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1. Introduction 

Viruses are the most abundant biological entities on the planet and their life cycles include 

the infection of other organisms. Although the presence of viruses is obvious in host 

organisms that show signs of disease, many healthy organisms are also hosts of non-

pathogenic virus infections, where some are active and others are quiescent. It is doubtless 

that the known viruses represent only a tiny fraction of the viruses on Earth. There is a 

strong correlation between how intensively a species is studied and the number of viruses 

found in that species. Our own species is the subject of the most attention, because we have 

the greatest interest in learning about agents and processes that affect our health. If other 

species received the same amount of attention, it is likely that many would be found to be 

hosts to similar numbers of viruses (Breitbart et al., 2005). 

Viruses are important agents of many human diseases ranging from the trivial to the lethal, 

and they play roles in the development of several other types of disease. The history of viral 

pathogenesis is intertwined with the history of medicine. Humans were clearly aware of 

viral diseases in ancient times and, since recognizing viruses as disease agents, have taken 
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on the task of fighting them. This fight entails a need to understand the nature of viruses, 

how they replicate, and how they cause disease. Having such knowledge would facilitate 

the development of effective means for prevention, diagnosis, and treatment of viral 

diseases – medical applications that constitute the main aspects of the science of virology 

(John et al., 2007). 

Currently, the principal strategy for treating viral infections is to use antiviral drugs. For a 
long time, very few antiviral drugs were available for clinical use compared with the 
number of anti-bacterial drugs. This was because it was difficult to find compounds that 
interfere specifically with viral activities without causing significant harm to host cells. 
However, drugs are now available to treat diseases caused by a variety of viruses and, in 
some circumstances, to prevent viral infections. The development of these drugs is closely 
connected with a better understanding of viral life cycles. Chemists are now applying their 
knowledge of the three-dimensional structure and the molecular function of viral proteins 
and other structures to the design of molecules that inhibit important functions of viral 
proteins (De Clercq, 2004; John et al., 2007). 

In recent years, the demand for new antiviral strategies has increased markedly. Factors 

contributing to this growing demand include the ever-increasing prevalence of chronic viral 

infections and the emergence of new, more infectious viruses (De Clerq, 2004). One of the 

most dramatic aspects of virology is the emergence of new viral diseases or the re-

emergence of viruses with increased pathogenicity (as in the outbreak of swine flu). 

In some instances, the emergence of a viral disease represents the original identification of 

cause of this event (Geisbert et al., 2004). On occasion, a virus that is already widespread 

in a population can emerge as an endemic or epidemic disease because of an increase in 

the ratio of infectious cases. Such increases may result from either an increase in host 

susceptibility or an enhancement in the virulence of a virus. This can lead to large 

numbers of deaths among human populations, depending on the local social and 

environmental conditions (Weiss et al., 2004). 

When a viral disease becomes pandemic, antiviral drugs are vital in the management of 

infections (Moscona et al., 2008). However, the emergence of drug-resistant viral strains is of 

great concern, because these can compromise the effectiveness of treatment, or even lead to 

its failure. Drug-resistant viruses began to appear soon after antiviral drugs were introduced 

into clinical practice. This should not have been surprising given that antibiotic-resistant 

bacteria and insecticide-resistant insects emerged as a result of natural selection. It is now 

known that viruses can mutate at high frequencies (RNA viruses have a mutation rate 

estimated at 10–4, i.e., one mutation in 10,000 bases, while DNA viruses have a rate of 10–8) 

and evolve rapidly, thereby allowing genotypes encoding for drug resistance to arise. Drug-

resistant genotypes can be advantageous in hosts where the drug is present and they can 

become the dominant genotypes in such hosts (Nathanson et al., 2007). 

The drug resistance of viruses is relative, rather than absolute. A measure of the degree of 
resistance can be obtained by determining the IC50. A virus strain is considered to be ‘resistant’ 
to a drug if it is able to replicate in the body in the presence of a concentration of the drug that 
inhibits replication of ‘sensitive’ strains. Drug-resistant virus isolates are found to have one or 
more mutations in genes encoding for proteins that are drug targets (John et al., 2007). 
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Clinical problems arise when drug-resistant virus strains emerge in patients undergoing 
treatment and when resistant strains are transmitted to other individuals. In such cases, 
patients may be treated with alternative drugs or a strategy of multidrug therapy can be used, 
which is the current trend (John et al., 2007; l Nathanson et al., 2007). However, there are fewer 
therapeutic options when a new drug-resistant viral strain emerges (Tan et al., 2007). 

Therefore, there is a great need to continue research programmes aimed at extending the 

range of drugs available. In particular, it is very important to know and understand the 

mechanisms by which viral strains can become resistant to existing drugs in order to design 

new drugs for which the development of resistance will prove more difficult. In this chapter, 

we focus on the molecular mechanisms involved in the emergence of drug resistance, using 

different types of virus to describe current knowledge. 

2. Influenza virus 

Influenza is one of the most prevalent viral diseases, affecting an estimated 10–20% of the 

world population annually, with 3–5 million cases of severe respiratory illness and up to 500 

000 deaths. The aetiological agent is influenza virus (l Nathanson et al., 2007). 

Influenza virus belongs to the Orthomyxoviridae family, which is subdivided into three 

serologically distinct types: A, B, and C. Only influenza viruses A and B appear to be of 

concern as human pathogens, because influenza C virus does not cause significant disease 

(Collier et al., 2006). 

The virions are 100–200 nm in diameter with a spherical shape. The lipid envelope is 

covered with projections corresponding to different proteins on the virion surface (Itzstein 

et al., 2007). These proteins are: haemagglutinin (HA), which is a trimeric protein in the form 

of a spike; neuraminidase (NA), which is a tetrameric protein with a mushroom-like shape; 

and the M2 protein, which penetrates the lipid membrane of the virus during replication in 

the host cells and forms ion channels that allow the entry of protons from the interior of the 

virus (Figure. 1) (Horimoto et al., 2005). 

HA is a glycoprotein with a triangular cross-section, which was first identified based on 
its ability to agglutinate erythrocytes (hence its name). It is now apparent that it also has 
important roles in the attachment and entry of the virus into host cells, thereby 
determining virulence. NA (also called sialidase) removes the neuraminic (sialic) acid 
from cellular glycoproteins to facilitate viral release and the spread of infection to new 
cells (Eun-Sun et al., 2011). 

The genome of the influenza virus consists of eight discrete fragments of negative single-
stranded RNA (approximately 13 kb in size). These fragments form a complex with various 
proteins (PA, PB1, and PB2) to form a ribonucleoprotein arranged in a helix. The M1 protein 
forms a shell that provides strength and rigidity to the lipid membrane and it is associated 
with the NS2 protein. RNA transcriptase, which is found inside the matrix shell, is essential 
for the transcription of viral RNA to mRNA during replication (Palese et al., 2004). 

Influenza A viruses are designated based on the antigenic relationships of their external HA 
and NA proteins, i.e., they classified based on antibodies to H1–H16 and N1–N9. Only 
viruses with H1, H2, H3, N1, and N2 are known to infect humans or cause serious disease  
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Fig. 1. Schematic diagram of influenza A virus. Two surface glycoproteins, hemagglutinin 
(HA) and neuraminidase (NA), together with the M2 ion-channel protein, are embedded in 
the viral envelope, which is derived from the host plasma membrane. The ribonucleoprotein 
complex comprises a viral RNA segment associated with the nucleoprotein (NP) and three 
polymerase proteins (PA, PB1 and PB2). The matrix (M1) protein is associated with both 
ribonucleoprotein and the viral envelope. A small amount of non-structural protein 2 is also 
presen. (Modified from: Horimoto T, et. al. Nature Rev. Microbiol. 2005. 3: 591-600, 
reproduced with permission of the author) 

outbreaks (Collier et al., 2006). Although influenza B viruses cause the same types of disease 
as influenza A, they do not cause pandemics, because the only hosts are humans and seals 
(Eun-Sun et al., 2011). 

With at least 16 different HA and nine different NA subtypes, there is considerable antigenic 

variation among influenza viruses (Palese et al., 2004). This variation occurs because RNA 

viruses (e.g., influenza viruses) are extremely mutable and possess highly efficient strategies 

for generating viral diversity during evolution. RNA viruses have few or no proofreading 

mechanisms and many mutations are introduced during replication. Thus, RNA viruses 

exist as quasispecies, where viruses possess slightly different genetic compositions. 

Unfortunately, the evolution of viruses is not simply confined to point mutations inserted 

during replication. Viruses can also undergo leaps in evolution through the processes of 

recombination and reassortment. These processes produce population heterogeneity in 

viruses through the acquisition of large sections of genomic material from other viruses 

(Figure. 2) (Webby et al., 2004). 

These same mechanisms of evolution allow viruses to develop resistance to drugs. This is 

the case with resistance to oseltamivir (Tamiflu), where mutations confer resistance 

(mutations in NA) and there might be possible exchange of genetic information between 

resistant and susceptible viral strains (Janies et al., 2010). 

As mentioned earlier, a pandemic can arise because of either an increase in host 

susceptibility or the enhancement of viral virulence, and antiviral drugs are vital in the  
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Fig. 2. Molecular mechanisms for generating viral diversity. The viruses have three main 

mechanisms for generating diversity on replication. (a) Mutation: during replication, single 

point mutations are incorporated into one or more genomic positions as a result of a lack of 

proof-reading activity of the viral polymerase. (b) Recombination: foreign genetic material is 

incorporated into the viral genome through mechanisms such as template switching during 

replication. (c) Reassortment: occurs on dual infection of a cell with segmented genome 

viruses, whole gene segments can be swapped. Any of the three mechanisms (which are not 

exclusive), may result in viruses that have new biological properties, such as new host range 

and pathogenic potential. (Modified from: Webby R., et. al. Nature Med. Suppl. 2005. 10: S77-

S81, reproduced with permission of the author) 

management of infection when a viral disease becomes pandemic. Therefore, it is important 

to combat the emergence of drug resistance in seasonal strains (normal) and pandemic 

strains (Janies et al., 2010). 

Antiviral therapeutics can be divided into the following categories: drugs directed against 

the virus itself (either its genome or its proteins); drugs directed against host cell proteins 

that are critical for the replication of individual viruses; and therapeutics that mimic or 

enhance host defence mechanisms (Neal Nathanson et al., 2007). Two classes of antiviral 

agents are currently in use for the control of influenza infections: M2 ion channel blockers 

(directed against host cells) and NAIs (antivirus) (Fig. 3) (Palese et al., 2004; Okomo-

Adhiambo et al., 2010). 
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Fig. 3. Inhibition of influenza virus replication cycle by antivirals. After binding to sialic acid 
receptors, the virus is internalized by receptor-mediated endocytosis. The low pH in the 
endosome triggers the fusion of viral and endosomal membranes and the influx of H+ ions 
through the M2 channel releases the viral genes into the cytoplasm. Amantadine blocks this 
uncoating step. RNA replication and transcription occur in the nucleus. siRNA inhibition 
may affect the stability of mRNA, preventing translation of viral protein. Packaging and 
budding of virions occurs at the cytoplasmic membrane. Neuraminidase inhibitors block the 
release of the virus from the infected cell. Because sialic acid receptors are not removed by 
the neuraminidase, aggregates of virus stick to the cytoplasmic membrane of the infected 
cell and cannot move on to infect other cells. (Modified from: Peter P. et al. Nature Med. 2004. 
Supp. 10: S82-S87) 

The M2 blockers (amantadine and rimantadine) are effective against influenza A viruses, 

but not influenza B viruses. However, their effectiveness has been compromised by drug-

resistant mutants that are frequently isolated from patients within a few days of therapy 

(Okomo-Adhiambo et al., 2010). 

