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1. Introduction

Entangled photons are a crucial resource for linear optical quantum communication and
quantum computation. Besides the remarkable progress of photon state engineering using
atomic memories (Kimble (2008); Yuan et al. (2008)) the majority of current experiments
is based on the production of photon pairs in the process of spontaneous parametric
down-conversion (SPDC), where the entangled photon pair is concluded from post-selection
of randomly occurring coincidences. Here we present new insights into the heralded
generation of photon states (Barz et al. (2010); Wagenknecht et al. (2010)) that are
maximally entangled in polarization (Schrödinger (1935)) with linear optics and standard
photon detection from SPDC (Kwiat et al. (1995)). We utilize the down-conversion state
corresponding to the generation of three pairs of photons, where the coincident detection of
four auxiliary photons unambiguously heralds the successful preparation of the entangled
state (Śliwa & Banaszek (2003)). This controlled generation of entangled photon states is
a significant step towards the applicability of a linear optics quantum network (Nielsen
& Chuang (2000)), in particular for entanglement distribution (Bennett et al. (1996)),
entanglement swapping (Kaltenbaek et al. (2009); Pan et al. (1998)), quantum teleportation
(Bouwmeester et al. (1997)), quantum cryptography (Bennett & Brassard (1984); Ekert
(1991); Jennewein et al. (2000)) and scalable approaches towards photonics-based quantum
computing schemes (Browne & Rudolph (2004); Gottesman & Chuang (1999); Knill et al.
(2001)).

2. Background

Photons are generally accepted as the best candidate for quantum communication due to their
lack of decoherence and their possibility of photon broadcasting (Bouwmeester et al. (2000)).
However, it has also been discovered that a scalable quantum computer can in principle
be realized by using only single-photon sources, linear-optics elements and single-photon
detectors (Knill et al. (2001)). Several proof-of-principle demonstrations for linear optical
quantum computing have been given, including controlled-NOT gates (Gasparoni et al.
(2004); O’Brien et al. (2003); Pittman et al. (2003; 2001); Sanaka et al. (2004)), Grover’s
search algorithm (Grover (1997); Kwiat et al. (2000); Prevedel et al. (2007)), Deutsch-Josza
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algorithm (Deutsch (1985); Tame et al. (2007)), Shor’s factorization algorithm (Lanyon et al.
(2007); Lu et al. (2007); Politi et al. (2009)) and the promising and new model of the one-way
quantum computation (Chen et al. (2007); Kiesel et al. (2005); Prevedel et al. (2007); Vallone
et al. (2008); Walther et al. (2005)). A main issue on the path of photonic quantum information
processing is that the best current photon source, SPDC, is a process where the photons are
created at random times (Zukowski et al. (1993)). All photons involved in a protocol need to be
measured including a detection of the desired output state. This impedes the applicability of
many of the beautiful proof-of-principle experiments, especially when multiple photon-pairs
are involved (Bouwmeester et al. (2000)).

Other leading technologies in this effort are based on other physical systems including
single trapped atoms and atomic ensembles (Kimble (2008); Yuan et al. (2008)), quantum
dots (Michler et al. (2000)), or Nitrogen-Vacancy centers in diamond (Kurtsiefer et al. (2000)).
Although these systems are very promising candidates, each of these quantum state emitters
faces significant challenges for realizing heralded entangled states; typically due to low
outcoupling efficiencies or the distinguishability in frequency.

Within linear optics several approaches exist to overcome the probabilistic nature originating
from SPDC and to prepare two-photon entangled states conditioned on the detection of
auxiliary photons (Eisenberg et al. (2004); Hnilo (2005); Śliwa & Banaszek (2003); Kok &
Braunstein (2000b); Pittman et al. (2003); Walther et al. (2007)). It was shown that the
production of one heralded polarization-entangled photon pair using only conventional
down-conversion sources, linear-optics elements, and projective measurements is not possible
with less than three initial pairs (Kok & Braunstein (2000a)). Here we describe an experimental
realization for producing heralded two-photon entanglement along theses lines, suggested
by Śliwa and Banaszek that relies on triple-pair emission from a single down-conversion
source (Śliwa & Banaszek (2003)). This scheme shows significant advantages compared to
other schemes where either several SPDC sources (Pittman et al. (2003)) or more ancilla
photons (Walther et al. (2007)) are required.

