obtained in terms of a series, which coefficients are
computed by means of recurrence relations. This study is extended to the finite buffer case
in Sericola (2001). More recently, Guillemin & Sericola (2007) considered a more general
case of infinite state space Markov process that drives the fluid queue under some general
uniformization hypothesis.

The Markov chain describing the number of customers in the M/M/1 queue is a specific birth
and death process. Queueing systems with more general modulating infinite Markov chain
have been studied by several authors. For instance, van Dorn & Scheinhardt (1997) studied a
fluid queue fed by an infinite general birth and death process using spectral theory.

Besides the study of the stationary regime of fluid queues driven by finite or infinite Markov
chains, the transient analysis of such queues has been studied by using Laplace transforms
by Kobayashi & Ren (1992) and Ren & Kobayashi (1995) for exponential on-off sources. These
studies have been extended to the Markov modulated input rate model by Tanaka et al. (1995).
Sericola (1998) has obtained a transient solution based on simple recurrence relations, which
are particularly interesting for their numerical properties. More recently, Ahn & Ramaswami
(2004) use an approach based on an approximation of the fluid model by the amounts of work
in a sequence of Markov modulated queues of the quasi birth and death type. When the
driving Markov chain has an infinite state space, the transient analysis is more complicated.
Sericola et al. (2005) consider the case of the M/M/1 queue by using recurrence relations and
Laplace transforms.

In this paper, we analyze the transient behavior of a fluid queue driven by a general ergodic
birth and death process using spectral theory in the Laplace transform domain. These results
are applied to the stationary regime and to the busy period analysis of that fluid queue.
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On the Fluid Queue Driven by an Ergodic Birth and Death Process 3

2. Model description

2.1 Notation and fundamental system

Throughout this paper, we consider a queue fed by a fluid traffic source, whose instantaneous
transmitting bit rate is modulated by a general birth and death process (Λt) taking values in
N = {0, 1, 2, . . .}. The input rate is precisely r(Λt), where r is a given increasing function from
N into R.

The birth and death process (Λt) is characterized by the infinitesimal generator given by the
infinite matrix

A =

⎛

⎜

⎜

⎝

−λ0 λ0 0 . .
µ1 −(λ1 + µ1) λ1 . .
0 µ2 −(λ2 + µ2) λ2 .
. . . . .

⎞

⎟

⎟

⎠

, (1)

where λi > 0 for i ≥ 0 is the transition rate from state i to state i + 1 and µj > 0 for j ≥ 1 is the
transition rate from state j to state j − 1.

We assume that the birth and death process (Λt) is ergodic, which amounts to assuming (see
Asmussen (1987) for instance) that

∞

∑
i=0

1

λiπi
= ∞ and

∞

∑
i=0

πi < ∞, (2)

where the quantities πi are defined by:

π0 = 1 and πi =
λ0 . . . λi−1

µ1 . . . µi
, fori ≥ 1.

Under the above assumption, the birth and death process (Λt) has a unique invariant
probability measure: in steady state, the probability of being in state i is

p(i) =
πi

∞

∑
j=0

πj

.

Let p0(i) denote, for i ≥ 0, the probability that the birth and death process (Λt) is in state i at
time 0, i.e., P(Λ0 = i) = p0(i). Note that if p0(i) = p(i) for all i ≥ 0, then P(Λt = i) = p(i)
for all t ≥ 0 and i ≥ 0.

We assume that the queue under consideration is drained at constant rate c > 0. Furthermore,
we assume that r(i) > c when i is greater than a fixed i0 > 0 and that r(i) < c for 0 ≤ i ≤ i0.
(It is worth noting that we assume that r(i) �= c for all i ≥ 0 in order to exclude states with no
drift and thus to avoid cumbersome special cases.) In addition, the parameters c and r(i) are
such that

ρ =
∞

∑
i=0

r(i)

c
p(i) < 1 (3)

so that the system is stable. The quantity ri = r(i)− c is either positive or negative and is the
net input rate when the modulating process (Λt) is in state i.
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Let Xt denote the buffer content at time t. The process (Xt) satisfies the following evolution
equation: for t ≥ 0,

dXt

dt
=

⎧

⎨

⎩

r(Λt)− c if Xt > 0 or r(Λt) > c,

0 if Xt = 0 and r(Λt) ≤ c.
(4)

Let fi(t, x) denote the joint probability density function defined by

fi(t, x) =
∂

∂x
P(Λt = i, Xt ≤ x).

As shown in Sericola (1998), on top of its usual jump at point x = 0, when X0 = x0 ≥ 0,
the distribution function P(Λt = i, Xt ≤ x) has a jump at points x = x0 + rit, for t such that
x0 + rit > 0, which corresponds to the case when the Markov chain {Λt} starts and remains
during the whole interval [0, t) in state i.

We focus in the rest of the paper on the probability density function fi(t, x) for x > 0 along
with its usual jump at point x = 0. A direct consequence of the evolution equation (4) is the
forward Chapman-Kolmogorov equations satisfied by ( fi(t, x), x ≥ 0, i ∈ N), which form
the fundamental system to be solved.

Proposition 1 (Fundamental system). The functions (x, t) → fi(t, x) for i ∈ N satisfy the
differential system (in the sense of distributions):

∂ fi

∂t
= −ri

∂

∂x

((

{i>i0} + {i≤i0} {x>0}

)

fi

)

− (λi + µi) fi + λi−1 fi−1 + µi+1 fi+1, (5)

with the convention λ−1 = 0, f−1 ≡ 0 and fi(t, x) = 0 for x < 0.

Note that the differential system (5) holds for the density probability functions fi(t, x). The
differential system considered in Parthasarathy et al. (2004) and van Dorn & Scheinhardt
(1997) governs the probability distribution functions P(Xt ≤ x, Λt = i), i ≥ 0. The differential
system (5) is actually the equivalent of Takács’ integro-differential formula for the M/G/1
queue, see Kleinrock (1975). The resolution of this differential system is addressed in the next
section.

2.2 Basic matrix Equation

Introduce the double Laplace transform

Fi(s, ξ) =
∫ ∞

0−

∫ ∞

0−
e−st−ξx fi(t, x)dtdx =

∫ ∞

0
e−st

E

(

−ξXt
{Λt=i}

)

dt

and define the functions f
(0)
i (ξ) and hi(s) for i ∈ N as follows

f
(0)
i (ξ) =

∫ ∞

0
e−xξ

P{Λ0 = i, X0 ∈ dx}

hi(s) =
∫ ∞

0
e−st

P{Λt = i, Xt = 0}dt.
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On the Fluid Queue Driven by an Ergodic Birth and Death Process 5

The functions f
(0)
i are related to the initial conditions of the system and are known functions.

For i > i0, we have P{Λt = i, Xt = 0} = 0, which implies that hi(s) = 0, for i > i0. On the
contrary, for i ≤ i0, the functions hi are unknown and have to be determined by taking into
account the dynamics of the system.

By taking Laplace transforms in Equation (5), we obtain the following result.

Proposition 2. Let F(s, ξ), f (0), and h(s) be the infinite column vectors, which components are

Fi(s, ξ)/πi, f
(0)
i /πi, and hi(s)/πi for i ≥ 0, respectively. Then, these vectors satisfy the matrix

equation

(sI + ξR − A)F(s, ξ) = f (0)(ξ) + ξRh(s), (6)

where I is the identity matrix, A is the infinitesimal generator of the birth and death process {Λt}
defined by Equation (1), and R is the diagonal matrix with diagonal elements ri, i ≥ 0.