2.1 Antivirals used to the treatment of influenza 

Oseltamivir and zanamivir are neuraminidase inhibitors (NAIs) that are commonly used 

against type A and type B influenza infections (Fig. 4). Oseltamivir is administered orally, 

whereas zanamivir is inhaled. Another drug of this type is peramivir, which is currently 

www.intechopen.com



 
Point Mutations and Antiviral Drug Resistance 

 

51 

being studied. NAIs competitively bind to the highly conserved NA active site by 

mimicking sialic acid (N-acetylneuraminic acid), which is the natural substrate of NA. This 

inhibits the enzyme’s key function by destroying neuraminic acid-containing receptors, 

which prevents the release of progeny virions from infected cells and any possible 

dissemination to neighbouring cells (Neal Nathanson et al., 2007). 

 

Fig. 4. Electrostatic surface potential of the sialic acid (SA) binding pocket of H1N1pdm and 
oseltamivir. Shown in A) and B) are closeup views of the SA binding pocket with drug 
bound H1N1pdm and avian H5N1 neuraminidase, respectively. The region of the binding 
pocket, where the drug binds, exhibits a negative potential (colored red), whereas the 
opening of the pocket is surrounded by a highly positive potential ring (colored blue). 
(Reproduced with permission of the author). 

The highly conserved NA enzyme active site is comprised of catalytic amino acid residues 
that directly interact with the substrate (R118, D151, R152, R224, E276, R292, R371, and Y406) 
and framework (E119, R156, W178, S179, D198N, I222, E227, H274, E277, N294, and E425) 
residues that support the catalytic residues (Ferraris et al., 2008; Le et al., 2010). 

The influenza A H1N1 virus can develop resistance to oseltamivir because of a point 
mutation at one of several sites in the NA protein (e.g., D79G, S247G, N294S, or H274Y). 
Resistance to zanamivir (Relenza®) by the influenza A H1N1 virus can occur because of the 
NA point mutations H126N or Q136K (Janies et al., 2010). 

2.2 Antiviral resistance 

Resistance to oseltamivir in pandemic influenza strains can appear in various forms: 1) 
sporadic evolution in an infected patient in response to treatment; 2) evolution of resistance 
to oseltamivir in an infected patient and transfer of the strain among personal contacts; 3) 
maintenance of a genotype that confers resistance to oseltamivir in a viral lineage due to 
selection pressure; and 4) a reassortment event between oseltamivir-resistant seasonal H1N1 
and a pandemic strain (Janies et al., 2010). 

The frequency of resistance to oseltamivir was previously low, except in hospitalized 

children and immunocompromised patients. However, during the 2007–2008 and 2008–2009 

influenza seasons, the emergence and transmission of oseltamivir-resistant seasonal 
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influenza A (H1N1) viruses with an H274Y mutation were detected globally in untreated 

individuals, which emphasized the need for close monitoring of oseltamivir resistance. 

Mutations at catalytic (R292K) and framework (E119V and N294S) NA residues have been 

detected in the N2 viral subtype in oseltamivir-treated patients. A four-amino-acid deletion 

mutation (deletion of residues 245 to 248) was reported to confer oseltamivir resistance in an 

influenza A (H3N2) virus isolated from an immunocompromised patient treated with the 

drug (Okomo-Adhiambo et al., 2010). This shows that the clinical use of oseltamivir is 

associated with the emergence of drug resistance resulting from subtype-specific NA 

mutations (Janies et al., 2010; Okomo-Adhiambo et al., 2010). 

Zanamivir-resistant mutants are less common than oseltamivir-resistant mutants, partly 

because of differences between how the two drugs bind to the NA active site and possibly 

because of lower frequency of the prescription and use of zanamivir (Okomo-Adhiambo et 

al., 2010). 

Variant strains with an advantage are quickly amplified when selective conditions are 

present, such as the conditions after jumping to a new host, and they become the dominant 

strain by selective pressure, e.g., when a host is treated with a drug that the strain can resist 

(Webby et al., 2004). 

Several mutations in seasonal or pandemic strains confer resistance to oseltamivir, which is 

currently the most widely used drug. These mutations are found mainly in the framework 

of the enzyme and they appear to destabilize drug binding to the target enzyme, thereby 

reducing viral susceptibility to the treatment (Itzstein et al., 2007; Janies et al., 2010; Okomo-

Adhiambo et al., 2010). 

Mutants in E119 (influenza A H3N2) are known to emerge after oseltamivir treatment. The 

E119V variant was resistant to oseltamivir, but it did not exhibit reduced susceptibility to 

peramivir. The E119I variant was resistant to oseltamivir, but it also showed decreased 

susceptibility to zanamivir, peramivir, and A-315675 (another NAI under study) (Okomo-

Adhiambo et al., 2010). Mutants in E119 (influenza A H3N2) were also reported to disrupt 

E276-R224 salt bridges that accommodate the hydrophobic pentyl group of oseltamivir, 

although further studies are required to confirm this (Wang et al., 2009). Another very 

important mutation is H274Y (influenza H5N1 and H1N1), which is a mutation in the 

framework of the NA. 

Despite advances in our understanding of some viruses, we generally know very little about 

the specific molecular changes that allow many viruses to overcome known barriers (Webby 

et al., 2004). Therefore, new studies are investigating the molecular mechanisms that allow a 

virus to become drug resistant. One example is a computer simulation study of the union 

and disunion of oseltamivir with NA, and the effects that might be caused by known 

mutations (Le et al., 2010). 

These studies rely on the recent elucidation of crystal structures of both wild-type and 

mutant H5N1 NAs, which have opened the way for the investigation of drug resistance 

mechanisms and structure-based drug design at the atomic level. These crystal structures 

represent a frozen-in-time snapshot of a possible conformation during drug–protein 

interaction. However, drug binding is a dynamic process and computational studies using 
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crystal structures as starting points can shed light on how protein flexibility and point 

mutations influence drug–protein endpoint interactions (Le et al., 2010). 

The major finding with this approach is the discovery that the union of oseltamivir to the NA 

occurs through charged groups on the protein surface. These interactions through a charged 

pathway have proved to be very important in the process of interaction between oseltamivir 

and the NA, because they facilitate binding or stabilize it. It is now known that many 

mutations prevent or weaken key interactions that allow the union or stabilization between 

oseltamivir and the NA enzyme (Fig. 5) (Itstein, 2007; Le et al., 2010; Eun-Sun et al., 2011). 

This finding opens up a whole new landscape for drug design. Chance and virological 

screening will continue to play a part in the discovery of new antivirals, but knowledge of 

viral gene structure and protein functioning is leading to a new generation of drugs (Collier 

et al., 2006). The insights gained so far should assist in the rational design of NAIs and other 

types of drugs, while avoiding drug resistance (Le et al., 2010). 

Given the results of simulations of the interaction between oseltamivir and the NA enzyme, 

the next generation of drugs for the treatment of influenza will probably consist of inhibitors 

with positively charged groups, because these compounds have potential as antiviral 

therapeutics, although the strain specificity of these inhibitors must be resolved (Eun-Sun et 

al., 2011). 

Alternative drug discovery targets, such as RNA polymerase, HA, or the M2 ion channel 

protein, which are essential components of the viral life cycle, are also under investigation. 

This research may lead to a combination therapy approach or the use of sialidase inhibitors 

alone, to provide new classes of anti-influenza drugs. Combination therapy might also 

reduce the potential of resistance development (Izstein, 2007). 

It is also very important to limit the prescription of antivirals in order to reduce the 

possibility of the emergence of drug-resistant strains and thus maintain the ability of 

antivirals to treat high-risk patients (Le et al., 2010). 

Finally, a precise diagnosis of influenza A is very important, including the identification of 

resistant strains and point-of-care pathogen genotyping, because this information can help 

to identify the appropriate antiviral in each situation. Some studies have indicated that 

genomics technology, bioinformatics, and geographical information systems can be 

immediately applicable to help in the treatment of infectious diseases. In addition to data 

collection, analyses are useful for turning raw data into prospective public health 

intelligence on drug resistance in a specific region, and into a form that provides easy 

visualization (Janies et al., 2010). 

Is very important a precise diagnosis of influenza A, including the identification of resistant 

strains and point-of-care pathogen genotyping, because this information can help to identify 

the appropriate antiviral in each situation. Some studies have indicated that genomics 

technology, bioinformatics, and geographical information systems can be immediately 

applicable to help in the treatment of infectious diseases. In addition to data collection, 

analyses are useful for turning raw data into prospective public health intelligence on drug 

resistance in a specific region, and into a form that provides easy visualization 
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3. HIV drug-resistance related point mutations 

3.1 Introduction 

The advent of highly active antiretroviral therapy [HAART] has changed the natural history 
of human immunodeficiency virus infection [HIV], extending the survival of carrier subjects 
and reducing progression to human immunodeficiency syndrome. The success in the 
combination of antiretroviral treatments to suppress viral replication depends on several 
factors, including the host, the virus and medications. Nowadays, therapeutic options 
against HIV-1 include more than 20 drugs, classified according to their action mechanism 
and targeted to four different points of the viral replication cycle: the entry of the virus into 
the cell, inverse transcription, the integration of viral genetic material into the cell nucleus, 
and maturation of virions [Fig. 5] (Altman et al., 2007). Since its introduction, ARV therapy 
showed marginal and short-duration benefits when drug combinations did not achieve a 
satisfactory control of viral replication. This phenomenon has been associated with the high 
replicative capacity of the virus and the high error rate in the transcription of its genetic 
material, but also with a Darwinian phenomenon of quasispecies selection and 
accumulation exhibiting resistance due to the presence of specific mutations resulting from 
pharmacological pressure and suboptimal viral suppression under a treatment scheme 
(Johnson et al, 2010). That is to say, both the preexistence and selection of resistance 
mutations are important failure predictors for an ARV therapy (Hatano, 2006; Perno, 2002; 
Poveda, 2010; Shafer, 2006). 

 

Fig. 5. Antirretroviral drug classes 

Retroviruses use the reverse transcription of viral RNA into linear double-stranded DNA, 

with subsequent integration into the host genome. The characteristic enzyme used for this 

process is known as reverse transcriptase (Arnold & Sarafianos, 2008). This enzyme is error-

prone; with the massive turnover of virions in the infected host, these errors accumulate in 

the viral DNA, accounting for the relatively high mutability of HIV-1. Retroviruses have the 

survival advantage of great genetic diversity, and latency, because the DNA provirus is 

integrated into the chromosomal DNA of the infected cell (Reitz & Gallo, 2009). 
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3.2 HIV biology and resistance point mutations 

Pathogenic human retroviruses include lentiviruses [HIV-1 and -2] and oncoviruses [HTLV-I 
and –II]. Current knowledge places retroviral infection of humans as zoonoses that originated 
in primate-to-human species-jumping events. For HIV-1 and HIV-2, these events occurred in 
Central and West Africa. All retroviral genomes consist of at least 4 genes: gag, pro, pol and env. 
The gag gene encodes the major structural polyprotein Gag. The viral protease is encoded by 
the pro gene and is responsible for facilitating the maturation of viral particles. Products of the 
pol gene include reverse transcriptase, RNase H and integrase, while env is responsible for the 
viral surface glycoprotein and transmembrane proteins that mediate cellular receptor binding 
and membrane fusion. In addition, complex retroviruses such as HIV-1 encode accessory 
proteins that enhance replication and infectivity (Reitz & Gallo, 2009). 