Current down-conversion experiments allow for the simultaneous generation of up to six
photons (Lu et al. (2009; 2007); Prevedel et al. (2009); Radmark et al. (2009); Wieczorek et al.
(2009); Zhang et al. (2006)) with typical detection count rates, dependent on the experimental
configuration, of about 10−3 to 10−1 s−1. In the demonstrated case the coincident detection
of four photons is used to predict the presence of two polarization entangled photons in
the output modes. The auxiliary photons thus herald the presence of a Bell state without
performing a measurement on that state.

3. Theory and experimental design

Figure 1 gives a schematic diagram of the used setup to generate the heralded state

∣

∣φ+〉 =
1√
2

(

t†
1Ht†

2H + t†
1V t†

2V

)

|vac〉 , (1)

where H and V denote horizontal and vertical polarization, respectively, whereas t1 and t2

correspond to the transmitted modes after the beam splitters. For generating the heralded
state,

∣

∣φ+
〉

, three photon pairs have to be emitted simultaneously into spatial modes a1 and
a2, which can be expressed in terms of creation operators:

|Ψ3〉 =
1

12

(

a†
1H a†

2V − a†
1V a†

2H

)3
|vac〉 . (2)
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Fig. 1. Setup for the heralded generation of entangled photon pairs. Six photons are created
simultaneously by exploiting higher-order emissions in a spontaneous parametric
down-conversion process. The photons are brought to beam splitters and the reflected modes
are analyzed in |H/V〉 basis and in |±〉 = 1√

2
(|H〉 ± |V〉) basis, respectively, using polarizing

beam splitters and half-wave plates. State characterization of the heralded photon pair in the
transmitted modes is performed via polarization analysis and the help of quarter-wave
plates, half-wave plates and polarizing beam splitters.

These photons are guided to non-polarizing beam splitters (BS1 and BS2) with various
splitting ratios. The scheme only succeeds when four photons, two photons at BS1 and BS2,
respectively, are reflected, and detected in each of the output modes as four-fold coincidence.
The two reflected photons of BS1 are projected onto the |H/V〉 basis for mode r1, while the
two reflected photons of BS2 are measured in the |±〉 = 1√

2
(|H〉 ± |V〉) basis for mode r2.

Only the case where one photon is present in each of the modes r1H,1V and r2+,2− is of interest
for a successful heralding of the output state. Considering only these terms, the output state
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results in

|Ψ3〉 = C(θ1, θ2) ·
1√
2

(

t†
1Ht†

2H + t†
1V t†

2V

)

· r†
1Hr†

1Vr†
2+r†

2− |vac〉 (3)

where C(θ1, θ2) is a constant depending on transmission coefficients of beam splitters. The
coincident detection of one and only one photon in the modes r1H , r1V , r2+ and r2− heralds
the presence of an entangled photon pair in

∣

∣φ+
〉

state in the output modes t1, t2.
In the present scheme such a case can only be achieved by three (or more)-pair emission
from SPDC. The contribution from two-pair emission is suppressed by destructive quantum
interference in the half-wave plate (HWP) rotation used for r2+,2−. At this specific angle any
possible four-photon state, emitted into the four modes, r1H,1V and r2+,2−, will result only in
a three-fold coincidence when projected on the |H/V〉 basis. Thus, these two photons will
never contribute to a fourfold coincidence. This results from the quantum interference (see
Figure 2) of

r†
2+r†

2− = r†
2Hr†

2H − r†
2Vr†

2V . (4)

This quantum interference together with the use of number-resolving detectors ensures that
the remaining two photons are found in the transmitted modes. If a high transmittance of
the beam splitters is chosen, it still can be assumed that the two photons are transmitted even
without the use of number-resolving detectors. The quantum interference can be seen when
rotating the HWP in mode r2. Figure 2 shows this dependency of the four-fold coincidences
with a visibility of (86.7 ± 1.2)%
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Fig. 2. Visibility of the four-fold coincidences at the reflected modes r1H , r1V and r2+, r2−.
The quantum interference for the detected two-pair emission can be seen with respect to the
half-wave plate (HWP) used for r2+, r2−. At the specific HWP rotation of 0◦ relative to the
|±〉 basis, the curve shows a suppression of the corresponding four-photon detection. An
angle of 22.5◦ relative to the |±〉 basis results in a measurement in the |H/V〉 and thus leads
to a maximum of the four-fold rates. This quantum interference is a key feature of the
experiment as it enables the triggering on the desired six-photon emission by measuring only
four detection events.
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4. Experimental setup