Proof. Taking the Laplace transform of ∂ fi/∂t gives rise to the term sFi − f
(0)
i . In the same

way, taking the Laplace transform of ∂( {x>0} fi)/∂x yields the term ξFi − ξhi. Hence, taking
Laplace transforms in Equation (5) and dividing all terms by πi gives, for i ≥ 0,

s
Fi

πi
−

f
(0)
i

πi
= −riξ

Fi

πi
+ riξ

hi

πi
− (λi + µi)

Fi

πi
+ λi

Fi+1

πi+1
+ µi

Fi−1

πi−1
,

which can be rewritten in matrix form as Equation (6)

When we consider the stationary regime of the fluid queue, we have to set f (0)(ξ) ≡ 0 and
eliminate the term sI in Equation (6), which then becomes

(ξR − A)F(ξ) = ξRh, (7)

where h is the vector, which ith component is hi = limt−→∞ P{Λt = i, Xt = 0}/πi and F(ξ)

is the vector, which ith component is E

[

e−ξXt
{Λt=i}

]

/πi. This is the Laplace transform

version of Equation (12) by van Dorn & Scheinhardt (1997), which addresses the resolution of
Equation (7).

3. Resolution of the fundamental system

In this section, we show how Equation (6) can be solved. For this purpose, we analyze
the structure of this equation and in a first step, we prove that the functions Fi(s, ξ) can be
expressed in terms of the function Fi0

(s, ξ). (Recall that the index i0 is the greatest integer such
that r(i) − c < 0 and that for i ≥ i0 + 1, r(i) > c.). The proof greatly relies on the spectral
properties of some operators defined in adequate Hilbert spaces.

3.1 Basic orthogonal polynomials

In the following, we use the orthogonal polynomials Qi(s; x) defined by recursion: Q0(s; x) ≡
1, Q1(s; x) = (s + λ0 − r0x)/λ0 and for i ≥ 1,
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λi

|ri|
Qi+1(s; x) +

(

x −
s + λi + µi

|ri|

)

Qi(s; x) +
µi

|ri|
Qi−1(s; x) = 0. (8)

By suing Favard’s criterion (see Askey (1984) for instance), it is easily checked that the
polynomials Qi(s; x) for i ≥ 0 form an orthogonal polynomial system.

The polynomials λ0 ...λi−1

|r0 ...ri−1|
Qi(s;−z), i ≥ 0 are the successive denominators of the continued

fraction

F e(s; z) =
1

z + s+λ0

|r0|
−

µ1λ0

|r0r1|

z +
s+λ1+µ1

|r1|
−

µ2λ1

|r2r1|

z +
s+λ2+µ2

|r2|
−

. . .

which is itself the even part of the continued fraction

F (s; z) =
α1(s)

z +
α2(s)

1 +
α3(s)

z +
α4(s)

1 +
. . .

, (9)

where the coefficients αk(s) are such that α1(s) = 1, α2(s) = (s + λ0)/|r0|, and for k ≥ 1,

α2k(s)α2k+1(s) =
λk−1µk

|rk−1rk|
, α2k+1(s) + α2(k+1)(s) =

s + λk + µk

|rk|
. (10)

We have the following property, which is proved in Appendix A.

Lemma 1. The continued fraction F (s; z) defined by Equation (9) is a converging Stieltjes fraction
for all s ≥ 0.

As a consequence of the above lemma, there exists a unique bounded, increasing function
ψ(s; x) in variable x such that

F (s; z) =
∫ ∞

0

1

z + x
ψ(s; dx).

The polynomials Qn(s; x) are orthogonal with respect to the measure ψ(s; dx) and satisfy the
orthogonality relation

∫ ∞

0
Qi(s; x)Qj(s; x)ψ(s; dx) =

|r0|

|ri|πi
δi,j (11)

As a consequence, it is worth noting that the polynomial Qi(s; x) has i real, simple and positive
roots.

It is possible to associate with the polynomials Qi(s, x) a new class of orthogonal polynomials,
referred to as associated polynomials and denoted by Qi(i0 + 1; s; x) and satisfying the
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On the Fluid Queue Driven by an Ergodic Birth and Death Process 7

recurrence relations: Q0(i0 + 1; s; x) = 1, Q1(i0 + 1; s; x) = (s + λi0+1+i + µi0+1+i −
ri0+1+ix)/λi0+1+i and, for i ≥ 0,

λi0+1+i

ri0+1+i
Qi+1(i0 + 1; s; x) +

(

x −
s + λi0+1+i + µi0+1+i

ri0+1+i

)

Qi(i0 + 1; s; x)

+
µi0+1+i

ri0+1+i
Qi−1(i0 + 1; s; x) = 0. (12)

The polynomials Qi(i0 + 1; s; z) are related to the denominator of the continued fraction

F e
i0
(z) =

1

z +
s+λi0+1+µi0+1

ri0+1
−

λi0+1µi0+2

ri0+1ri0+2

z +
s+λi0+2+µi0+2

ri0+2
−

λi0+2µi0+3

ri0+2ri0+3

z +
s+λi0+3+µi0+3

|ri0+3|
−

. . .

which is the even part of the continued fraction Fi0
(z) defined by

Fi0
(s; z) =

β1(s)

z +
β2(s)

1 +
β3(s)

z +
β4(s)

1 +
. . .

, (13)

where the coefficients βk(s) are such that

β1(s) = 1, β2(s) = (s + λi0+1 + µi0+1)/|ri0+1|,

and for k ≥ 1,

β2k(s)β2k+1(s) =
λi0+kµi0+k+1

ri0+kri0+1+k
,

β2k+1(s) + β2(k+1)(s) =
s + λi0+1+k + µi0+1+k

ri0+1+k
.

(14)

Since the continued fraction F (s; z) is a converging Stieltjes fraction, it is quite clear that the
continued fraction Fi0

(s; z) defined by Equation (13) is a converging Stieltjes fraction for all

s ≥ 0. There exists hence a unique bounded, increasing function ψ[i0](s; x) in variable x such
that

Fi0
(s; z) =

∫ ∞

0

1

z + x
ψ[i0](s; dx).

The polynomials Qi(i0 + 1; s; x) are orthogonal with respect to the measure ψ[i0](s; dx) and
satisfy the orthogonality relation

∫ ∞

0
Qi(i0 + 1; s; x)Qj(i0 + 1; s; x)ψ[i0](s; dx) =

ri0+1πi0+1

ri0+1+iπi0+1+i
δi,j.
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3.2 Resolution of the matrix equation

We show in this section how to solve the matrix Equation (6). In a first step, we solve the i0 + 1
first linear equations.

Lemma 2. The functions Fi(s, ξ), for i ≤ i0, are related to function Fi0+1(s, ξ) as follows: for ξ �=
ζk(s), k = 0, . . . , i0,

Fi(s, ξ) =
πi

r0

i0

∑
j=0

( f
(0)
j (ξ) + rjξhj(s))

∫ ∞

0

Qj(s; x)Qi(s; x)

ξ − x
ψ[i0](s; dx)

+ µi0+1
πi

r0
Fi0+1(s, ξ)

∫ ∞

0

Qi0
(s; x)Qi(s; x)

ξ − x
ψ[i0](s; dx), (15)

where the ζk(s) are the roots of the polynomial Qi0+1(s; x) defined by Equation (8) and the measure
ψ[i0](s; dx) is defined by Equation (45) in Appendix A.