Resistance to ARV therapy implies the selection and accumulation of mutations in one or 
more HIV genes [mainly gag and pol], which reduce the antiviral activity of one or more 
ARV drugs. It can be “primary” when occurring in individuals not previously and directly 
exposed to these drugs and whose transmission of resistant strains is presumed or 
“secondary” when there is history of previous exposure. Interestingly, the frequency in the 
selection and transmission of mutations conferring resistance can also vary according to the 
adaptive and reproductive capacity preserved by the mutant virus in a given environment 
[viral fitness], and to the greater or lower ability of the drug to retain its antiviral activity 
despite the presence of specific resistance mutations [genetic barrier] (De Luca, 2006).Table 1 
shows the mutations suggested for the monitoring of resistance transmitted to the HIV by 
the World Health Organization [WHO] for the three primary classes of antiretroviral 
treatment (Bennett et al, 2009). 

 

NRTI M41L, K65R, D67N/G/E, T69D/Ins, K70R/E, L74V/I, V75M/T/A/S, F77L, 
Y115F, F116Y, Q151M, M184V/I, L210W, T215Y/F/I/S/C/D/V/E, K219Q/E/N/R  

NNRTI L100I, K101E/P, K103N/S, V106M/A, V179F, Y181C/I/V, Y188L/H/C, 
G190A/S/E, P225H, M230L 

PI L23I, L24I, D30N, V32I, M46I/L, I47V/A, G48V/M, I50V/L, F53L/Y, 
I54V/L/M/A/T/S, G73S/T/C/A, L76V, V82A/T/F/S/C/M/L, N83D, 
I84V/A/C, I85V, N88D/S, L90M 

Table 1. List of mutations for surveillance of transmitted drug resistant HIV, World Health 
Organization 2009.NRTI: nucleotide reverse transcriptase inhibitors, NNRTI: non-nucleotide 
reverse transcriptase inhibitors, PI: protease inhibitors 

3.3 Impact of resistance on clinical response to antiretroviral treatment 

The main purpose of antiretroviral therapy is to achieve a sustained control of HIV 
replication. Virological failure is defined as the inability to achieve or maintain the viral 
replication suppression at levels below 200 copies/mL. 

An incomplete virological response refers to the presence of two consecutive readings of 
HIV RNA higher than 200 copies/mL in plasma, after 24 weeks on continuous ARV 
therapy; and viral rebound is a detectable viral load [VL] higher than 200 copies/mL after 
achieving viral suppression (Department of Health and Human Services [DHHS], 2011). 
Usually, once the ARV therapy is initiated and constantly administered, the HIV VL in 
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plasma is quantitatively reduced in two phases, a fast initial phase during the first weeks, 
and a slower late phase that can extend up to 6 months. There are multiple factors involved 
in the viral response to the ARV therapy, such as evolutionary issues of the virus (Esté & 
Telenti, 2009; Parkin et al, 2005; Rivas et al, 2006), host immunology (Gragsted et al, 2004; 
Telenti & Goldstein, 2006), compliance of the individual with the treatment (Muller et al, 
2011; Protopopescu et al, 2009), pharmacogenetics (Clifford et al, 2009; Telenti et al, 2002), 
pharmacologic interactions (Zhu et al, 2001), and the occurrence of comorbidities. Table 2 
shows examples for the abovementioned issues.  

 
 

Item Example 

Virus - In some non-B strains, the accumulation of certain polymorphisms and 
secondary mutations in the enzyme protease has been associated with a 
reduction in susceptibility in vitro to protease inhibitors, even in 
absence of primary mutations. 

- Primary mutations associated with resistance are the same regardless 
the viral group and subtype. However, some clearly appear more 
frequently in some groups or subtypes than in others. 

Host immunity - The adequate response to antiretroviral treatment is inversely 
proportional to the number of basal CD4+ cells.  

Adherence to 
treatment 

- The satisfactory virological suppression depends on the adherence to 
the antiretroviral treatment. On the other hand, social factors such as 
stigmatization, the fear of knowing the diagnosis and the attitude of 
health providers to the patient can also affect response to treatment. 

Pharmacogenetics - Study ACTG 5097s found that clearance of efavirenz from the body 
was increased by 32% in non-hispanic whites compared to blacks and 
Hispanics. There was a slight association between higher blood levels 
of efavirenz and study discontinuations. In a subsequent study, the 
authors found that a single nucleotide polymorphism (SNP) that 
changed the DNA code from a “G” to a “T” at position 516 of the gene 
for the CYP2B6 metabolic enzyme was associated with slower 
clearance of efavirenz, higher blood levels of the drug and more CNS-
related side effects. 

Pharmacologic 
interactions 

- The pharmacologic interaction between antiretroviral drugs and other 
drugs can cause a reduction in the minimum and maximum levels, as 
well as the area under the curve of one or more antiretroviral agents. 
This can be associated with the exposure to suboptimal doses of these 
agents and treatment failures (atazanavir-omeprazole, protease 
inhibitors-rifamycins). 

- Additionally, the pharmacologic interaction between certain drugs can 
also increase the level of co-administered agents generating adverse 
effects to such drugs (protease inhibitors-phosphodiesterase inhibitors, 
protease inhibitors-statins). 

Comorbidity - The association between the HIV and other pathologies is capable to 
deteriorate the response to treatment (e.g. absorption issues at 
intestinal level), or to increase adverse effects of the antiretroviral 
agent. This is the case of co-infection with the Hepatitis B and C 
viruses. 

Table 2. Determinants of response to antiretroviral treatment. 
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Blips are transient episodes of low-level viremia [from 51 a 1,000 copies/mL]. Some of their 

causes are: sample processing artefacts due to the use of collection tubes with PPTTM versus 

ethylenediaminetetraacetic acid [EDTA], frequency of 70% and 5.4%, respectively (Lee et al, 

2006); immunizations, acute infections or viral release from cell compartments known as 

“reservoirs”. A recent report determined that annual frequency of a viral rebound was 85%, 

two events in 13% and three or more in 1.9%, defined as a VL detectable between 50 and 400 

copies/mL in previously undetectable in individuals. The persistent rebounds (identified in 

two or more readings) behaved as an independent risk factor increasing from 1.4 to 2.18 

times the relative risk of viral failure compared to individuals with transient viremia [blips] 

(Geretti et al, 2008). 

On the other hand, it has been found that the incidence of persistent low-level viremia is 

more frequent than high-level viremia when evaluating the virological response in subjects 

with HIV infection and HAART, reporting incidences of 29% and 6.7% for readings 

> 50 copies/mL and > 1,000 copies/mL, respectively (Van Sighem et al, 2008). Likewise, the 

UK-CHIC study reported that the cumulative risk for resistance mutation detection for two 

of the three primary classes of ARV therapy within a population increases in time, passing 

from 6% to 14% and 20% after a follow-up period of 2, 4, and 6 years for each period 

(Phillips et al, 2005). 

3.4 Resistance assessment 

There are, at least, four types of assays to identify the resistance or viral susceptibility to 

drugs available in clinical practice: genotype, actual phenotype, virtual phenotype, and viral 

tropism tests. 

3.4.1 Genotype 

Standard genotypic assays are primarily based on the amplification of the inverse 

transcriptase and protease genes in order to identify resistance mutations already known 

for their ability to reduce viral susceptibility to certain drugs. Generally, these studies 

only provide data on the substitutions associated with resistance to NRTI, NNRTI and 

protease inhibitors [PI]. Usually, these substitutions reduce the susceptibility to the drug 

compared with that of the wild-type viral strain through changes in the molecular target 

of the therapy or in other viral proteins that indirectly interfere with the drug activity. 

There are also resistance detection tests for fusion inhibitors [FI] and INI, but their access 

is more limited and they are not performed routinely (Fransenet al, 2009; Long et al, 2009; 

Perno & Mertoli, 2006). 

Genotype is indicated in the following situations: 

- Confirmed viral failure and VL > 1,000 copies/mL [considered in individuals with VL 
> 500 but < 1,000 copies/mL if there are available special techniques to easy 
ultrasensitive amplification]. 

- Suboptimal response to treatment [e.g. fall of HIV VL < 1 log10 during the first four 
weeks of therapy]. 

- ARV therapy naive subjects in whom transmitted resistance is suspected. 
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- In populations with prevalence of transmitted resistance > 5% in chronically ill 
individuals, its execution is recommended on all the cases at diagnosis, and its 
repetition before initiating the HAART when the decision is to change the treatment 
(Hirsch et al, 2003). 

The search of resistance mutations for FI and INI must be performed in subjects with 

virological failure to these drugs. However, in the absence of an adequate compliance, the 

lack of pharmacologic pressure reduces the possibility of identifying situations associated 

with resistance [due to the predominance of the wild-type strain]. This is more frequent in 

individuals with increased HIV VLs [more than 100,000 copies/mL], notwithstanding the 

type of ARV scheme administered (Geretti et al, 2008). 

On the other hand, ultrasensitive genotypic tests have a very high probability to identify 

resistance mutations [even in individuals with VL < 500 copies/mL], although their clinical 

utility has not been reliably demonstrated. This is explained because at present it is 

considered that the resistant mutant viral strain must represent at least 2-3% of the existing 

population in order to have an impact on the response to a given drug, and the diagnostic 

sensitivity of such tests is higher than this cut-off [up to 0.1%] (Mackie et al, 2004; 

Villahermosa et al, 2000). There are two commercial methods approved by the Food and 

Drug Administration [FDA] and the European CE Notified Bodies: the TruGene HIV-1 

genotypic assay and the ViroSeq assay. For both, the sequence is determined by amplifying 

the interest genes using the reverse transcriptase-polymerase chain reaction [RT-PCR] with 

primers in conserved regions capable to align most M strains of HIV-1. The mutations that 

have been associated with a reduction in the antiretroviral susceptibility as of today are 

included in Table 3. 

3.4.2 Phenotype 

This test measures the ability of the virus to multiply under different ARV concentrations in 

comparison with a wild-type reference strain. It is based in the HIV-1 isolation in plasma or 

serum mononuclear cells, and the measurement of its susceptibility to ARV drugs in vitro. 

This is performed through the insertion of genetic sequences of reverse transcriptase and 

protease obtained from the HIV under study [recently also from integrase and viral 

envelope], which are inserted into a laboratory viral clone. Thus, the recombinant HIV 

carries the genetic characteristics of the test virus, regarding the genes involved in resistance 

expression. The viral strain is effectively replicated in vitro and exposed to different ARV 

drug concentrations. That is how the mean inhibitory concentration [IC50] is calculated, 

which represents the drug concentration capable of limiting the viral replication by 50%. 

The ratio difference between IC50 of the HIV under study and the reference strain is 

reported as the change in the IC50 ratio [fold-change] and the significance is determined 

according to clinical or biological cut-off values (Perno & Mertoli, 2006). 

