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1. Introduction 

The grid-spacing of chemistry-transport models (CTM) is always limited by computational 

resources and ranges from 100-200 km of global scale models, to 25-50 km of continental 

scale models, to 1-10 km of regional and local scale models. We push to higher resolution in 

hope of better reproducing small scale processes that affect our ability to assess the 

environmental and health impacts of emissions. Running simulations at a resolution less 

than 50 km is often feasible only using a limited area model, which uses a domain ascribed 

to the region of interest. However, even the air quality of a single city is in principle affected 

by all the emission sources at global level: we thus account for such long-range transport of 

pollutants and oxidants specifying the chemical state of the atmosphere outside the domain 

through boundary conditions (BC). BC concentrations are usually taken from typical 

profiles or from larger-scale simulations with a procedure called “nesting”. In this chapter, 

we focus on the latter technique, exploring in particular the effect of different BC time-

resolutions (monthly to hourly) on the simulation of ozone and particulate matter on a 

nested domain at European scale. For the sake of completeness, we point out here that even 

very high-resolution models cannot explicitly simulate processes at all possible spatial-

temporal scales and thus a certain degree of parameterization is always required. For further 

insights on the “subgrid” issues we refer the reader to the literature (e.g. Galmarini et al., 

2008; Qian et al., 2010; Denby et al., 2011; Paoli et al., 2011). 

In addition to boundary conditions, chemistry-transport model simulations also require 

initial conditions (IC) for chemical species. The general aspects of the influences of IC and 

BC on the simulation may be understood in the simplified framework presented by Liu et al. 

(2001). The authors consider an Eulerian box model with one chemical species, whose 

evolution of concentration C is regulated by the species continuity equation: 

 
d

d
BC

r

C CC
P LC

t 


    (1) 

where P and L are the production and loss rates, respectively, CBC is the background 

concentration, which represent the boundary condition in this case, and τr is the residence 
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time into the box. The third term on the right-hand side isolates the source term attributable 

to the BC. The analytical solution of the equation is as follows (eq. 4 in Liu et al., 2001): 

    ( 1/ ) ( 1/ ) ( 1/ )( ) e 1 e 1 e
1 1

r r rL t L t L tr BC
IC

r r

P C
C t C

L L
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 
         

 
 (2) 

where CIC is the initial condition. The influence of CIC exponentially decreases with time, due 
both to photochemical loss and deposition (L) and outward-transport (1/τr), thus it vanishes 
if a sufficient “spin-up” time is allowed. On the other hand, the importance of local sources 
(second term on the r.h.s.) and boundary conditions (third term on the r.h.s.) grow with time 
and drive the evolution of C after the “spin-up“ time. The importance of BC is to be 
evaluated comparing the relative magnitudes of the local production term Pτr 
(photochemical plus emission) against CBC. If the local sources are much larger than CBC, the 
influence of BC might be ignored. It is expected that boundary influence decreases during 
downwind transport and that it reaches a maximum when the arrival time is short and the 
species lifetime is long.  

The simple considerations about the influence of IC and BC obtained from the solution in 
equation (2) of the box model, was demonstrated to be valid also for full three-dimensional 
Eulerian chemistry-transport models. Regarding IC, Berge et al. (2001) found that their 
influence a 3-D model decreases more slowly with time with respect to a box model, but still 
is reduced to <10% in the planetary boundary layer (PBL) after 3 days in a 400 km × 480 km 
domain covering Southern California. However, the same authors pointed out that the 
influence of IC might be >10% after 3 days for long lived grouped species (e.g. sum of 
reservoir species of ozone) and in the free troposphere. A similar spin-up time of 2 days for 
ozone in the PBL was reported by Jiménez et al. (2007) for a 272 km × 272 km covering 
North-Eastern Iberian Peninsula. On a larger domain covering Europe, Langmann & Bauer 
(2002) found that 5 days are needed by ozone in the PBL to “forget” its initial condition. 
More recently, a further sensitivity test at the North American continental scale, confirmed 
that a week is the minimum spin-up time recommended for a 3-D simulation of ozone and 
particulate matter (Samaali et al., 2009). 