Proof. Let I[i0], A[i0] and R[i0] denote the matrices obtained from the infinite identity matrix,
the infinite matrix A defined by Equation (1) and the infinite diagonal matrix R by deleting the
rows and the columns with an index greater than i0, respectively. Denoting by F[i0], h[i0] and

f[i0] the finite column vectors which ith components are Fi/πi, hi/πi and f
(0)
i /πi, respectively

for i = 0, . . . , i0, Equation (6) can be written as

(sI[i0] + ξR[i0] − A[i0])F[i0] = f[i0] + ξR[i0]h[i0] +
λi0

πi0+1
Fi0+1ei0

,

where ei0
is the column vector with all entries equal to 0 except the i0th one equal to 1.

Since r(i) < c for all i ≤ i0, the matrix R[i0] is invertible and the above equation can be
rewritten as

(

ξI[i0] + R−1
[i0]

(sI[i0] − A[i0])
)

F[i0] = R−1
[i0]

f[i0] + ξh[i0] +
λi0

ri0
πi0+1

Fi0+1ei0
.

From Lemma 6 proved in Appendix B, we know that the operator associated with the finite
matrix (ξI[i0] + R−1

[i0]
(sI[i0] − A[i0])) is selfadjoint in the Hilbert space Hi0

= Ci0+1 equipped

with the scalar product

(c, d)i0
=

i0

∑
k=0

ckdk|rk|πk.

The eigenvalues of the operator (ξI[i0] + R−1
[i0]

(sI[i0] − A[i0])) are the quantities ξ − ζk(s) for k =

0, . . . , i0, where the ζk(s) are the roots of the polynomial Qi0+1(s; x) defined by Equation (8).
Hence, for ξ /∈ {ζ0(s), . . . , ζi0

(s)}, we have

F[i0] =
(

ξI[i0] + R−1
[i0]

(sI[i0] − A[i0])
)−1

R−1
[i0]

f[i0] + ξ
(

ξI[i0] + R−1
[i0]

(sI[i0] − A[i0])
)−1

h[i0]

+
λi0

ri0
πi0+1

Fi0+1

(

ξI[i0] + R−1
[i0]

(sI[i0] − A[i0])
)−1

ei0
.
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On the Fluid Queue Driven by an Ergodic Birth and Death Process 9

By introducing the vectors Q[i0](s, ζk(s)) for k = 0, . . . , i0 defined in Appendix B, the column
vector ei with all entries equal to 0 except the ith one equal to 1 can be written as

ej =
|rj|πj

|r0|

∫ ∞

0
Qj(s, x)Q[i0](s, x)ψ[i0](s; dx)

where the measure ψ[i0](s; dx) is defined by Equation (45). Since the vectors Q[i0](s, ζk(s)) are
such that

(

ξI[i0] + R−1
[i0]

(sI[i0] − A[i0])
)−1

Q[i0](s, ζk(s)) =
1

ξ − ζk(s)
Q[i0](s, ζk(s)),

we deduce that

(

ξI[i0] + R−1
[i0]

(sI[i0] − A[i0])
)−1

ej =
|rj|πj

|r0|

∫ ∞

0

Qj(s, x)

ξ − x
Q[i0](s, x)ψ[i0](s; dx)

Hence, if f = ∑
i0

j=0 f jej, then

(

ξI[i0] + R−1
[i0]

(sI[i0] − A[i0])
)−1

f =
i0

∑
j=0

f j

|rj|πj

|r0|

∫ ∞

0

Qj(s, x)

ξ − x
Q[i0](s, x)ψ[i0](s; dx)

and the ith component of the above vector is

(
(

ξI[i0] + R−1
[i0]

(sI[i0] − A[i0])
)−1

f )i =
i0

∑
j=0

f j

|rj|πj

|r0|

∫ ∞

0

Qj(s, x)Qi(s, x)

ξ − x
ψ[i0](s; dx)

Applying the above identity to the vectors R−1
[i0]

f[i0], h[i0] and ei0
, Equation (15) follows.

We now turn to the analysis of the second part of Equation (6).

Lemma 3. For s ≥ 0, the functions Fi(s, ξ) are related to function Fi0
(s, ξ) by the relation: for i ≥ 0,

Fi0+i+1(s, ξ) = λi0

πi0+i+1

ri0+1πi0+1
Fi0

(s, ξ)
∫ ∞

0

Qi(i0 + 1; s; x)

ξ + x
ψ[i0](s; dx)

+
πi0+i+1

ri0+1πi0+1

∞

∑
j=0

f
(0)
i0+j+1(ξ)

∫ ∞

0

Qj(i0 + 1; s; x)Qi(i0 + 1; s; x)

x + ξ
ψ[i0](s; dx), (16)

where the measure ψ[i0](s; dx) is the orthogonality measure of the associated polynomials Qi(i0 +
1; s; x), i ≥ 0.

Proof. Let I[i0], A[i0] and R[i0] denote the matrices obtained from I, A and R by deleting the first

(i0 + 1) lines and columns, respectively. The infinite matrix (R[i0])−1(sI[i0] − A[i0]) induces in
the Hilbert space Hi0 defined by
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Hi0 =

{

( fn) ∈ C
N :

∞

∑
n=0

| fn|
2ri0+n+1πi0+n+1 < ∞

}

and equipped with the scalar product

( f , g) =
∞

∑
n=0

fngnri0+n+1πi0+n+1,

where gn is the conjugate of the complex number gn, an operator such that for f ∈ Hi0

((R[i0])−1(sI
[i0] − A[i0]) f )n =

−
µi0+1+n

ri0+n+1
fn−1 +

s + λi0+n+1 + µi0+1+n

ri0+n+1
fn −

λi0+n+1

ri0+n+1
fn+1.

The above operator is symmetric in Hi0 . To show that this operator is selfadjoint, we have
to prove that the domains of this operator and its adjoint coincide. In Guillemin (2012), it
is shown that given the special form of the operator under consideration, this condition is
equivalent to the convergence of the Stieltjes fraction defined by Equation (13) and if this is

the case, the spectral measure is the orthogonality measure ψ[i0](s; dx). Since the continued
fraction Fi0

(s; z) is a converging Stieltjes fraction, the above operator is hence selfadjoint.

Let Q[i0](s; x) the column vector which ith entry is Qi(i0 + 1; s; x). This vector is in Hi0 if

and only if ‖Q[i0](s; x)‖2 de f
= (Q[i0](s; x), Q[i0](s; x)) < ∞. If it is the case, then the measure

ψ[i0](s; dx) has an atom at point x with mass 1/‖Q[i0](s; x)‖2. Otherwise, the vector Q[i0](s; x)
is not in Hi0 but from the spectral theorem we have

Hi0 =
∫ ⊕

Hi0
x ψ[i0](s; dx)

where Hi0
x is the vector space spanned by the vector Q[i0](s; x) for x in the support of the

measure ψ[i0](s; dx). In addition, we have the resolvent identity: For f , g ∈ Hi0 and ξ ∈ C

such that −ξ is not in the support of the measure ψ[i0](s; dx),

(

(

ξI
[i0] + (R[i0])−1(sI

[i0] − A[i0])
)−1

f , g

)

=
∫ ∞

0

( fx, g)

ξ + x
ψ[i0](s; dx). (17)

where fx is the projection on Hi0
x of the vector f .