In a few words, the fold-change represents the similarity or loss of partial or total 

susceptibility of the test strain versus the reference strain. It is important, however, to point 

out that there are multiple technical difficulties for these procedures and that the integrated 

proviruses are not necessarily representative of the circulating virus, but they can constitute 

stored viruses or residual, free virions in plasma. 
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 Antiretroviral 
 

Mutations potentially 
associated with high-level 
resistance 

Other significant mutations 

Nucleotide 
reverse 
transcriptase 
inhibitors 

Abacavir K65R, L74V Y115F, M184V, TAMs, Q151M 
complex 

Didanosine K65R, L74V TAMs, Q151M complex 

Emtricitabine, 
Lamivudine 

M184V K65R, Q151M complex 

Stavudine M41L, K65R, D67N, 
L210W, T215 Y/F, K219Q/E

Q151M complex 

Tenofovir K65R K70E, TAMs 

Zidovudine M41L, D67N, K70R, 
L210W, T215Y/F, K219Q/E

Q151M complex 

Non-nucleotide 
reverse 
transcriptase 
inhibitors 

Efavirenz L100I, K103N/S/T, 
V106A/M, Y181C/I/V/S, 
Y188L, 
G190A/C/E/Q/S/V/T, 
P225H, M230L 

K103I/P, V108I, V179F, Y181S, 
Y188C/H, F227C 

Nevirapine L100I, K103N/S/T, 
V106A/M, V179F, 
Y181C/I/V/S, Y188C/L, 
G190A/C/E/Q/S/V/T, 
F227C, M230L, K238T/N, 
Y318F 

K101E/P, V108I, Y188H 

Etravirine Y181I/V, E138K V90I, A98G, L100I, 
K101E/H/P, V106I, E138A, 
V179D/F/T, Y181C/I/V, 
G190S/A, M230L 

Protease 
inhibitors 

Atazanavir I50L, G73S/T, I84A/C/V, 
N88S, L90M 

G48V/M, F53L, I54A/L/M/T/V, 
V82A/F/S/T, N88D 

Darunavir I50V/I V11I, V32I, L33F, I47A/V, 
I54L/M, G73S/T, L76V, 
V82A/F/S/T,I84A/C/V, L90M 

Fosamprenavir V32I, I47A/V, I50V, 
I54L/M, L76V, I84A/C/V, 
L90M 

L24I, L33F, M46I/L, I54L/T/V, 
G73ST, V82A/F/S/T 

Indinavir V82A/F/S/T, I84A/C/V L24I, V32I, M46I/L, I47V, 
F53L, I54A/L/M/T/V, G73S/T, 
L76V, N88S, L90M 

Lopinavir I47A L10F/I/R/V, K20M/N/R,L24I, 
V32I, L33F, M36I, M46I/L, 
I47V,G48M/V, I50V, 
I54A/L/M/T/V, L76V, 
V82A/F/S/T, I84A/C/V, L90M 

Nelfinavir L23I, D30N, M46I/L, 
G48M/V, I84A/C/V, 

L24I, L33F, I47/V, F53L, 
I54A/L/M/T/V, G73S/T, 
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 Antiretroviral 
 

Mutations potentially 
associated with high-level 
resistance 

Other significant mutations 

N88D/S, L90M V82A/F/S/T 

Saquinavir G48M/V, L90M L24I, F53L, I54A/L/M/T/V, 
G73S/T, V82A/T, I84A/C/V, 
N88S 

Tipranavir V82L/T, N83D L10V,V32I, L33F, 
M36I/L/V,K43T,M46I/L, I47V, 
I54A/M/V, Q58E, T74P, 
V82A/F/S, I84A/C/V, 
L89I/M/V, L90M 

 
Fusion inhibitors

Enfuvirtide G36D/S, I37V, V38A/M/E, 
Q39R, Q40H, N42T, N43D

 

Integrase 
inhibitors 

Raltegravir Q148R E92Q, 
E138A/K,G140A/S,Y143R/H/C, 
Q148H/K, N155H 

Table 3. Overview of drug resistance mutations in HIV-1. TAMs: Thymidine analog 
mutations (M41L, D67N, K70R, L210W, T215Y/F and K219Q/E). Q151M complex: A62V, 
V75I, F77L, F116Y and Q151M. 

Phenotype is considered as supplementary to genotype, and it is reserved for cases where a 
complex mutation pattern is suspected, in which resistance-associated mutations and 
hypersusceptibility have been selected, and that specially involves multiple PI o more than 
two classes of ARV drugs. Virco and Monogram laboratories currently offer the technology 
to develop commercial phenotypes. 

3.4.3 Virtual phenotype 

Virtual phenotype combines the knowledge generated by both resistance assays: genotype and 
phenotype. In the virtual phenotype, the investigational virus is sequenced and the identified 
changes are compared with the information of a great database that contains genotype-
phenotype paired data for viruses previously sequenced. That is how the fold-change of a HIV 
under study is inferred, calculated based on the mean of all the results of the actual phenotype 
obtained for virus existing in the database and with genotypic characteristics similar to those 
of the test virus. Generally, concordance of results obtained for NNRTIs and PIs is very good, 
although that observed with NRTIs is very lower. This is laid to a poor representation of 
certain genotypes in the system and it is expected that this issue be corrected (Mazzotta et al, 
2003; Torti et al, 2003; Loutfy et al, 2004). Virtual phenotype shares the same advantages and 
disadvantages as that the genotype. The indications, advantages and disadvantages of the 
viral genotype and phenotype are included in Table 4. 

3.4.4 Tropism test 

The assay for the identification of the type of tropism to co-receptors that the HIV exhibits 

[CCR5 or CXCR4] must be performed when considering the initiation of a co-receptor 

antagonist and there is viral replication. The purpose of these tests is to identify the receptor 
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molecules CCR5 and CXCR4 in the host cell membranes. Phenotypic and, to a lesser extent, 

genotypic studies have been developed to determine co-receptors of the dominant viral 

population in each case. 

Viruses can be monotropic [CCR5 or CXCR4], or can exhibit a mixed tropism or D/M dual 

tropism. Prevalence of tropic CCR5 viruses in heavily treated individuals or with CD4 

< 100 cells/mm3 has been reported of 50% (Hunt et al, 2006; Wilkin, 2007). Currently, Trofile 

[Monogram Biosciences, Inc.], Phenoscript assay, [VIRalliance], Xtrack C/Phen X-R 

[inPheno] and Virco, provide phenotypic tropism assays. 

This study is expensive and requires an average time of 3-4 weeks to have the results. 
Detection of minority variants is the primary limitation and varies from 1% to 10%, depending 
on the assay used. Likewise, it is difficult to establish the cut-off points for the minority species 
X4, and this is affected by multiple variables such as sample quality, collected volume, HIV-1 
VL, detection limits and and PCR variations (Braun & Wiesmann, 2007). 

3.4.5 Genotropism test 

Several bioinformatic tools have been proposed to predict co-receptor usage by interpretation 
of genotypic data—mainly through the use of V3 loop sequencing. Nevertheless, there are 
important differences between algorithms in detection sensitivity of X4 isolates. In one report, 
the most sensitive bioinformatic tools were PSSM and Geno2pheno, with sensitivities of about 
60%. Moreover, more studies will be needed to further the study on the prediction of co-
receptor use in HIV-1 non-B subtypes and throughout different stages of the HIV infection 
(Recordon-Pinson et al, 2010; Coakley et al, 2011). 

Changes on the treatment supported in resistance assays have a greater potential impact on 
the virological response, especially when an expert in the interpretation of the results is 
available (Palella et al, 2009; Sax et al, 2005; Tural et al, 2002). 

3.4.6 Integration of the rescue scheme 

There is a high risk that every new rescue may offer less possibilities to maintain a long-
term virological control as a result of stored mutations underestimated when implementing 
the rescue treatment. Currently, there are interpretation algorithms facilitating the physician 
to select the ARV therapy, to predict the activity of a drug or its potential virological 
response. There are computing platforms that function through different methodological 
rules and which are populated from the results of clinical studies or in vitro assays 
concentrated in big databases. Some of the best known are the ANRS HIV-1 genotypic drug 
resistance interpretation algorithms and the Stanford HIV Drug Resistance database [both 
with on-line free access]. 

The selection of point mutations in HIV infection is a complex event, frequency and causes 
of which vary notoriously depending on different factors. Some of such factors are 
associated to the socioeconomic characteristics of the studied population, the antiretroviral 
drugs used, prevalent viral groups and subtypes, etc. These mutations have a great 
relevance in HIV infection because of their negative impact on the response to antiretroviral 
treatment, which induces a suboptimal or transient viral suppression, immune deterioration 
and clinical progression to the acquired immune deficiency syndrome. 
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 Genotype Phenotype 

A
d

v
a
n

ta
g

e
s 

- It is the most inexpensive 
resistance assay. 

- Detects changes in the viral 
genome associated with resistance 
faster than the phenotypic assay. 

- Technically less complex. 
- Results are obtained in 1-2 weeks. 
- Preferred assay to guide rescue 

strategies in naïve individuals, 
with suboptimal response, or after 
the first and second HAART 
failure. 

- The occurrence of mutations may 
precede to the development of 
phenotypic resistance. 

- Higher sensitivity to identify viral 
susceptibility to PIs. 

- Direct and quantitative measurement of 
viral susceptibility.  

- It is capable to measure the accumulated 
impact of different viral mutations 
(resistance and hypersusceptibility 
mutations). 

D
is

a
d

v
a
n

ta
g

e
s 

-  Qualitative result. 
- Low sensitivity to detect resistance 

mutations in patients with viral 
replication lower than 1000 
copies/mL. 

- Indirect measurement of 
resistance. 

- Incapable to quantify the 
interaction between mutations. 

- It cannot be used to detect the 
residual activity of some drugs. 

- Its capacity to detect resistance 
mutations falls drastically in 
absence of pharmacologic 
pressure; it has to be performed 
preferably before discontinuing the 
HAART and not beyond the firsts 
4 weeks after its discontinuation. 

- Low sensitivity to identify 
resistance in viral strains with 
representativeness lower than 20% 
of the circulating population 
(minorities). 

- Requires specific training for its 
interpretation. 

- It cannot be used to identify 
resistance mutations that have not 
been previously associated with 
loss of viral susceptibility. 

- Supplementary to genotype. 
- Very limited availability. 
- Expensive. 
- In vitro assay. 
- The results are available in 3-4 weeks 

when performed through automated 
assays. 

- Interpretation is complex and not 
completely standardized.  

- Lack of information clinically correlating 
to fold-change of some available ARV 
with suboptimal response or viral failure. 

- Its capacity to detect resistance mutations 
falls drastically in absence of 
pharmacologic pressure; it has to be 
performed preferably before 
discontinuing the HAART and not 
beyond the firsts 4 weeks after its 
discontinuation. 

- Low sensitivity to identify resistance in 
viral strains with representativeness lower 
than 10% or 20% of the circulating 
population (minorities). 

- Mutant viral strains with higher viral 
fitness may reduce the identification of 
strains with superior resistance profile but 
lower replicative capacity. 

- Requires specific training for its 
interpretation. 

 

Table 4. Resistance tests, genotype and phenotype: advantages and disadvantages. 
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The prescription of new agents with better pharmacologic profiles and a higher genetic 
barrier does not replace the need of a comprehensive approach, a narrow clinical follow-up 
and an appropriate diagnosis of the viral failure. There are still multiple subjects for basic 
and clinical investigation, such as to specify the role of minority populations who express 
resistance to antiretroviral drugs in the clinical settings, to evaluate the importance of 
resistance assays and genotropism tests in proviral DNA, to implement strategies 
optimizing the pharmacokinetics and pharmacodynamics of the current antiretroviral 
agents, to identify new agents with a higher genetic barrier and with different action 
mechanisms. All of the above with the main objective of extending the productive life of 
subjects infected with the HIV. 