Six photons in the |Ψ3〉-state are produced simultaneously by using higher-order emissions of
a non-collinear type-II SPDC process. A mode-locked Mira HP Ti:Sa oscillator is pumped by
a Coherent Inc. Verdi V-18 laser to reach output powers high enough to be able to exploit
third-order SPDC emissions. The pulsed-laser output (τ = 200 fs, λ= 808 nm, 76 MHz) is
frequency-doubled using a 2 mm thick Lithium triborate (LBO) crystal, resulting in UV pulses
of 1.2 W cw-average. A stable source of UV-pulses is achieved by translating the LBO with a
stepper-motor to avoid optical damage to the anti-reflection coating of the crystal (count-rate
fluctuations less than 3 % over 24 h). Afterwards, dichroic mirrors are used to separate the
up-converted light from the infrared laser light.

The UV beam is focused on a 2 mm-thick β-barium borate (BBO) crystal cut for non-collinear
type-II parametric down-conversion. Half-wave plates and additional BBO-crystals
compensate walk-off effects and allow the production of any Bell-state. Narrowband
interference filters (∆λ = 3 nm) are used to spatially and spectrally select the down-converted
photons which are then coupled into single mode fibers that guide them to the analyzer setup.
At this detection unit, the photon pairs are directed to non-polarizing beam splitters with
different splitting ratios for different experiment runs. The reflected modes are analyzed in
|H/V〉 basis and in |±〉 basis, respectively, as described above. This is implemented by using
a half-wave plate (HWP) oriented at 45◦ followed by PBS2.

5. Methods

In the demonstrated case of using standard detectors (photo-avalanche diodes by
PerkinElmer) the transmission of the non-polarizing beam splitters should ideally be as
high as possible; i.e. that a measured four-photon coincidence corresponds to precisely
four photons and thus heralds the desired state in the output modes t1 and t2. Obviously
the trade-off for increasing this probability of heralding

∣

∣φ+
〉

- which in principle can be
approximately unity - is a reduction in the four-fold coincidence rate for triggering this
state. Therefore for demonstrating this dependency beam splitters with different transmission
rates T, of 17 %, 50 % and 70 % are chosen. For each of this beam splitter ratios the density
matrix ρ of the heralded entangled pair, triggered by the successful registration of a four-fold
coincidence in modes r1H , r1V , r2+, r2− is reconstructed. This density matrix is obtained by an
over-complete tomographic set of measurements, where 36 combinations of the single photon
projections |H/V〉, |±〉, and |R/L〉 = 1√

2
(|H〉 ± i |V〉), on each of the two photons in modes t1

and t2 were used. Successful projections are signaled by 6-photon coincidence measurements
and the most likely physical density matrix for the 2-qubit output states is extracted using
maximum-likelihood reconstruction (Banaszek et al. (1999); Hradil (1997); James et al. (2001)).

6. Results

The rate R of the four-fold and the six-fold coincidences are shown in Table 1. Figure 3 shows
the probability of obtaining the heralded state, i.e. to find a photon pair in the output modes
triggered by the four-fold coincidence, with respect to the beam splitter transmission.

The probabilities were P17/83 = 2.5± 0.2 %, P50/50 = 29.4± 1.0 % and P70/30 = 77.2± 6.6 % for
the different transmission rates (see Figure 3). Obviously, these obtained values for heralding

45Experimental Engineering of Photonic Quantum Entanglement
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four-fold rate six-fold rate
/minute /day

17/83 83 30

30/70LP 22 5
50/50 14 60
70/30 0.4 5

Table 1. Overview over the experimental four-fold coincidence rates showing high- and
low-power (LP) measurements.
∣

∣φ+
〉

reflect the limitations of photon losses, mostly due to using standard detectors without
the capability of resolving the photon number.
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Fig. 3. Heralding efficiency. Probability of the heralded entangled photon-pair generation
with respect to various beam splitter transmission rates in %. The deviation from the
expected quadratic behavior (black line) originated from spurious high-order emissions,
which increase the probability of preparing the entangled state

∣

∣φ+
〉

for higher beam splitter
transmissions.

The corresponding fidelity, F =
〈

φ+
∣

∣ ρ
∣

∣φ+
〉

of the heralded photon pair with the pure
quantum state

∣

∣φ+
〉

, was F17/83 = 63.7 ± 4.9 %, F50/50 = 57.5 ± 3.4 %, and F70/30 = 61.9 ±
7.7 % for the different beam splitters via local unitary transfomations (see Figure 4).