For i ≥ 0, let ei denote the column vector, which ith entry is equal to 1 and the other entries

are equal to 0. Denoting by F[i0] and f̂ [i0] the column vectors which ith components are

Fi0+1+i/πi0+1+i and f
(0)
i0+1+i/πi0+1+i, respectively, Equation (6) can be written as

(sI
[i0] + ξR[i0] − A[i0])F[i0] = f [i0] +

µi0+1

πi0

Fi0
e0,

since hi(s) ≡ 0 for i > i0.
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Given that ri > 0 for i > i0, the matrix R[i0] is invertible and the above equation can be
rewritten as

(

ξI
[i0] + (R[i0])−1(sI

[i0] − A[i0])
)

F[i0] = (R[i0])−1 f [i0] +
µi0+1

πi0

Fi0
R̂−1e0,

The operator
(

ξI[i0] + (R[i0])−1(sI[i0] − A[i0])
)

is invertible for ξ such that −ξ is not in the

support of the measure ψ[i0](s, dx), and we have

F[i0] =
(

ξI
[i0] + (R[i0])−1(sI

[i0] − A[i0])
)−1

(R[i0])−1 f [i0]

+
µi0+1

ri0+1πi0

Fi0

(

ξI
[i0] + (R[i0])−1(sI

[i0] − A[i0])
)−1

e0.

By using the spectral identity (17), we can compute Fi for i > i0 as soon as Fi0
is known.

Indeed, we have

F[i0] =
∞

∑
j=0

Fi0+1+j

πi0+1+j
ej,

and then, for i ≥ i0 + 1, by using the fact that ri0+1+iFi0+1+i = (F[i0], ei), we have

ri0+1+iFi0+1+i =

(

(

ξI
[i0] + (R[i0])−1(sI

[i0] − A[i0])
)−1

(R[i0])−1 f [i0], ei

)

+
µi0+1

ri0+1πi0

Fi0

(

(

ξI
[i0] + (R[i0])−1(sI

[i0] − A[i0])
)−1

e0, ei

)

.

By using the fact that for j ≥ 0,

(ej)x =
ri0+j+1πi0+j+1

ri0+1πi0+1
Qj(i0 + 1; s; x)Q[i0](s; x),

Equation (16) follows by using the resolvent identity (17).

From the two above lemmas, it turns out that to determine the functions Fi(s, ξ) it is necessary
to compute the function hi(s) for i = 0, . . . , i0 + 1. For this purpose, let us introduce the non
negative quantities ηℓ(s), ℓ = 0, . . . , i0, which are the (i0 + 1) solution to the equation

1 −
λi0

µi0+1πi0

ri0+1r0
Fi0

(s; ξ)
∫ ∞

0

Qi0
(s; x)2

ξ − x
ψ[i0](s; dx) = 0. (18)

Then, we can state the following result, which gives a means of computing the unknown
functions hj(s) for j = 0, . . . , i0.
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Proposition 3. The functions hj(s), j = 0, . . . , i0, satisfy the linear equations: for ℓ = 0, . . . , i0,

λi0
Fi0

(s; ηℓ(s))ηℓ(s)

ri0

(

(

ηk(s)I[i0] + R−1
[i0]

(sI[i0] − A[i0])
)−1

ei0
, h(s)

)

i0

=

(

(

ηk(s)I
[i0] + (R[i0])−1(sI

[i0] − A[i0])
)−1

e0, (R[i0])−1 f [i0](ηk(s))

)

−
λi0

Fi0
(s; ηℓ(s))

ri0

(

(

ηk(s)I[i0] + R−1
[i0]

(sI[i0] − A[i0])
)−1

ei0
, R−1

[i0]
f[i0](ηk(s))

)

i0

, (19)

where Fi0
(s; z) is the continued fraction (13) and f [i0]((ξ) and f[i0](ξ) are the vectors, which ith

components are equal to f
(0)
i0+i+1(ξ)/πi0+i+1 and f

(0)
i (ξ)/πi, respectively.

Proof. From Equation (16) for i = i0 + 1 and Equation (15) for i = i0, we deduce that

(

1 −
λi0

µi0+1πi0

r0ri0+1
Fi0

(s; ξ)
∫ ∞

0

Qi0
(s; x)2

ξ − x
ψ[i0](s; dx)

)

Fi0+1(s, ξ) =

λi0
πi0

r0ri0+1
Fi0

(s; ξ)
i0

∑
j=0

( f
(0)
j (ξ) + rjξhj(s))

∫ ∞

0

Qj(s; x)Qi0
(s; x)

ξ − x
ψ[i0](s; dx)

+
1

ri0+1

∞

∑
j=0

f
(0)
i0+j+1(ξ)

∫ ∞

0

Qj(i0 + 1; s; x)

x + ξ
ψ[i0](s; dx). (20)

From equation (15), since the Laplace transform Fi(s, ξ) should have no poles for ξ ≥ 0, the
roots ζk(s) for k = 0, . . . , i0 should be removable singularities and hence for all i, j, k = 0, . . . , i0

Qi(s; ζk(s))
((

f
(0)
j (ζk(s)) + rjζk(s)hj(ζk(s))

)

Qj(s; ζk(s))

+µi0+1Fi0+1(s, ζk(s))Qi0
(s, ζk(s))

)

= 0.

By using the interleaving property of the roots of successive orthogonal polynomials, we have
Qi(s; ζk(s)) �= 0 for all i, k = 0, . . . , i0. Hence, the term between parentheses in the above
equation is null and we deduce that the points ζk(s), k = 0, . . . , i0, are removable singularities
in expression (20). The quantities hj(s), j = 0, . . . , i0, are then determined by using the fact
that the r.h.s. of equation (20) must cancel at points ηk(s) for k = 0, . . . , i0. This entails that for
k = 0, . . . , i0, the terms

∞

∑
j=0

f
(0)
i0+j+1(ηk(s))

∫ ∞

0

Qj(i0 + 1; s; x)

x + ηk(s)
ψ[i0](s; dx)

+
λi0

πi0
Fi0

(s; ηk(s))

r0

i0

∑
j=0

vj(s)
∫ ∞

0

Qj(s; x)Qi0
(s; x)

ηk(s)− x
ψ[i0](s; dx) (21)

must cancel, where

vj(s) = f
(0)
j (ηk(s)) + ηk(s)rjhj(s).
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By using the fact that

∫ ∞

0

Qj(s; x)Qi0
(s; x)

ηk(s)− x
ψ[i0](s; dx) =

|r0|

|ri0
|πi0

|rj|πj

(

(

ηk(s)I[i0] + R−1
[i0]

(sI[i0] − A[i0])
)−1

ei0
, ej

)

i0

and

∫ ∞

0

Qj(i0 + 1; s; x)

x + ηk(s)
ψ[i0](s; dx) =

1

ri0+1+jπi0+j+1

(

(

ηk(s)I
[i0] + (R[i0])−1(sI

[i0] − A[i0])
)−1

e0, ej

)

,

Equation (19) follows.