4. Point mutations and herpes virus resistance to antivirals 

4.1 Introduction 

Herpesviruses comprise a large group of enveloped DNA-containing viruses infecting a wide 

range of vertebrate hosts, such as humans, horses, cattle, mice, pigs, chickens, turtles, lizards, 

fish, and even in some invertebrates, such as oyster. According to the International Committee 

on Taxonomy of Viruses, these viruses are classified in the Order Herpesvirales, with three 

families: Alloherpesviridae, Herpesviridae and Malacoherpesviridae. The human herpesviruses are 

included in the Herpesviridae family (Fauquet et al., 2005). All of them share four biological 

properties: 1) they express a large number of enzymes involved in metabolism of nucleic acid 

(e.g. thymidine kinase), DNA synthesis (e.g. DNA helicase/primase) and processing of 

proteins (e.g. protein kinase). 2) The synthesis of viral genomes and assembly of capsids occurs 

in the nucleus. 3) The success of herpes virus infection depends upon viral inhibition of several 

cell functions, such as turning off host protein synthesis, inhibition of mRNA splicing, blocking 

presentation of antigenic peptides on the cell surface and apoptosis. 4) They have the ability to 

hide their bare, circularized genome in the nucleus of lymphocytes and neuron cells and 

return to productive infection months, even years later. These latent herpes virus infections are 

often benign, but can be devastating especially to newborns and immuno-suppressed 

individuals (Roizman et al., 2007). 

Human herpeviruses infections are a leading cause of human viral disease, second only to 
influenza and cold viruses (Murray et al., 2009). There are eight known human 
herpesviruses (Table 5): herpes simplex virus 1 (HSV-1), herpes simplex virus 2 (HSV-2), 
varicella-zoster virus (VZV), Epstein-Barr virus (EBV), human cytomegalovirus (HCMV), 
human herpesvirus 6 (HHV-6), human herpesvirus 7 (HHV-7), and Kaposi’s sarcoma-
associated herpesvirus (KSHV) (Pellett & Roizman, 2007). Herpesvirus infections are 
endemic and sexual contact is a significant method of transmission for HSV-1, HSV-2, also 
HCMV and likely KSHV. The increasing prevalence of genital herpes and corresponding 
rise of neonatal infection and the implication of EBV and KSHV as cofactors in human 
cancers are of great public health concern (Anzivino et al, 2009, Shiley & Blumberg, 2011). 
But also, the association between herpes genital and susceptibility to HIV infection has 
clearly emerged in the last years (Van de Perre et al., 20008).  

Table 6 shows a summary of the most common anti-herpes drugs and their inhibition 

mechanism. It is important to mention that antiviral therapy is available for HSV, VZV and 

HMCV infections. Therefore the other herpesviruses infections will not be discussed further.  
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Virus Main disease(s) 

Herpes simplex virus type 1 
or human herpesvirus 1 
(HSV-1 or HHV-1) 
Herpes simplex virus type 2or 
human herpesvirus 2 
(HSV-2 or HHV-2) 

The causal agents of oral and genital herpes, respectively 
(Roizman et al., 2007). 

Varicella-zoster virus or 
human herpesvirus 3 
(VZV or HHV-3) 

The causal agent of chickenpox and shingles (Cohen et al., 
2007). 

Human cytomegalovirus or 
human herpesvirus 5 
(HCMV or HHV-5) 

The major cause of infectious morbidity and mortality in 
immunocompromised individuals and developing fetuses, 
and HCMV-caused disease is called cytomegalovirus 
inclusion disease (CID) (Mocarski et al., 2007). 

Human herpes virus 6A 
(HHV6A) 
Human herpesvirus 6B 
(HHV-6B) 

Associated with roseola (Yamanishi et al., 2007). 

Human herpesvirus 
(HHV-7) 

HHV-7 has not been definitively documented to cause a 
specific disease and has been associated to pityriasis rosea 
(Blauvelt, 2001) 

Epstein-Barr virus or human 
herpesvirus 4 
(EBV or HHV-4) 

Associated with several diseases, most notably infectious 
mononucleosis (colloquially known as mono or kissing 
disease) and Burkitt’s lymphoma (Rickinson & Kief, 2007). 

Kaposi's sarcoma herpesvirus 
or Human herpesvirus 8 
(KSHV or HHV-8) 

Associated with Kaposi’s sarcoma , but KSHV can also 
cause B-cell lymphoma (Ganem 2007) 

Table 5. Human herpesviruses and their main diseases 

EBV is a gammaherpes virus responsible for several clinical entities, is the causative agent of 
infectious mononucleosis, Burkitt lymphoma, and nasopharyngeal carcinoma, and accounts 
for 90% of the cases of posttransplant lymphoproliferative disorder (PTLD). The cornerstone 
of therapy is decreasing the level of immunosuppression whenever is possible. Some 
antiviral drugs as acyclovir and ganciclovir have been used as a prophylactic measure but 
their efficacy has not showed clear results. HHV-6, the causative agent of the common 
childhood disease roseola infantum (exanthema sabitum), has received attention in the past 
several years as an opportunistic infection in the posttransplant population.  

4.2 Antiviral agents for herpesvirus infections 

In vitro data has shown that HHV-6 is inhibited by ganciclovir, foscarnet, and cidofovir, but 
no prospective clinical trials have evaluated the use of antiviral-drugs in the treatment of 
HHV-6 associated disease. 

KSHV is responsible for the malignant entities of Kaposi sarcoma (KS) and primary effusion 
lymphoma (PEL), as well as some forms of multicentric Castleman disease (MCD). As the 
case with EBV-associated PTLD, reduction in immunosuppression is the first-line therapy 
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for KS and is often curative (Shiley & Blumberg, 2011). Herpesvirus primary infections are 
followed by latency and subsequent periodic reactivations in most patients. Both primary 
and recurrent infections may require therapeutic or prophylactic interventions. Individuals 
at particularly high risk of developing severe consequences from HSV infection include 
immunocompromised hosts, such as transplant recipients, patients who receive cytotoxic 
drugs, HIV-infected individuals, and pregnant women and their newborns.  

 

Drug Chemical formulaA NameA Antiviral 
mechanism

Active against Uses 

Idoxuridine 2'-Deoxy-5-
iodouridine 

CAS # 54-42-2

Thymidine 
analog 

HSV-1, HSV-2, 
VZV, and CMV

Limited to 
topical 
ophthalmic 
treatment of 
herpes simplex 
keratoco-
njunctivitis. 

Vidarabine 
(adenine 

arabinoside, 
ara-A) 

9-beta-D-
Arabinosyla-

denine 
CAS # 5536-17-4

Adenine 
arabinoside

HSV-1, HSV-2 Ophthalmic 
preparations: 
Effective for 
acute keratoco-
njunctivitis and 
recurrent 
superficial 
keratitis.  

Trifluridine 
(trifluorothym

idine) 

 

2'-Deoxy-5-
(trifluoromethy

l) 
uridine 

CAS # 70-00-8

Thymidine 
analog 

HSV-1, HSV-2 Topical: 
Ophthalmic 
treatment of 
primary 
keratoco-
njunctivitis and 
recurrent 
keratitis or 
ulceration caused 
by herpes 
simplex 1 and 2. 

Acyclovir 9-[(2-
Hydroxyethoxy
)methyl]guanin

e 
CAS # 59277-

89-3 

Guanosine 
analog 

HSV-1, HSV-2, 
VZV, and EBV 

Minimal activity 
against CMV 

Oral or IV (IV 
indicated when a 
higher serum 
drug level is 
required, as for 
herpes simplex 
encephalitis). 

Ganciclovir 2-Amino-1,9-
dihydro-9-[[2-

hydroxy-1-
(hydroxymethy
l)ethoxy]methy
l]-6H-purin-6-

one sodium salt
CAS #107910-

75-8 

Guanosine 
analog 

A homologue of 
acyclovir, 

Effective in the 
treatment of 
HCMV. 
It inhibits all the 
herpesviruses 
and 
transformation of 
normal cord-
blood 

www.intechopen.com



 
Point Mutation 

 

66

Drug Chemical formulaA NameA Antiviral 
mechanism

Active against Uses 

lymphocytes by 
EBV. 

Famciclovir 2-[(acetyloxy) 
methyl]-4-(2-
amino-9H-

purin-9-yl)butyl 
acetate 

CAS # 104227-
87-4 

Guanosine 
analog 

Antiviral 
spectrum similar 

to acyclovir 

As effective as 
acyclovir for 
genital herpes 
and herpes 
zoster and more 
bioavailable after 
oral 
administration. 

Penciclovir 
 

2-amino-9-[4-
hydroxy-3-

(hydroxymethy
l)butyl]-6,9-
dihydro-3H-
purin-6-one 

CAS # 39809-
25-1 

Guanosine 
analog 

Potent activity 
against CMV 
(inhibits CMV 

protein synthesis )

Intravitreal 
injection: For 
patients with 
HIV infection 
and CMV 
retinitis that is 
resistant to other 
therapies 

Valacyclovir L-Valine 2-
(guanin-9-

ylmethoxy)ethyl 
ester 

CAS # 124832-
26-4 

Guanosine 
analog 

HSV, VZV Management of 
herpes simplex 
and herpes 
zoster (shingles). 
It is a prodrug, 
being converted 
in vivo to 
acyclovir. 

Foscarnet Trisodium 
phosphonoform

ate 
CAS # 63585-09-

1 

Pyrophosp
hate analog

EBV, HHV-8, 
HHV-6, HSV and 

VZV, CMV 

Efficacy similar 
to that of 
ganciclovir  
for treating and 
delaying 
progression of 
CMV retinitis. 

Cidofovir [1-(4-Amino-2-
oxo-pyrimidin-
1-yl)-3-hydroxy-

propan-2-
yl]oxymethylph
osphonic acid 
CAS # 113852-

37-2 

Cytosine 
analog 

HSV-1, HSV-2, 
VZV, CMV, EBV, 

KSHV, 

Generally used 
for CMV, but use 
limited by renal 
toxicity. 

Fomivirsen 5'-GCG TTT GCT CTT 
CTT CTT GCG-3' 

Oligonucleotid
e with 

phosphorothio
ate linkages 

The first 
antisense 
antiviral 

approved 
by the FDA

CMV CMVretinitis in 
immunocompro
mised patients. 

 

*Adapted from Porter & Kaplan, 2004; Shors, 2009; AOnline Database of Chemicals from Around the 
World 

Table 6. FDA-Approved antiherpesvirus drugs*. 
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4.2.1 Acyclovir and analogs 

The first report detailing the selective antiviral activity of acyclovir against herpesviruses 
was published in 1977 (Elion et al., 1977). Penciclovir, a structurally related compound 
identified in the 1980s (Boyd et al., 1993), is also a potent and selective inhibitor of many 
human herpesviruses. Both compounds are analogues of the natural nucleoside 
deoxyguanosine. Oral prodrugs of penciclovir (famciclovir) and acyclovir (valaciclovir) 
were subsequently developed to improve their oral bioavailability (Beauchamp et al., 1992).  

Acyclovir (ACV), valacyclovir and famciclovir have a similar mechanism of antiviral action 
against HSV (Corey et al., 2004; Mertz et al., 1997; Sacks, 2004). Acyclovir is a purine 
nucleoside analogue with inhibitory activity against HSV-1, HSV-2 and VZV. It has a highly 
selective inhibitory activity due to its affinity for the thymidine kinase enzyme (TK) encoded 
by HSV and VZV. The TK converts ACV into ACV-monophasphate, a nucleotide analogue. 
This monophosphate is further converted into diphosphate by cellular guanylate kinase and 
into triphosphate by a number of cellular enzymes. The ACV-triphosphate stops viral 
replication by competitive inhibition of viral DNA polymerase, incorporation and 
termination of the growing viral DNA chain, and inactivation of the viral DNA polymerase 
(GlaxoSmithKline).  