Liu et al. (2001) analyzed the influence of BC on their 3-D ozone simulation over California 
using the difference of concentrations between a reference run and another with zeroed 
boundary concentrations. They found that the percentage of ozone concentration 
attributable to BC is mostly determined by the distance from the domain edges, the 
influence being inversely proportional to the distance. The influence at a specific location 
and time is modulated by the characteristics of the local and upwind sources. During night 
the impact of BC on ozone is less than daytime, because of a less active photochemistry. It 
was calculated that BC may contribute 30-40% of ozone formation in polluted PBL, while 
stratospheric BC dominated ozone values in the free troposphere (Langmann & Bauer, 2002; 
Song et al., 2008). Barna & Knipping (2006) pointed out that a different representation of BC 
has a great impact on source-apportionment analysis.  

While Liu et al. (2001) helped clarifying the general concepts of the influence of BC on 
chemistry-transport model simulations, several other studies focused on the impact of 
improved boundary conditions on simulations. Many studies found that increasing both 
temporal and spatial resolution of BC benefit the ozone (Langmann et al., 2003; Appel et al., 
2007; Song et al., 2008; Szopa et al., 2009), carbon monoxide (Tang et al., 2007; Tombrou et 
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al., 2009) and particulate matter simulation (Barna & Knipping, 2006; Borge et al., 2010). On 
the continental scale, BC have a significant impact on ozone background levels, while 
having much less impact on the variability and peak values (Tang et al., 2007; Szopa et al., 
2009). In the free troposphere, a careful treatment of the variable tropopause is critical for a 
real advantage in using improved stratospheric ozone BC on model top (Lam and Fu, 2009; 
Makar et al., 2010). 

The chapter is organized as follows. We first briefly describe the models used in the study in 
section 2. Then we study the impact and time scales of IC and BC on simulated ozone in 
section 3.1. In the same section, we analyse the difference among surface ozone simulations 
with the use of boundary conditions alternatively with monthly, daily or hourly update rate. 
In section 3.2 we analyse the effect of alternative BC on surface PM10, in particular during a 
Saharan dust event in July 2005. The scientific questions we shall try to address are: 

 How long should be the spin-up time for simulated surface concentrations to be 
unaffected by initial conditions? 

 How much is the contribution of boundary conditions to local ozone and PM10 levels? 
 Is there any improvement in simulations of ozone and PM10 if the boundary conditions 

are provided at an higher frequency (up to the model time-step)? 

In final section 4 we draw conclusions on these questions. 

2. Models description 

In this section we give a brief description of chemistry-transport models used in this study. 
We use the CHIMERE regional model (Bessagnet et al., 2008) to simulate lower atmosphere 
composition over continental Europe and the GEOS-Chem global model (Bey et al., 2001) to 
provide CHIMERE with gases and dust boundary conditions. 

2.1 CHIMERE regional model 

CHIMERE is a regional chemistry-transport model developed by a community of French 
institutions primarily designed to produce daily forecasts of ozone, aerosols and other 
pollutants and make long-term simulations for emissions control scenarios (Bessagnet et al., 
2008; CHIMERE, 2011). In this study, The model is setup on a 0.5°×0.5° horizontal grid 
covering Europe (35°-58°N; 15°W-25°E) and 8 hybrid-sigma vertical layers extending to 500 
hPa. Meteorological input is provided by PSU/NCAR MM5 model (Dudhia, 1993) run at 
36×36 km2 horizontal resolution and 29 vertical sigma layers extending up to 100 hPa, and 
regridded on the 0.5° × 0.5° CHIMERE grid. The model is forced by NCEP analyses using 
the grid nudging (grid FDDA) option implemented in MM5. 