By solving the system of linear equations (19), we can compute the unknown functions hj(s)
for j = 0, . . . , i0. The function Fi0+1(s, ξ) is then given by

(

1 −
λi0

µi0+1πi0

ri0+1r0
Fi0

(s; ξ)
∫ ∞

0

Qi0
(s; x)2

ξ − x
ψ[i0](s; dx)

)

Fi0+1(s, ξ) =

=
1

ri0+1

(

(

ξI
[i0] + (R[i0])−1(sI

[i0] − A[i0])
)−1

e0, (R[i0])−1 f [i0](ξ)

)

−
λi0

Fi0
(s; ξ)

ri0
ri0+1

(

(

ξI[i0] + R−1
[i0]

(sI[i0] − A[i0])
)−1

ei0
, R−1

[i0]
f[i0](ξ) + ξh(s)

)

i0

, (22)

The function Fi0
(s, ξ) is computed by using equation (22) and equation (15) for i = i0. The

other functions Fi(s, ξ) are computed by using Lemmas 2 and 3.

The above procedure can be applied for any value i0 but expressions are much simpler when
i0 = 0, i.e., when there is only one state with negative net input rate. In that case, we have the
following result, when the buffer is initially empty and the birth and death process is in state
1.

Proposition 4. Assume that r0 < 0 and ri > 0 for i > 0. When the buffer is initially empty and the
birth and death process is in the state 1 at time 0 (i.e., p0(i) = δ1,i for all i ≥ 0), the Laplace transform
h0(s) is given by

h0(s) =
r0η0(s) + s + λ0

λ0η0(s)|r0|
=

µ1F0(s; η0(s))

r1|r0|η0(s)
. (23)

where η0(s) is the unique positive solution to the equation

1 −
λ0µ1F0(s; ξ)

r1(s + λ0 + r0ξ)
= 0.
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In addition,

F1(s, ξ) =

1

r1

(

1 +
λ0ξr0h0(s)

s + λ0 + r0ξ

)

F0(s; ξ)

1 −
λ0µ1

r1(s + λ0 + r0ξ)
F0(s; ξ)

. (24)

Proof. In the case i0 = 0, the unique root to the equation Q1(s; x) is ζ0(s) = (s + λ0)|r0|. The
measure ψ[0](s; dx) is given by

ψ[0](s; dx) = δζ0(s)(dx)

and Equation (18) reads

1 −
λ0µ1

r1
F0(s; ξ)

1

s + λ0 + r0ξ
= 0

which has a unique solution η0(s) > 0. When the buffer is initially empty and the birth and

death process is in the state 1 at time 0, we have f
(0)
i (ξ) = δ1,j. Then,

(

(

η0(s)I
[0] + (R[0])−1(sI

[0] − A[0])
)−1

e0, (R[0])−1 f [0](η0(s))

)

=
1

r1π1

(

(

η0(s)I
[0] + (R[0])−1(sI

[0] − A[0])
)−1

e0, e0

)

=
∫ ∞

0

1

η0(s) + x
ψ[0](s; dx)

= F0(s; η0(s)),

where we have used the resolvent identity (17) and the fact that (e0)x = Q[0](s; x). Moreover,

(

(

η0(s)I[0] + R−1
[0]

(sI[0] − A[0])
)−1

e0, R−1
[0]

f[0](η0(s)) + h(s)

)

0

=
h0(s)

η0(s) +
s+λ0

r0

(e0, e0)0 =
h0(s)|r0|

η0(s) +
s+λ0

r0

.

By using Equation (19) for i0 = 0, Equation (23) follows. Finally, Equation (24) is obtained by
using Equation (22).

4. Analysis of the stationary regime

In this section, we analyze the stationary regime. In this case, we have to take s = 0 and

f (0) ≡ 0. To alleviate the notation, we set ψ[i0](0; dx) = ψ[i0](dx), ψ[i0](0; dx) = ψ[i0](dx) and

Qj(0; x) = Qj(x) and Qj(i0 + 1; 0; x) = Qj(i0 + 1; x). Equation (20) then reads

(

1 −
λi0

µi0+1πi0

ri0+1r0
Fi0

(ξ)
∫ ∞

0

Qi0
(x)2

ξ − x
ψ[i0](dx)

)

Fi0+1(ξ)

=
λi0

πi0
ξFi0

(ξ)

r0ri0+1

i0

∑
j=0

rjhj

∫ ∞

0

Qj(x)Qi0
(x)

ξ − x
ψ[i0](dx), (25)
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where hj = limt−→∞ P(Λt = j, Xt = 0), Fi0
(ξ) = Fi0

(0; ξ) and Fi0+1(ξ) = Fi0+1(0; ξ).

The continued fraction Fi0
(ξ) has the following probabilistic interpretation:

µi0+1Fi0
(ξ)/ri0+1 = E

(

e−ξθi0

)

where θi0
is the passage time of the birth and death process with birth rates λn/|rn| and death

rates µn/|rn| from state i0 + 1 to state i0 (see Guillemin & Pinchon (1999) for details). This
entails in particular that Fi0

(0) = ri0+1/µi0+1.

Let us first characterize the measure ψ[i0](dx). For this purpose, let us introduce the

polynomials of the second kind associated with the polynomials Qi(x). The polynomials of
the second kind Pi(x) satisfy the same recursion as the polynomials Qi(x) but wit the initial
conditions P0(x) = 0 and P1(x) = |r0|/λ0. The even numerators of the continued fraction

F (z)
de f
= F (0; z), where F (s; z) is defined by Equation (9), are equal to λ0 ...λn−1

|r0 ...rn−1|
Pn(−z) and the

even denominators to λ0 ...λn−1

|r0 ...rn−1|
Qn(−z).

Lemma 4. The spectral measure ψ[i0](dx) of the non negative selfadjoint operator R−1
[i0]

A[i0] in the

Hilbert space Hi0
is such that

∫ ∞

0

1

z − x
ψ[i0](dx) = −

Pi0+1(z)

Qi0+1(z)
. (26)

The measure ψ[i0](dx) is purely discrete with atoms located at the zeros ζk, k = 0, . . . , i0, of the

polynomial Qi0+1(z).

Proof. Let P[i0](z) (resp. Q[i0](z)) denote the column vector, which ith component for 0 ≤ i ≤ i0
is Pi(z) (resp. Qi(z)). For any x, z ∈ C, we have

(

zI[i0] − R−1
[i0]

A[i0]

)

(P[i0](z) + xQ[i0](z)) = e0 −
λi0

|ri0+1|

(

Pi0+1(z) + xQi0+1(z)
)

ei0
.

Hence, if z �= ζi for 0 ≤ i ≤ i0, where ζi is the ith zero of the polynomial Qi0+1(x), and if we
take x = −Pi0+1(z)/Qi0+1(z), we see that

(

zI[i0] − R−1
[i0]

A[i0]

)−1
e0 = P[i0](z)−

Pi0+1(z)

Qi0+1(z)
Q[i0](z).

From the spectral identity for the operator R−1
[i0]

A[i0] (similar to Equation (17)), we have

(

(

zI[i0] − R−1
[i0]

A[i0]

)−1
e0, e0

)

i0

=
∫ ∞

0

((e0)x, e0)i0

z − x
ψ[i0](dx) = −

Pi0+1(z)

Qi0+1(z)
|r0|.