4.2.2 Foscarnet 

Foscarnet is a pyrophosphate analogue with activity against herpesviruses, human 

immunodeficiency virus (HIV), and other RNA and DNA viruses. Foscarnet and its 

analogues achieve their antiviral effects via inhibition of viral polymerases. Current 

evidence indicates that foscarnet interferes with exchange of pyrophosphate from 

deoxynucleoside triphosphate during viral replication by binding to a site on the 

herpesvirus DNA polymerase or HIV reverse transcriptase (Crumpacker, 1992).  

4.2.3 Cidofovir 

Cidofovir is a monophosphate nucleotide analogue of deoxycytidine (dCTP), which does 

not require a viral activation. After undergoing cellular phosphorylation, it competitively 

inhibits the incorporation of dCTP into viral DNA by viral DNA polymerase, disrupting 

further chain elongation (Lea & Bryson, 1996, De Clercq, 2004). 

4.3 Herpesvirus-resistance to antiviral drugs 

Treatment of HSV-infections with nucleoside analogs has been used for more than 20 years, 

and the isolation of drug-resistant virus from immunocompetent patients has been an 

infrequent event, from 0.1 to 0.7% (James et al., 2009; Kriesel et al., 2005; Reyes et al., 2003; 

Shin et al., 2003; Bacon et al., 2002; Blower et al., 1998; Christophers et al., 1998; Crumpacker 

et al., 1982). However, herpes-resistance to antiviral drugs is well established (7–14%) in 

imunocompromised patients (Griffiths, 2009; Chen et al., 2000; Levin et al., 2004; Safrin et al., 

1994) and neonates (Levin et al., 2001; Nyquist et al., 1994; Oram et al., 2000). It has been 

found that the most significant risk factors to developing antiviral-resistance are the degree 

of immunosuppression and prolonged exposure to the antiviral agent (Levin et al., 2004). 

Nowadays, the drug-resistant viruses have become a very important issue, since the 
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immunocompromissed population has been increasing around the world, either due to viral 

infections such as AIDS, or immunosuppression for cancer treatment, organ transplant, and 

chronic diseases treatment, among others. It's estimated that about 10 million people in the 

United States (3.6 percent of the population) are immunocompromised. But that's likely an 

underestimate because it only includes those with HIV/AIDS, organ transplant recipients, and 

cancer patients; but there's a sizable population that takes immunosuppressive drugs for other 

disorders such as rheumatoid arthritis and inflammatory bowel disease (Kahn, 2008). 

4.3.1 Resistance to acyclovir 

It is known that HSV has a low inherent propensity to develop mutations within its genome 

because its polymerase has a proof reading mechanism, therefore many replication cycles 

are required statistically to generate a virus that has resistance to ACV or similar drugs, and 

also due to the potency of these drugs to inhibit viral replication, the chance that this may 

occur in practice is decreased. Nevertheless, mutations of the viral Thymidine kinase (TK) 

and DNA polymerase (DNApol) can occur and both are intimately involved in mechanisms 

of resistance to acyclovir and penciclovir (Bacon et al., 2003; Boyd et al., 1993; Coen and 

Schaffer 1980; Schnipper & Crumpacker, 1980; Schmit & Boivin, 1999). Among ACV-

resistant HSV, 95% are due to mutations in the TK gene and 5% in the DNA pol gene 

(Frobert et al., 2008), and resistance mutations are located mainly in catalytic or conserved 

domains of TK and DNA polymerase (Chibo et al., 2002; Gibs et al., 1988; Schmit & Boivin, 

1999; Stránská et al., 2004; Sauerbrei et al., 2010). 

4.3.1.1 Mutations in the TK gene 

HSV TK is a 376-amino-acid protein, encoded by the UL23 gene. Known primarily as a TK, 

this enzyme is a wide spectrum nucleoside kinase capable of phosphorylating both purine 

and pyrimidine nucleosides and their analogues (Roizman et al., 2007). It contains an ATP 

binding site (codons 51 to 63), a nucleoside binding site (codons 168 to 176 for HSV-1 and 

169 to 177 for HSV-2), and a highly conserved cysteine residue at position 336 for HSV-1 and 

337 for HSV-2 (Balasubramaniam et al., 1990; Kit et al., 1983). TK utilizes ATP to 

phosphorylate deoxythymidine (dT) in the formation pathway of deoxythymidine 

triphosphate for DNA synthesis.  

Three distinct classes of acyclovir resistant TK mutants have been identified: 

1. TK-negative (TKN) mutants. They lack of TK activity. These phenotypes are the 
consequence of either single-base insertions/deletions occurring in guanosine (G) or 
cytidine (C) homopolymer repeats, leading to the shift of the translational reading 
frame of UL23 TK, or missense point mutations (Gaudreau et al., 1998; Morfin et al., 
2000; Sarisky et al., 2001). Therefore, a deletion, insertion or point mutation, often 
within a hotspot, of the viral UL23 gene, originates a premature stop codon at one of 
several different places within the gene (Sasadeusz et al., 1997), resulting in a truncated 
TK protein, which does not have enzymatic activity (Gilbert et al., 2002; Summers et al., 
1975). The TKN strains replicate very slowly because they lack the activity of the viral 
TK gene, which is required to synthetize deoxythymidine triphosphate for DNA 
synthesis, and these negative mutants have shown to be impaired in their 
pathogenicity, establishment of latency and low reactivation efficiency (Piret et al., 
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2011). In immunocompetent individuals the immune response can rapidly dealt with 
the viral mutants before they can become clinically apparent (Coen, 1994). However, it 
is not always the case, it has been published that acyclovir-resistant HSV-2 mutants can 
be developed rapidly in neonatal infection and cause clinically significant disease, in 
spite of the in vitro decreased replication and attenuated virulence in an animal model 
showed by the viral strain (Oram, 2000). 

2. TK-partial (TKP), express reduced levels of TK activity. Rare mutations can produce a 
virus which maintains the ability to reactivate as well as some virulence for an 
immunocompetent animal host, and some residual TK activity is present (Collins & 
Darby, 1991; Bacon et al., 2003; Coen, 1994). 

3. TK-altered (TKA) mutants are substrate specificity mutants, which phosphorylate 
thymidine but not acyclovir and/or penciclovir, due to a specific mutation in the TK 
gene such, that it recognizes acyclovir/penciclovir poorly, but can still phosphorylate 
the natural nucleosides required by the virus for replication (Darby et al., 1981). 

Approximately 95 to 96% of acyclovir-resistant HSV isolates are TK deficient (TKN or TKP), 

and the remaining isolates are usually TKA. It has been generally shown that acyclovir-

resistant mutants do not appear to be capable of initiating a latent infection that can 

subsequently be reactivated (Pottage & Kessler, 1995). Gaudreu et al., 1998 analyzed 30 

acyclovir-resistant HSV isolates from immunocopromissed patients, finding 17 TKN, 12TKP 

and 1TK undefined. Half of them had an insertion or deletion of one or two nucleotides, 

within homopolymers of G or C, which are considered resistance hot spots. The two longest 

homopolymers, one composed of 7 Gs and one of 6 Cs, are the sites of the most frequently 

reported mutations in ACV-resistant clinical isolates; other resistance cases are due to 

nucleotide substitutions usually in the conserved sites of the UL23 gene (Piret et al., 2011) 

(Figure 6) 
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Fig. 6. Mutations identified in the UL23 gene of HSV isolates resistant to ACV. A) and B) 
maps of mutations of HSV-1 and HSV-2 isolates resistant to ACV, respectively. The ATP-
binding site (ATP), the nucleoside-binding site (NBS), and the six regions of the UL23 gene 
that are conserved among Herpesviridae are shown by the color boxes. The six highly 
conserved regions are located at amino acids (AA) 56 to 62 (site 1), 83 to 88 (site 2), 162 to 
164 (site 3), 171 to 173 (site 4), 216 to 222 (site 5), and 284 to 289 (site 6) for HSV-1 and 56 to 
62, 83 to 88, 163 to 165, 172 to 174, 217 to 223, and 285 to 290 for HSV-2. The additions (a), 
deletions (d), or both additions and deletions (a/d) reported in homopolymer runs, as well 
as the nucleotides (Nt) involved, are indicated below vertical bars. Substitutions of amino 
acids reported in the UL23 gene that are included in the boxes correspond to those identified 
in conserved regions, and those outside the boxes are located in nonconserved regions. 
Underlined mutations correspond to the HSV-2 mutations (Adapted from Piret & Boivin, 
2011; reproduced with permission of the American Society for Microbiology). C) Two views 
of the 3D structure of the TK protein (PDB:1KI2) of HSV-1 in ribbon diagram. The TK 
protein is in white, the NH2 end in red, the carboxyl end in blue, and the HSV-1 mutations 
published by Piret & Boivin 2011 are shown in different colors: Site 1 mutations are in green 
(R51W, Y53Stop, G56S/V, P57H, H58R/L, G59R/V, G61V, K62N, T63A/I/S, T65N; Site 2 
mutations in pale blue (E83K, P84S, Q104H, H105P, Q125E/L, P131S, G144N, L158P); Site 3 
mutations in yellow (D162A, R163H, A167V); Site 4 mutations in magenta (A168T, P173L/R, 
A175V, R176Q, T245M, S182N, Q185R, V187M, A189V, G200C, T201P); Site 5 mutations in 
orange (R216H/C/S, R220C/H, R222C, R281STOP); Site 6 mutations in cyan (L297S); 
mutations in the carboxyl end are in pink (C336Y, C337Y, L364P). 

No consistent differences have been identified in the mutations associated to acyclovir-

resistant isolates from immunocompetent and immunocompromised patients (Levin et al., 

2004). Genotyping of the UL23 TK gene of HSV-1 has confirmed its uncommonly high 

polymorphism, in comparison to the TK gene of HSV-2 isolates, which was considerably less 

polymorphic. These findings are in agreement with the fact that the variability of the HSV-1 

genome is about fourfold higher than that of HSV-2 (Sauerbrei et al., 2010; Chiba et al., 1998). 

Recent work by Burrel et al., 2010 analyzing the natural polymorphism of UL23 TK and 

UL30 DNA pol among HSV-1 and HSV-2 strains to identify the amino acids changes 

potentially associated to antivirals HSV-resistance, identified 15 and 51 new natural 

polymorphisms within the TK and DNA pol, respectively (Fig. 7). Several amino acid 

changes among drug-resistant HSV were identified in the TK (S29A for HSV-2) or in the  

C 
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Fig. 7. Natural polymorphism map (to scale) of thymidine kinase (TK) (A) and DNA 
polymerase (B) among HSV-1 and HSV-2 strains. For each viral enzyme, conserved regions 
and functional domains are indicated by the black boxes, and natural polymorphisms are 
represented separately for HSV-1 (top) and HSV-2 (bottom). Amino acid changes related to 
natural polymorphism are indicated by vertical bars: short vertical bars correspond to 
changes previously reported, long vertical bars labeled with amino acid change correspond 
to changes newly described in this study. Regarding HSV-2 DNA polymerase, hatched 
boxes indicate amino acid insertions or deletions related to natural polymorphism (Burrel 
and Boutolleau, 2010; reproduced with permission of the American Society for 
Microbiology). 

DNA pol (H98Y, V117L, L267M, A870G, L1188F, and R1229I for HSV-1; I291V, V544A, Y823C, 

and H837R for HSV-2) proteins. Moreover, the genotypic characterization of 25 drug-resistant 

HSV isolates revealed 8 new amino acid changes located in TK, potentially accounting for 

acyclovir-resistance (Y53D, I101S, L170P, and A207P for HSV-1; and S66P, A72S, R176W, and 

M183I for HSV-2). Wang et al., 2011 analyzed 68 ACV-resistant HSV-1 isolated from children, 

and identified 21 mutations in the TK gene, 11 of them have not been previously reported 

(D14H, Q15L, A28V, Q67R, .E95A, I203L, A207S, D215N, Q275P, A365T, Q342K). It is known 

that viruses with TK mutations are normally-resistant to other drugs which require the viral 

TK for activation, such as penciclovir; but generally remain susceptible to antiviral agents that 

act directly on DNA polymerase, such as foscarnet and cidofovir (Bacon et al., 2003). 