The corresponding density matrices are shown in Figure 5. Uncertainties in quantities
extracted from these density matrices were calculated using a Monte Carlo routine and
assumed Poissonian errors. As expected, these fidelities are basically independent of the beam
splitter ratio. The small deviation can be explained by the typical variations of the quality for
these custom-made beam splitters. The reduced fidelities to the real state

∣

∣φ+
〉

, however, is
a result of the eight-photon emission. At the given laser power the probability of obtaining a
higher-order emission for a given six-fold coincidence is about 10 %.
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Fig. 4. Fidelities. The experimentally obtained quantum state fidelities with respect to the
ideal state

∣

∣φ+
〉

is shown with (squares) and without (triangles) background for various
beam splitter transmission rates in %. The background was assumed to be mostly state

∣

∣ψ−〉

originating from from eight-photon emissions.

This unwanted contribution adds a significant
∣

∣ψ−〉 component to the density matrices and
thus reduces the overlap with the ideal state

∣

∣φ+
〉

. A theoretical calculation based on
the used experimental parameters allowed to estimate this unwanted background which is
qualitatively different than the desired output state. When subtracting this

∣

∣ψ−〉 contribution
from the measured density matrices the corrected fidelities became F′

17/83 = 67.7 ± 6.7 %,

F′
50/50 = 81.2 ± 4.4 %, and F′

70/30 = 79.0 ± 9.8 %, which demonstrates the that laser systems
with less peak power per pulse but much higher repetition rate could achieve such state
fidelities. From this data, the tangle (Coffman et al. (2000)) is extracted as a measure of
entanglement that ranges from 0 for separable states to 1 for maximally entangled states. The
values are t17/83 = 0.43 ± 0.08, t50/50 = 0.37 ± 0.03 and t70/30 = 0.45 ± 0.11 for the different
beam splitter ratios. It is important to note that the noise is not intrinsic in the setup and is
only due to practical drawbacks. For demonstrating that this limitation will be overcome in
the near future, an additional experimental run with a reduced laser power of 620 mW and
beam splitter transmissions of 30 % was performed. The post-selected density matrix of this
state is shown in Figure 2b. The extracted state of F30/70 = (84.2 ± 8.5)% and a tangle of
τ30/70 = 0.55 ± 0.19 evidently demonstrate the generated entanglement for this measured
state.

This state’s density matrix as shown in Figure 6, if commonly used in the coincidence basis,
would allow a violation of local realistic theories by almost 2 standard deviations as the
it implies a maximum Clauser-Horne-Shimony-Holt (Clauser et al. (1969); Horodecki et al.
(1995)) Bell parameter of S = 2.36 ± 0.22.
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Fig. 5. The two-qubit density matrix for different beam splitter transmissions. Shown are the
real (top) and imaginary (bottom) parts of the reconstructed density matrix for beam splitter
transmissions of 17 % (a), 50 % (b), and 83 % (c). Large diagonal elements in the |HH〉 and
|VV〉 positions along with large positive coherences indicate that this state has the qualities
of the desired heralded entangled state

∣

∣φ+
〉

. The real density matrix was reconstructed by
way of a maximum likelihood method using six-photon coincidence rates obtained in 36
polarization projections. The experimentally measured density matrix has a fidelity of
(63.7 ± 4.9)%(a), (57.5 ± 3.4)% (b), and (61.9 ± 7.7)% (c) with the ideal state
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∣φ+
〉

via local
unitary transformations.
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Fig. 6. Low-power density matrix. The reduction of the background is demonstrated when
reducing the laser-power. The experimentally reconstructed real part (left) and imaginary
part (right) of the two-qubit polarization density matrix is shown. The measurements were
performed with a reduced laser-power of 0.62 Watt and a beam splitter transmission of 30%.
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7. Conclusion

In conclusion, an efficient method for the generation of heralded polarization-entangled
photon states, which are a crucial resource for photonic quantum computing, quantum
communication and quantum metrology is demonstrated. This experiment uses currently
available technologies - it relies only on linear optics, parametric down-conversion and
standard photon detection - and is therefore of direct practical relevance. The performance
of the photon-pair source was characterized by measuring the quantum state fidelity of the
output states and by demonstrating the relation of the preparation efficiency with respect
to the beam splitter transmission rate. A fidelity of better than 84% and a state preparation
efficiency of 77% have been achieved. The feasibility of this experiment and the promising
application for linear optics quantum information processing and quantum metrology makes
it important and interesting for future quantum information experiments.
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