Since (e0)x = Q[i0](x) because of the orthogonality relation (11), Equation (26) immediately
follows.
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By using the above lemma, we can show that the smallest solution to the equation

1 −
λi0

µi0+1πi0

ri0+1r0
Fi0

(ξ)
∫ ∞

0

Qi0
(x)2

ξ − x
ψ[i0](dx) = 0 (27)

is η0 = 0. The above equation is the stationary version of Equation (18).

Lemma 5. The solutions ηj, j = 0, . . . , i0, to Equation (27) are such that η0 = 0 < η1 < . . . < ηi0
.

For ℓ = 1, . . . , i0, ηℓ is solution to equation

1 =
µi0+1

ri0+1
Fi0

(ξ)
Qi0

(ξ)

Qi0+1(ξ)
. (28)

Proof. The fraction Pi0+1(z)/Qi0+1(z) is a terminating fraction and from Equation (26), we
have

Pi0+1(−z)

Qi0+1(−z)
=

∫ ∞

0

1

z + x
ψ[i0](dx).

On the one hand, by applying Theorem 12.11d of Henrici (1977) to this fraction, we have

Pi0+1(−z)

Qi0+1(−z)
−

Pi0
(−z)

Qi0
(−z)

=
∫ ∞

0

Qi0
(x)2

Qi0
(−z)2

ψ[i0](dx)

z + x
. (29)

On the other hand, by using the fact that

Pi0+1(−z)

Qi0+1(−z)
−

Pi0
(−z)

Qi0
(−z)

=
|r0|

λi0
πi0

Qi0+1(−z)Qi0
(−z)

, (30)

we deduce that
∫ ∞

0

Qi0
(x)2

x
ψ[i0](dx) =

|r0|

λi0
πi0

,

since Qi(0) = 1 for all i ≥ 0. In addition, by using the fact that Fi0
(0) = ri0+1/µi0+1,

we deduce that the smallest root of Equation (27) is η0 = 0. The other roots are positive.
Equation (27) can be rewritten as Equation (28) by using Equations (29) and (30).

Note that by using the same arguments as above, we can simplify Equation (18). As a matter
of fact, we have

Pi0+1(s,−z)

Qi0+1(s,−z)
−

Pi0
(s,−z)

Qi0
(s,−z)

=
|r0|

λi0
πi0

Qi0+1(s,−z)Qi0
(s,−z)

,

so Equation (18) becomes

1 =
µi0+1

ri0+1
Fi0

(s, ξ)
Qi0

(s, ξ)

Qi0+1(s, ξ)
. (31)

The quantities hi are evaluated by using the normalizing condition ∑
i0

i=0 hi = 1 − ρ, where ρ
is defined by Equation (3), and by solving the i0 linear equations

ℓ = 1, . . . , i0,
(

(ηℓI − R−1
[i0]

A[i0])
−1ei0

, h
)

i0

= 0, (32)
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where h is the vector which ith component is hi/πi. Once the quantities hi, i = 0, . . . , i0
are known, the function Fi0+1(ξ) is computed by using relation (25). The function Fi0

(ξ) is
computed by using the relation

Fi0+1(ξ) =
λi0

ri0+1
Fi0

(ξ)Fi0
(ξ).

This allows us to determine the functions Fi0+1(ξ) and Fi0
(ξ). The functions Fi(ξ) for i =

0, . . . , i0 are computed by using Equation (15) for s = 0 and f (0) ≡ 0. The functions Fi(ξ) for

i > i0 are computed by using Equation (16) for s = 0 and f (0) ≡ 0. This leads to the following
result.

Proposition 5. The Laplace transform of the buffer content X in the stationary regime is given by

E

(

e−ξX
)

=
∞

∑
i=0

Fi(ξ) =
1

r0

i0

∑
j=0

rjξhj

∫ ∞

0

Qj(x)Π(x)

ξ − x
ψ[i0](dx)

+
λi0

ri0+1
Fi0

(ξ)

(

µi0+1

r0
Fi0

(ξ)
∫ ∞

0

Qi0
(x)Π(x)

ξ − x
ψ[i0](dx) +

1

πi0+1

∫ ∞

0

Πi0
(x)

x + ξ
ψ[i0](dx)

)

(33)

with

Π(x) =
i0

∑
i=0

πiQi(x),

Πi0
(x) =

∞

∑
i=0

πi0+1+iQi(i0 + 1; x),

Fi0
(ξ) =

πi0

r0

i0

∑
j=0

rjξhj

∫ ∞

0

Qj(x)Qi0
(x)

ξ − x
ψ[i0](dx)

1 −
λi0

µi0+1πi0

r0ri0+1
Fi0

(ξ)
∫ ∞

0

Qi0
(x)2

ξ − x
ψ[i0](dx)

.

In the case when there is only one state with negative drift, the above result can be simplified
as follows.

Corollary 1. When there is only one state with negative drift, the Laplace transform of the buffer
content is given by

E

(

e−ξX
)

=
ξ(1 − ρ)r0

r0ξ + λ0 −
λ0µ1

r1
F0(ξ)

(

1 +
λ1

r1

∫ ∞

0

Π0(x)

x + ξ
ψ[0](dx)

)

. (34)

Proof. Since ψ[0](dx) = δζ0
(dx) with ζ0 = λ0/|r0| and Π(x) = 1, we have

∫ ∞

0

Π(x)

ξ − x
ψ[i0](dx) =

r0

r0ξ + λ0
.
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Moreover, we have h0 = 1 − ρ and then

F0(ξ) =
(1 − ρ)ξr0

r0ξ + λ0 −
λ0µ1

r1
F0(ξ)

.

Simple algebra then yields equation (34).

By examining the singularities in Equation (34), it is possible to determine the tail of the
probability distribution of the buffer content in the stationary regime. The asymptotic
behavior greatly depends on the properties of the polynomials Qi(x) and their associated
spectral measure.

5. Busy period

In this section, we are interested in the duration of a busy period of the fluid reservoir. At the
beginning of a busy period, the buffer is empty and the modulating process is in state i0 + 1.
More generally, let us introduce the occupation duration B which is the duration the server is
busy up to an idle period. The random variable B depends on the initial conditions and we
define the conditional probability distribution

Hi(t, x) = P(B ≤ t | Λ0 = i, X0 = x).

The probability distribution function of a busy period β of the buffer is clearly given by

P(β ≤ t) = Hi0+1(t, 0). (35)

It is known in Barbot et al. (2001) that for t > 0 and x > 0, Hi(t, x) satisfies the following
partial differential equations

∂

∂t
Hi(t, x)− ri

∂

∂x
Hi(t, x) = −µi Hi−1(t, x) + (λi + µi)Hi(t, x)− λi Hi+1(t, x) (36)

with the boundary conditions

Hi(t, 0) = 1 if t ≥ 0, ri ≤ 0,

Hi(0, x) = 0 if x > 0,

Hi(0, 0) = 0 if ri > 0.

Define then conditional Laplace transform

θi(u, x) = E

(

e−uB | Λ0 = i, Q0 = x
)

.