In summary there is not a unique mutation pattern to explain HSV ACV-resistance, and 

further work is necessary to construct a more complete mutations data base of the TK gene. 

4.3.1.2 Mutations in the DNA pol gene 

The herpes simplex virus-1 DNA polymerase is a heterodimer, which consists of the 
products of the UL30 (Pol) and UL42 genes. The UL30 gene encodes the catalytic subunit, 
while the UL42 gene encodes a phosphoprotein that possesses double-stranded DNA-
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binding activity. DNA pol is a multifunctional enzyme which possesses a polymerase activity 
for the extension of DNA primer chains, an intrinsic 3-5´ exonuclease proofreading activity, 
and an RNase H activity that could be removed the RNA primers to initiate the synthesis of 
Okazaki fragments at a replication fork during herpes DNA replication (Crute & Lehman, 
1989). HSV DNA pol belongs to the family of α-like DNA polymerases. It is formed by 6 
structural domains; 1) A pre-NH2 domain, from NH2-terminal to aa 140; 2) An NH2-terminal 
domain, from aa 141–362 and 594–639; 3) A 3´-5´ exonuclease domain, from aa 363–593, 
contains three highly conserved sequence motifs: Exo I, Exo II, and Exo III; 4) polymerase palm 
domain (catalytic site), from aa 701–766 and 826–956, contains the conserved regions I, II, and 
VII; 5) Fingers domain, from aa 767–825, contains the conserved regions III and VI, and the 
base subdomain may play a role in positioning the template and primer strands ; 6)Thumb 
domain, from aa 957–1197, contains the conserved region V (Liu et al., 2006). In clinical 
isolates, mutants with altered DNA polymerase conferring resistance to nucleoside analogues 
are less frequent detected (Sacks et al., 1989). The mutations are single amino acid substitutions 
located in regions which are directly or indirectly involved in the recognition and binding of 
nucleotides or pyrophosphate, as well as in catalysis. Fig 8 shows several identified mutations 
in the UL30 gene of HSV-1 and HSV-2 (Piret, et al., 2011). 

4.3.2 Foscarnet-resistance  

Foscarnet (FOS) is a pyrophosphate analogue that inhibits the viral DNA pol by mimicking 

the structure of pyrophosphate produced during the elongation of DNA, and it acts as a 

noncompetitive inhibitor of DNA pol activity. FOS does not require phosphorylation by 

viral and cellular kinases and binds to the pyrophosphate binding site on the viral DNA pol 

and blocks the release of pyrophosphate. It is only available as an intravenous formulation, 

and is indicated as a second-line therapy for HSV infections. 
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Fig. 8. Mutations identified in the UL30 gene of HSV isolates resistant to ACV. A) and B) 

maps of mutations of HSV-1 and HSV-2 isolates resistant to ACV, respectively. Regions 

conserved among Herpesviridae genes are shown by the color boxes. The roman numbers (I 

to VII and δ-region C) corresponding to each of these regions are indicated above the boxes. 

Amino acid (AA) locations are noted below each of these regions for HSV-1 and HSV-2. 

Substitutions reported in the UL30 gene that are included in the boxes correspond to those 

identified in conserved regions, and those outside the boxes are located in nonconserved 

regions. Underlined mutations correspond to the HSV-2 mutations. Mutations E460D, 

G464V, K522E, and P561S in and outside Exo II are lethal to the virus; mutations Y577H and 

D581A in the Exo III motif in δ-region C are associated with hypersusceptibility to ACV; and 

none of the mutations in region I are spontaneously induced (Adapted from Piret & Boivin 

2011; reproduced with permission of the American Society for Microbiology). C) Two views 

of 3D structure of the DNA pol protein (PDB 2GV9) of HSV-1 in ribbon diagram. The DNA 

pol is in white, the NH2 end in red, the carboxyl end in blue, and the HSV-1 mutations from 

the conserved regions published by Piret & Boivin 2011 are shown in different color: in the 

region 1 are in pink (G885A/R, D886N, T887K, D888A, S889A, F891C/Y and V892M); in the 

region II in pale blue (R700G, V715G/M, A719T/V and S724N); in the region III in green 

(V813M, N815S, T821M, G841S and R842S); in the region V in purple (N961K); in the region 

VI in orange (L774F, L778M, D780N and L782I); in the region VII en cyan (Y941H); in the 

Exo I motif in dark red (D368A and E370A); in the Exo II in yellow (E460D, V462A and 

G464V); in the Exo III in salmon pink (Y577H and D581A); in the δ-region C, in magenta 

(E597K/D ad A605V) 

Most FOS-resistant clinical HSV isolates contain single base substitutions in conserved 

regions and in a non-conserved region of the DNA pol gene. Some of these isolates retained 

their susceptibility or, at the most, borderline levels of susceptibility to ACV and cidofovir. 

However, some mutations conferring resistant to both ACV and FOS have been found in 

clinical isolates: V715G, S724N/S729N and Y941H (HSV-1/HSV-2). Mutants with alterations 

in both HSV TK and DNA pol can also occur, resulting in double resistance to both ACV 

and FOS (Piret et al., 2011).  

C 
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4.3.3 Cidofovir and adefovir  

These drugs are acyclic nucleoside phosphonates derivatives of cytosine (cidofovir) and 

adenine (adefovir), which are converted into active ANP-diphosphates by cellular kinases. 

Thus, do not require the activation by the viral TK enzyme, and act as competitive inhibitors 

of the viral DNA pol, and chain terminators. Cidofovir is indicated for HCMV infections, 

including ganciclovir-resistant strains, and also against HSV and VZV strains. Several 

mutations linked to cidofovir resistance have mapped in HSV DNA pol gene: R700M, 

G841C and G850I, L773M, Y941H and V573M, and in laboratory-derived HSV strains 

resistant to cidofovir, L1007M and I1028T (Piret et al., 2011). 

4.4 VZV-resistant to antiviral drugs 

The current drug of choice for the antiviral treatment of VZV infections in patients at risk is 

ACV (De Clercq, 2004). VZV-resistant to ACV or foscarnet has only been reported in rare cases 

of immunocompromised patients, and the resistance to ACV is associated to alterations in the 

TK activity as it happens with HSV. One of the problems to study the antiviral-resistance of 

VZV, is the low rate of VZV isolations in cell culture, usually between 20% and 43% from 

vesicle samples; and even more, there is a restricted spectrum of permissive cell cultures and a 

long time (up to a few weeks) is required to developing cytopathic effect (Cohen et al., 2007). 

On the other hand, there is not enough information about the natural polymorphism or 

resistance associated to the TK and DNA pol genes. Sauerbrei et al., 2011 analyzed 

genotypically 16 VZV strains with clinical diagnosis of ACV-resistance, finding seven strains 

with alterations in the TK gene: three were associated to amino acid substitutions (L73I, 

W225R, T256M), three with stop codon generation (A163-, Q303-, N334-) and one frameshift 

due to a deletion of nucleotides 19–223. All of them were not previously reported, except the 

Q303- mutation, which has been reported in two patients with AIDS treated with ACV to 

control persistent zoster (Fillet et al., 1998; Saint-Léger et al., 2001). 

Even though herpes viruses have a low rate of mutations, it is clear that apparition of viral 

strains resistant to the current antivirals drugs is a serious problem, especially for the 

immunocompromised patients. The resistance is associated with a wide range of mutations 

located mainly in catalytic or conserved domains of the viral TK and DNA pol enzymes, 

enzymes that play a critical role to achieve herpes viruses inhibition by the current antiviral 

drugs. Therefore it is necessary to monitor the efficacy of the antiviral therapy administered 

to the patients, but also to develop new antiviral drugs against different viral targets.  

5. Point mutations and antiviral resistance in cytomegalovirus: Molecular 
basis and clinical implications 

Despite progress in the diagnosis and management of cytomegalovirus (CMV) infections in 

different groups of immunosuppressed patients, this virus continues to be an important 

pathogen that can establish acute and chronic infections (Snydman et al., 2011) with high 

morbidity and mortality in immunosuppressed individuals and/or the immunologically 

immature. The main risk groups are: a) newborns; b) individuals receiving organ 

transplants; c) patients with cancer; and d) AIDS patients, although the incidence in this 

group has declined with the advent of HAART (Emery et al., 2001; Snydman et al., 2011). 
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Drugs approved by the Food Drug Administration FDA for treating CMV infection include 
ganciclovir (GCV), foscarnet (FOS), cidofovir (CDV), and valganciclovir (VGV). The 
characteristics of these drugs are described in Table 6 

5.1 Viral proteins targeted by the antivirals 

5.1.1 UL97 protein 

A protein encoded by the UL97 gene. The natural role of this protein in viral replication is 

not fully known, but recent studies suggest it is involved in the regulation of viral 

replication (Wolf et al., 2001) and other studies highlight the involvement of UL97 in viral 

envelope assembly (Goldberg et al., 2011). This protein has a kinase activity, so it may be 

involved in the monophosphorylation of GCV. This feature has been widely studied and is 

exploited in the pharmacokinetics of GCV. 

5.1.2 UL54 protein 

The viral polymerase UL54 is encoded by the UL54 gene. Several functional regions have 
enzyme activity. They are divided into I to VII with polymerization activity and EXO I to 
EXO III with exonuclease activity. The first function allows polymerization activity, while 
the second provides an editing function that significantly reduces the rate of mutation and 
leads to high fidelity (Picard-Jean, 2007). 

5.2 Drugs and their mechanism of action 

5.2.1 Ganciclovir 

This drug is an analogue of guanosine. It was the first drug approved by the FDA for the 

treatment of CMV infection. GCV is a pro-drug that is inactive until phosphorylated. This 

process is carried out by a viral protein kinase encoded by the UL97 gene, which 

phosphorylates GCV. The product from this biochemical reaction is ganciclovir 

monophosphate, which is further phosphorylated twice more by cellular kinases to produce 

ganciclovir triphosphate. This form is recognized by the polymerase and it competes with 

deoxyguanosine triphosphate (dGTP) to block chain elongation (Figure. 9) (Faulds et al., 

1990; Sullivan et al., 1992). 

5.2.2 Valganciclovir 

Although GCV has proved to be an efficient CMV induction therapy in various groups of 
patients, such patients also require maintenance therapy with oral GCV. This therapy is 
limited because oral GCV has low bioavailability (Markham et al., 1994; Anderson et al., 
1995). By contrast, the pro-drug VGV has the advantage of a high oral bioavailability. VGV 
is hydrolysed by esterases in the gut and liver in a first step; the product is GCV, which can 
be phosphorylated to block viral replication (Sugawara et al., 2000). 

5.2.3 Foscarnet 

This drug is a conjugate base of phosphonoformic acid that has the advantage that it does 
not need to be phosphorylated. It is capable of inhibiting the activity of the viral polymerase, 
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because it binds to a site that recognizes pyrophosphates on bases. It interferes with the 
exchange of pyrophosphates and phosphates by dideoxynucleosides and inhibits viral 
replication (Crumpacker et al., 1992) (Fig. 9). 