Anthropogenic emissions are derived from the Co-operative Programme for Monitoring and 
Evaluation of the Long-range Transmission of Air pollutants in Europe (EMEP) annual 
totals (Vestreng, 2003) for NOx, CO, VOC, SOx, NH3 and primary PM species, while 
carbonaceous aerosol emissions are taken from Junker & Liousse (2008). Biogenic emissions 
of isoprene and monoterpenes are calculated with the MEGAN model (Guenther et al., 
2006). Dust and sea-salt emissions are also simulated on-line (CHIMERE, 2011). 

The gas-phase chemical mechanism MELCHIOR (Latuatti, 1997) includes about 50 species 
and 120 reactions. The aerosol phase is simulated with a sectional approach with 8 size bins 
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from 0.04 to 10 µm of diameter. The main processes governing the production and loss of 
main inorganic (sulphate, nitrate, ammonium) and organic secondary species are included. 

Boundary conditions are implemented in a classical one-way approach. Species 
concentrations at the boundaries are introduced in the simulation through an outer 
envelope of model cells having the same resolution of the actual simulation grid. The 
boundary concentrations are transported inside the domain by the transport operator, i.e. 
the part of the model that simulates advection (Fig. 1). Regardless of the particular scheme 
choice (CHIMERE, 2011), the model uses information only from one upwind cells to solve 
for advection. Numerical stability is warranted by the adaptive time-step adjusted in order 
to have a Courant number always less than 1, e.g. for the zonal direction: 

 xC U t x    (3) 

where Cx is the Courant number for the x-direction, U is the maximum zonal wind speed, Δt 
is the time step, and Δx is the grid spacing. By definition, the Courant number measures the 
influence that upwind concentrations may have on a given grid-cell in a single time-step in 
units of the grid size. If this number is less than one it means that information from only one 
upwind cell is needed. In CHIMERE, the time-step is adapted throughout the simulation to 
ensure this condition always holds. For some more details on the relationship among 
advection schemes and boundary conditions the reader is referred to the nice discussion 
given by Wang et al. (2004). 

 
Fig. 1. Schematic of boundary conditions (BC) of a regional chemistry-transport model. The 
domain of simulation is denoted by the black cube, the 2-D map at the bottom is a sample of 
an output surface ozone field. Boundary concentrations of gases and aerosol species are 
passed to the model through an envelope of cells that wraps the domain around its edges. 
The transport operator of the model will use those cells for advection calculations and it will 
transport BC information into the domain. 
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In the default configuration, the boundary conditions for CHIMERE regional simulations 

are taken from monthly mean simulations of the global model LMDz-INCA (Hauglustaine 

et al., 2004) for species listed in Tab. 1. For aerosol species, size-resolved mass concentrations 

of global model are redistributed onto regional model size bins, using a simple linear 

interpolation in logarithmic bin diameters space. In Fig. 2 we show a sample of the monthly 

static ozone boundary conditions for the month of June. 

 
 
 

CHIMERE species Species long name GEOS-Chem species 

Gases   

O3 Ozone O3 

NO2 Nitrogen dioxide NO2 

HNO3 Nitric acid HNO3 

PAN Peroxyacetylnitrate PAN 

H2O2 Hydrogen peroxide H2O2 

CO Carbon monoxide CO 

CH4 Methane - 

HCHO Formaldehyde CH2O 

C2H6 Ethane C2H6 

NC4H10 Butane and higher alkanes ALK4 

C2H4 Ethene - 

C3H6 Propene PRPE 

OXYL Xylenes - 

Aerosol   

H2SO4 Sulfates - 

OC Organic Carbon - 

BC Black Carbon - 

DUST Dust DST1-4 

SS Sea Salts - 
 

 

Table 1. List of species for which boundary conditions are provided to CHIMERE regional 

chemistry-transport model. In the third column, the GEOS-Chem global model species used 

in this study to test sensitivity of CHIMERE to different boundary conditions. 
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Fig. 2. Sample default ozone boundary conditions of CHIMERE model for the month of 
June. Ozone concentrations are taken from the monthly average of a simulation of the 
LMDz-INCA global model (Hauglustaine et al., 2004) and interpolated upon the CHIMERE 
horizontal and vertical grids. The panels show the resulting concentrations at the sides and 
top lid of the domain, as if the “box” of Fig. 1 has been open on a table. 