By taking Laplace transforms in Equation (36), we have

ri
∂

∂x
θi(u, x) = uθi(u, x)− µiθi−1(u, x) + (λi + µi)θi(u, x)− λiθi+1(u, x)
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By introducing the conditional double Laplace transform

θ̃i(u, ξ) =
∫ ∞

0
e−ξxθi(u, x)dx.

we obtain for i ≥ 0

riξθ̃i(u, ξ)− riθi(u, 0) = uθ̃i(u, ξ)− µi θ̃i−1(u, ξ) + (λi + µi)θ̃i(u, ξ)− λi θ̃i+1(u, ξ)

By introducing the infinite vector Θ(u, ξ), which ith component is θ̃i(u, ξ), the above equations
can be rewritten in matrix form as

ξRΘ(u, ξ) = RT(u) + (uI − A)Θ(u, ξ), (37)

where T(u) is the vector which ith component is equal to θi(u, 0). We clearly have θi(u, 0) = 1
for i = 0, . . . , i0. For the moment, the functions θi(u, 0) for i > i0 are unknown functions.

Equation (37) can be solved by using the same technique as in Section 3. In the following,

we assume that the measure ψ[i0](s; dx) has a discrete spectrum with atoms located at points
χk(s) > 0 for k ≥ 0. This assumption is satisfied for instance when the measure ψ(s; dx) has
a discrete spectrum (see Guillemin & Pinchon (1999) for details). Under this assumption, let
χk(s) > 0 for k ≥ 0 be the solutions to the equation

µi0+1

ri0+1

Qi0
(u;−ξ)

Qi0+1(u;−ξ)
Fi0

(u,−ξ) = 1.

Proposition 6. The Laplace transforms θi0+1+j(u, 0) for j ≥ 0 satisfy the following linear equations:

1

ri0+1πi0+1

Qi0
(u;−ξ)

Qi0+1(u;−ξ)

∞

∑
j=0

ri0+1+jπi0+1+jθi0+1+j(u, 0)
∫ ∞

0

Qj(i0 + 1; u; x)

ξ − x
ψ[i0](u; dx)

+
1

|r0|

i0

∑
j=0

|rj|πj

∫ ∞

0

Qi0
(u; x)Qj(u; x)

ξ + x
ψ[i0](u; dx) = 0 (38)

for ξ ∈ {χk(s), k ≥ 0}.

Proof. Equation (37) can be split into two parts. The first part reads

(

ξI[i0] − R−1
[i0]

(

uI[i0] − A[i0]

))

Θ[i0] = e[i0] −
λi0

ri0

θ̃i0+1(u, ξ)ei0
, (39)

where e[i0] is the finite vector with all entries equal to 1 for i = 0, . . . , i0 and Θ[i0] is the finite

vector, which ith entry is θ̃i(u, ξ) for i = 0, . . . , i0. The second part of the equation is

(

ξI
[i0] −

(

R[i0]
)−1 (

uI
[i0] − A[i0]

)

)

Θ[i0] = T[i0] −
µi0+1

ri0+1
θ̃i0

(u, ξ)e0, (40)

where the vector T[i0] (resp. Θ[i0]) has entries equal to θi0+1+i(u, 0) (resp. θ̃i0+1+i(u, ξ)) for
i ≥ 0.
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By adapting the proofs in Section 3, we have for i = 0, . . . , i0

θ̃i(u, ξ) =
1

|r0|

i0

∑
j=0

|rj|πj

∫ ∞

0

Qi(u; x)Qj(u; x)

ξ + x
ψ[i0](u; dx)

+
µi0+1πi0+1

|r0|
θ̃i0+1(u, ξ)

∫ ∞

0

Qi0
(u; x)Qi(s; x)

ξ + x
ψ[i0](u; dx), (41)

and for i ≥ 0

θ̃i0+i+1(u, ξ) = −
µi0+1+i

ri0+1
θ̃i0

(u, ξ)
∫ ∞

0

Qi(i0 + 1; u; x)

ξ − x
ψ[i0](u; dx)

+
1

ri0+1πi0+1

∞

∑
j=0

ri0+1+jπi0+1+jθi0+1+j(u, 0)
∫ ∞

0

Qj(i0 + 1; u; x)Qi(i0 + 1; u; x)

ξ − x
ψ[i0](u; dx)

(42)

By using Equation 41 for i = i0 and Equation (42) for i = 0, we obtain

(

1 −
µi0+1

ri0+1

Qi0
(u;−ξ)

Qi0+1(u;−ξ)
Fi0

(u,−ξ)

)

θ̃i0
(u, ξ) =

1

|r0|

i0

∑
j=0

|rj|πj

∫ ∞

0

Qi0
(u; x)Qj(u; x)

ξ + x
ψ[i0](u; dx)

+
1

ri0+1πi0+1

Qi0
(u;−ξ)

Qi0+1(u;−ξ)

∞

∑
j=0

ri0+1+jπi0+1+jθi0+1+j(u, 0)
∫ ∞

0

Qj(i0 + 1; u; x)

ξ − x
ψ[i0](u; dx)

where we have used the fact

∫ ∞

0

Qi0
(u; x)2

ξ + x
ψ[i0](u; dx) =

|r0|

λi0
πi0

Qi0
(u;−ξ)

Qi0+1(u;−ξ)

and
∫ ∞

0

1

ξ − x
ψ[i0](u; dx) = −Fi0

(u;−ξ).

Since the function θ̃i0
(u; ξ) shall have no poles in [0, ∞), the result follows.

6. Conclusion

We have presented in this paper a general method for computing the Laplace transform of the
transient probability distribution function of the content of a fluid reservoir fed with a source,
whose transmission rate is modulated by a general birth and death process. This Laplace
transform can be evaluated by solving a polynomial equation (see equation (18)). Once the
zeros are known, the quantities hi(s) for i = 0, . . . , i0 are computed by solving the system of
linear equations (19). These functions then completely determined the two critical functions
Fi0

and Fi0+1, which are then used for computing the functions Fi for i > i0 + 1 and Fi for i < i0
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by using equations (16) and (15), respectively. Moreover, we note that the theory of orthogonal
polynomials and continued fractions plays a crucial role in solving the basic equation (6).

The above method can be used for evaluating the Laplace transform of the duration of a busy
period of the fluid reservoir as shown in Section 5. The results obtained in this section can be
used to study the asymptotic behavior of the busy period when the service rate of the buffer
becomes very large. Occupancy periods of the buffer then become rare events and one may
expect that buffer characteristics converge to some limits. This will be addressed in further
studies.

7. Appendix

A. Proof of Lemma 1

From the recurrence relations (10), the quantities Ak(s) defined by A0(s) = 1 and for k ≥ 1

Ak(s) = |r0 . . . rk−1|
k

∏
j=1

α2j(s)

satisfy the recurrence relation for k ≥ 1

Ak+1(s) = (s + λk + µk)Ak(s)− λk−1µk Ak−1(s).

It is clear that Ak(s) is a polynomial in variable s. In fact, the polynomials Ak(s) are the
successive denominators of the continued fraction

Ge(z) =
1

s + λ0 −
µ1λ0

s + λ1 + µ1 −
µ2λ1

s + λ2 + µ2 −
. . .

which is itself the even part of the continued fraction

G(s) =
α1

z +
α2

1 +
α3

z +
α4

1 +
. . .

, (43)

where the coefficients αk are such that α1 = 1, α2 = λ0, and for k ≥ 1,

α2kα2k+1 = λk−1µk, α2k+1 + α2(k+1) = λk + µk.