 

Fig. 9. Mechanism of action to ganciclovir, valganciclovir and foscarnet. GCV and 
valganciclovir, need phosphorilation while foscarnet recognize the UL54 without previous 
phosphorilation. Ganciclovir is initially phoshorilated by a viral protein kinase UL97. 
Mutations on UL97 confer them ganciclovir resistance, valganciclovir can induce ganciclovir 
resistance. Mutations on UL54 gene can confer ganciclovir and/or foscarnet resistance.  

5.2.4 Cidofovir 

This drug is the acyclic nucleotide analogue 1-(3-hydroxy-2-phosphonomethoxyethyl) 

cytosine and it competes with cytosine. Several cellular enzymes are involved in the 

phosphorylation of this compound. These include pyrimidine nucleoside monophosphate 

kinase, pyruvate kinase, creatine kinase, and nucleoside diphosphate kinase (Cihlar et al., 

1996). This antiviral is not dependent on UL97 phosphorylation and it inhibits viral 

polymerase activity through a similar mechanism to GCV (Fig. 9) (De Clercq, 2003). 

5.2.5 Fomivirsen 

This drug is an antisense nucleotide phosphorothioate that contains 21 nucleotides. It is 

resistant to cellular nucleases and binds to transcripts of the immediate early viral proteins 

(6) (Azad et al., 1993). Studies show that this oligonucleotide can specifically block viral 

genes without interfering with cellular translation. 

5.3 Point mutations and antiviral drug resistance 

Strains resistant to antivirals emerged following the treatment of active infections, with this 

emergence linked to the prolonged and intermittent administration of drugs to 

immunocompromised patients. The most studied drug in this context is GCV. Several point 

mutations in viral phosphotransferase sequences (UL97) or DNA polymerase sequences 
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(UL54) are involved. The role of UL97 in the CMV life cycle is not clear, but its participation 

in the phosphorylation of GCV is well known. The mechanism occurs as follows. The GCV 

domain is recognized by the UL97 protein kinase. The deoxyguanosine analogue (9-[1,3-

dyhydroxy-2-propoxymethyl]guanine) or monophosphate deoxyguanosine are the products 

of GCV phosphorylation. Two subsequent phosphorylations are mediated by cellular 

phosphate kinases. Triphosphorylated GCV is the active molecule for the inhibition of viral 

replication, because it competes with the natural substrate deoxyguanosine triphosphate for 

the viral DNA polymerase. 

5.3.1 Resistance to ganciclovir 

GCV resistance is most frequently a result of amino acid substitutions due to mutations in 

the codons 460, 594, and 595, which are in the coding sequence of the protein UL97. These 

mutational changes reduce the affinity for GCV without affecting polymerase activity 

(Chou et al., 1995). GCV resistance was first reported in isolates obtained from blood 

samples of immunosuppressed hospitalized patients. Two had been diagnosed with 

AIDS, while another had lymphoblastic leukaemia. These strains showed poor response 

to GCV with in vitro cell cultures (Erice et al., 1989). Resistance to GCV was previously 

obtained in vitro by the selective pressure of low doses of GCV on the strain AD169 (Biron 

et al., 1986). Subsequently, Lurain et al. reported the isolation of three mutants resistant to 

GCV with a reduced ability to phosphorylate GCV. Resistance was associated with the 

emergence of a mutation in the exonuclease function of polymerase (Lurain et al., 1992). 

The same authors later reported isolates with a point mutation at position 460 in region IV 

of the UL97 gene, where a change of methionine for isoleucine (M460I) was involved 

(Lurain et al., 1994). 

Several mutations that are known to change the active site of UL97 and prevent the 

phosphorylation of GCV have been described and characterized. More than 25 mutations 

are associated with this process. The most common are at codons 460 (methionine to valine), 

594 (methionine to isoleucine), and 595 (aspartic acid to serine). In some cases, there is more 

than one mutation. 

UL54 mutations are also involved with resistance to GCV. These mutations produce changes 

in the amino acid sequence of the viral polymerase, which affects the affinity for a guanosine 

triphosphate analogue (GCV triphosphate). More than 20 mutations have been described, 

and combinations of mutations are also found in UL97 and UL54. Strains with mutations in 

UL97 alone are resistant to GCV but susceptible to FOS and CDV, strains with mutations in 

UL54 show a pattern of resistance to GCV and CDV, and strains with double mutations in 

UL97 and UL54 are highly resistant to GCV. 

5.3.2 Induction of resistance with valganciclovir 

This antiviral is a GCV pro-drug, so its prolonged administration may be a factor in 

developing resistance to GCV. This effect has a low incidence, but greater use of this 

antiviral is now encouraged. Reports have described mutations in UL97 as V466G, V466M, 

and V466G, and these were obtained after treatment with VGV (Boivin et al., 2001; 

Foulongne et al., 2004; Martin et al., 2010). 
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5.3.3 Foscarnet 

Mutations involved with FOS resistance are located on the UL54 gene. A great diversity of 
point mutations can change the amino acid sequence of the viral polymerase and lead to 
FOS resistance. These mutations are located in regions II and III (codons 696–845). The 
presence of these mutations changes the reading frame of the sequence leading to blocking 
of antiviral recognition by the polymerase (Lurain et al., 2010). 

5.3.4 Cidofovir 

As with GCV, most mutations that confer resistance to CDV are concentrated in the 
exonuclease domain of the polymerase (codons 301, 408–413, and 501–545) and region V 
(codons 981–987) (Bowen et al., 1999). 

5.3.5 Fomivirsen 

An antisense nucleotide inhibits viral replication by two different mechanisms that are either 

dependent on or independent of the sequence. The antiviral mechanism was analysed in vitro 

using fibroblasts, and it was shown that the oligonucleotide recognizes the mRNA sequence of 

the viral Immediate Early Protein IE2 following internalization. This results in reduced 

expression levels of the IE proteins. Mulabampa et al. obtained an in vitro mutant with 

fomivirsen resistance. It was expected that the mutation leading to resistance would be located 

on the complementary region to fomivirsen. However, no mutation was found when the 

region was sequenced. Despite this result,  the induction of fomivirsen resistance induced 

antiviral and the clinical impact is not clear.(Mulamba et al., 1998, Anderson et al., 2004). 

5.4 Multidrug resistance 

Mutations can provide different levels of resistance or cross-resistance to antivirals. 

Occasionally, mutations in both UL97 and UL54 occur, resulting in multidrug resistance. For 

example, Eckle et al. reported a paediatric patient undergoing bone marrow transplantation 

with a disseminated infection during the conditioning procedure and encephalitis on day 

+100. FOS was started, which was followed by combination therapy and subsequently GCV, 

FOS, and CDV on day +167. Multidrug resistance with multiple mutations was observed 

seven months later (Eckle et al., 2000). Rodriguez et al. reported on a 58-year-old patient 

undergoing a liver transplant. On day +86, they isolated a possible mutation at A594V in 

UL97 and six point mutations that potentially affected the amino acid sequence of the UL54 

protein. The resistance to GCV and FOS in this patient was apparently associated with 

multiple factors, but prolonged therapy with GCV and co-infection may have produced at 

least two strains (Rodríguez et al., 2007). 

5.5 Laboratory methods for the detection of antiviral drugs 

Based on in vitro analysis, antiviral resistance can be classified as phenotypic or genotypic. 

Phenotypic resistance is tested using a cell culture assay to determine an antiviral’s ability to 

reduce viral replication. This technique is considered the gold standard. The AD169 strain is 

used as a reference where the profile drug susceptibility is already known. The reference 
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values for the drugs are 6 M for GCV, 2 M for CDV, and 400 M for FOS. The in vitro 

assay determines the antiviral’s ability to reduce the number of lytic plaques, which 

quantifies the cytopathic effect induced by the virus. This can be determined as a 50% 

inhibitory concentration (IC50) (Chou et al., 1999; Landry et al., 2000). This is a difficult 

method that requires trained personnel and standard antiviral concentrations. Simplified 

techniques have been developed that can be applied to a large number of samples, which 

significantly reduces the workload (Prix et al., 1998). However, this is still a laborious 

technique and it is difficult to apply it routinely. Nevertheless, these are necessary tests that 

are required to confirm potential drug resistance to a new drug or new mutations found by 

genotypic assays (Lurain et al., 2010). 

Phenotypic resistance tests are perhaps the most widely used, because a number of 

mutations associated with resistance are already known. Thus, the presence of a mutation 

can be inferred if the strain is resistant. Several molecular methods have been proposed for 

the detection of mutations that are known to be associated with resistance to antiviral drugs. 

These methods are described below. 

5.5.1 Polymerase chain reaction coupled to restriction fragment length polymorphism 
(PCR–RFLP) 

This method has been used for several years, because it is easy to perform and it requires no 

sophisticated equipment. However, it cannot identify new mutations associated with 

resistance. This method is more applicable to routine detection of the most common 

mutations, particularly those in codons 520, 460, 594, 595, 591, and 592 that confer GCV 

resistance (Hanson et al., 1995; Prix, 1999). 

5.5.2 Real-time PCR 

Several studies report the use of real-time PCR as a tool for the detection of mutations 

associated with resistance. Yeo et al. (2005) used a strategy of molecular beacons for the 

detection of mutations in codon 460 in UL97. Liu et al. developed a method based on SYBR 

green for the detection of mutations at position 460 in UL97. Liu et al. (2008) and Göhring et 

al. (2008) developed a method based on real-time PCR for the detection of mutations in 

codons 594, 595, 603, and 607. 

5.5.3 PCR sequencing 

This is the gold standard method for detecting the presence of mutations known to be 

involved in resistance. It also allows the genotypic detection of new mutations that are 

correlated with phenotypic tests to determine whether they are associated with resistance. 

5.6 Clinical impact of cytomegalovirus drug resistance 

Published evidence indicates the emergence of resistance and severe complications in 

patients. For example, Jabs et al. (2010) observed that the emergence of resistance associated 

with mutations was closely linked to high mortality in a study of 266 patients with AIDS 

who were treated with GCV or FOS for CMV retinitis. We observed a fatal outcome with 
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viral pneumonitis and graft rejection in a paediatric patient undergoing bone marrow 

transplant, where two resistance mutations (M460V and M460I) appeared following non-

response to treatment with GCV. We attributed these complications to the lack of response 

to the treatment, which apparently allowed high viral replication coupled with strong 

resistance while toxic damage induced by the antiviral therapy led to rejection of the graft. 

(Arellano-Galindo et al., 2011). 

6. Conclusions 

At present, it is clear that mutations conferring resistance to the currently approved antiviral 

drugs is a growing problem , so it is very important to continue research in various areas 

that would allow better resolution of  the problem: 

First, the knowledge of mutation’s type that allows virus avoid the action of drugs, will 

allow an understanding as to how these mutations arise and how we must avoid them. 

Also, this knowledge, will allow a better design of new drugs. 

It is also, very important to establish definitive criteria for the diagnosis of resistance and 

specific treatment, mainly in immunocompromised population, where several factors are 

involved. 

Also, there are still multiple subjects for basic and clinical investigation, such as specify the 

role of minority populations who express resistance to the antiviral drugs in the clinical 

settings, implement strategies optimizing the pharmacokinetics and pharmacodynamics 

either of the current or of the new antiviral agents. All with the main objective to improve 

the action of drugs, reduce the likelihood of emergence of resistant strains and have under 

control those which are already presented. 

On the other hand, we must not forget the monitoring of the efficacy of the antiviral therapy 

which is administered to the patients, to avoid the appearance of point mutations conferring 

drug resistance. Finally, it is also important to bear in mind that clinical centres attending 

immunosuppressed patients should implement special techniques for the detection of 

genotypic viral resistance. 
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