It is straightforwardly checked that α2k = λk−1 and α2k+1 = µk for k ≥ 1. The continued
fraction G(s) is hence a Stieltjes fraction and is converging for all s > 0 if and only if ∑

∞
k=0 ak =
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∞ where the coefficients ak are defined by

α1 =
1

a1
, αk =

1

ak−1ak
for k ≥ 1.

(See Henrici (1977) for details.) It is easily checked that for k ≥ 1

a2k =
1

λk−1πk−1
and a2k+1 = πk.

Since the process (Λt) is assumed to be ergodic, ∑k≥1 ak = ∞, which shows that the continued
fraction G(s) is converging for all s > 0 and that there exists a unique measure ϕ(dx) such that
G(s) is the Stieltjes transform of ϕ(dx), that is, for all s ∈ C \ (−∞, 0]

G(s) =
∫ ∞

0

1

z + x
ϕ(dx).

The support of ϕ(dx) is included in [0, ∞) and this measure has a mass at point x0 ≥ 0 if and
only if

∞

∑
k=0

Ak(−x0)
2

λ0 . . . λk−1µ1 . . . µk
< ∞.

Since the continued fraction G(s) is converging for all s > 0, we have

∞

∑
k=0

Ak(s)
2

λ0 . . . λk−1µ1 . . . µk
= ∞. (44)

Since the polynomials Ak(s) are the successive denominator of the fraction Ge(s), the
polynomials Ak(−s), k ≥ 1, are orthogonal with respect to some orthogonality measure,
namely the measure ϕ(dx). From the general theory of orthogonal polynomials Askey (1984);
Chihara (1978), we know that the polynomial Ak(−s) has k simple, real, and positive roots.
Since the coefficient of the leading term of Ak(−s) is (−1)k, this implies that Ak(s) can be
written as Ak(s) = (s + s1,k) . . . (s + sk,k) with si,k > 0 for i = 1, . . . , k. Hence, Ak(s) ≥ 0 for all
s ≥ 0 and then, for all k ≥ 0, αk(s) ≥ 0 for all s ≥ 0 and hence the continued fraction F (s, z)
defined by Equation (9) is a Stieljtes fraction.

The continued fraction F (s, z) is converging if and only if ∑
∞
k=0 ak(s) = ∞ where the

coefficients ak(s) are defined by

α1(s) =
1

a1(s)
, αk(s) =

1

ak−1(s)ak(s)
for k ≥ 1.

(See Henrici (1977) for details.)

It is easily checked that

a2k+1(s) =
|rk|

|r0|

Ak(s)
2

λk−1 . . . λ0µk . . . µ1
and a2k = |r0|

λ0 . . . λk−2µ1 . . . µk−1

Ak(s)Ak−1(s)
.
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For k > i0, rk ≥ ri0+1 and then by taking into account Equation (44), we deduce that for all
s > 0, ∑

∞
k=0 ak(s) = ∞ and the continued fraction F (s; z) is then converging for all s > 0. For

s = 0, we have

a2k(0) =
|r0|

λk−1πk−1

and then ∑
∞
k=0 ak(0) = ∞ since the process (Λt) is ergodic (see Condition (2)). This shows that

the Stieltjes fraction F (s; z) is converging for all s ≥ 0.

B. Selfadjointness properties

We consider in this section the Hilbert space Hi0
= Ci0+1 equipped with the scalar product

(c, d)i0
=

i0

∑
k=0

ckdk|rk|πk.

The main result of this section is the following lemma.

Lemma 6. For s ≥ 0, the finite matrix −R−1
[i0]

(sI[i0] − A[i0]) defines a selfadjoint operator in the

Hilbert space Hi0
; the spectrum is purely point-wise and composed by the (positive) roots of the

polynomial Qi0+1(s; x) defined by Equation (8), denoted by ζk(s) for k = 0, . . . , i0.

Proof. The finite matrix −R−1
[i0]

(sI[i0] − A[i0]) is given by

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

− s+λ0

|r0|
λ0

|r0|
0 . .

µ1

|r1|
−

(s+λ1+µ1)
|r1|

λ1

|r1|
. .

0
µ2

|r2|
−

(s+λ2+µ2)
|r2|

λ2

|r2|
.

. . . . .
µi0

|ri0
|
−

s+λi0
+µi0

|ri0
|

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

The symmetry of the matrix with respect to the scalar product (., .)i0
is readily verified by

using the relation λkπk = µk+1πk+1. Since the dimension of the Hilbert space Hi0
is finite,

the operator associated with the matrix −R−1
[i0]

(sI[i0] − A[i0]) is selfadjoint and its spectrum is

purely point-wise.

If f is an eigenvector for the matrix −R−1
[i0]

(sI[i0] − A[i0]) associated with the eigenvalue x, then

under the hypothesis that f0 = 1, the sequence fn verifies the same recurrence relation as
Qk(s; x) for k = 0, . . . , i0 − 1. This implies that x is an eigenvalue of the above matrix if an
only if Qi0+1(s; x) = 0, that is, x is one of the (positive) zeros of the polynomial Qi0+1(s; x),
denoted by ζk(s) for k = 0, . . . , i0.

Let us introduce the column vector Q[i0](s, ζk(s)) for k = 0, . . . , i0, whose ℓth component is

Qℓ(s, ζk(s)). The vector Q[i0](s, ζk(s)) is the eigenvector associated with the eigenvalue ζk(s)

of the operator −R−1
[i0]

(sI[i0] − A[i0]). From the spectral theorem, the vectors Q[i0](s, ζk(s)) for
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k = 0, . . . , i0 form an orthogonal basis of the Hilbert space Hi0
. The vectors ej for j = 0, . . . , i0

such that all entries are equal to 0 except the jth one equal to 1 form the natural orthogonal
basis of the space Hi0

. We can moreover write for j = 0, . . . , i0

ej =
i0

∑
k=0

α
(j)
k Q[i0](s, ζk(s)).

By using the orthogonality of the vectors Q[i0](s, ζk(s)) for k = 0, . . . , i0, we have

(ej, Q[i0](s, ζk(s)))i0
= |rj|πjQj(s, ζk(s)) = ‖Q[i0](s, ζk(s))‖

2
i0

α
(j)
k

where for f ∈ Hi0
, ‖ f ‖2

i0
= ( f , f )i0

. We hence deduce that

|rj|πj

i0

∑
k=0

Qj(s, ζk(s))Qℓ(s, ζk(s))

‖Q[i0](s, ζk(s))‖
2
i0

= δj,ℓ,

where δj,ℓ is the Kronecker symbol. It follows that if we define the measure ψ[i0](s; dx) by

ψ[i0](s; dx) = |r0|
i0

∑
k=0

1

‖Q[i0](s, ζk(s))‖
2
i0

δζk(s)(dx) (45)

the polynomials Qk(s, x) for k = 0, . . . , i0 are orthogonal with respect to the above measure,
that is, they verify

∫ ∞

0
Qj(s, x)Qℓ(s, x)ψ[i0](s; dx) =

|r0|

|rj|πj
δj,ℓ,

and the total mass of the measure ψ[i0](s; dx) is equal to 1, i.e,

∫ ∞

0
ψ[i0](s; dx) = 1.
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