2.2 GEOS-Chem global model 

GEOS-Chem is a global chemistry model developed by a large international users 
community, originally stemming from the Harvard’s Atmospheric Chemistry Modelling 
group (Bey et al., 2001; GEOS-Chem, 2011). The meteorological input is provided by the 
Goddard Earth Observing System (GEOS) of the NASA Global Modeling and Assimilation 
Office (GMAO). Mostly relevant to this study is the emission module developed by Fairlie et 
al. (2007), used here to include a more detailed contribution of Saharan dust emissions into 
the simulations. Desert dust emissions are lowered by a factor of three according to the 
study of Generoso et al. (2008). 

GEOS-Chem simulations will be used in this study to produce alternative boundary 
conditions for the CHIMERE regional model at different time scales, from hourly to 
monthly. 

3. Results 

3.1 Ozone 

3.1.1 Time-scales and impact of IC and BC 

In order to study the effect of initial and boundary conditions on the CHIMERE ozone 
simulation at the European scale we use the simulations listed in Tab. 2. Basically, we 
alternatively zero IC and BC to isolate their effect through the difference with a reference 
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simulation (Stein & Alpert, 1993). We choose a one month in summer (June 2005) in order to 
allow enough time to study the effect of IC and to ensure an active ozone photochemistry. 

 

Simulation Label Description 

CTRL Control simulation (reference) 

NIC No Initial Conditions (IC = 0) 

NBC No Boundary Conditions (BC = 0) 

Table 2. List of simulations performed to study the effect of initial and boundary conditions 
on ozone. 

The reference ozone simulation of CHIMERE is quickly evaluated against ground based 

measurements available from the EMEP network (www.emep.int). Let j
iObs  and j

iMod  be 

the observed and modeled values at time i and station j, respectively. Let N be the number 

of stations, and jNobs  the number of observations at station j. 

 Pearson’s Correlation (r) and coefficient of determination (R2): 

 1 1

1 1
( ) ( )

1

( )

jN Nobs
j j
i ij

j i

X

r Z Mod Z Obs
N Nobs

X X
Z X



 
 






 
 (4) 

where X is a generic vector and Z(X) is its standard score, also defined above. R2 is defined 
as the square of r and denotes the fraction of variability of observations explained by the 
model. 

 Mean Bias (MB): 

 
1 1

1 1
jN Nobs

j j
i ij

j i

MB Mod Obs
N Nobs 

 
  
 
 

   (5) 

 Mean Normalized Bias Error (MNBE): 

 
1 1

1 1
100

j j jN Nobs
i i

j j
j i i

Mod Obs
MNBE

N Nobs Obs 

 
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 
 

   (6) 

 Mean Normalized Gross Error (MNGE): 

 
1 1

1 1
100

j j j
N Nobs

i i

j j
j i i

Mod Obs
MNGE

N Nobs Obs 

 
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 

   (7) 

Results for current simulation are presented in Tab. 3 and Fig. 3. The model captures the 
central part of the observed distribution, but overestimates its low end and underestimates 
the upper end. This is a quite typical behaviour of regional chemistry-transport models (e.g. 
Appel et al., 2007). The average MNBE and MNGE for ozone hourly timeseries is slightly 
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above the quality thresholds recommended by EPA (15% and 35% respectively), but the 
indices are well within the suggested limits for the daily maxima timeseries. 

 

Variable 
Observed 

mean 

Modelled 

mean 
MB MNBE MNGE r 

Units µg/m3 µg/m3 µg/m3 % %  

O3 hourly 78.6 82.7 4.0 22.5 36.5 0.53 

O3 daily max 103.4 98.7 -4.7 -0.4 15.8 0.69 

Table 3. Comparison of observed and modelled ozone timeseries at EMEP monitoring 

stations. Values are averaged over all times and stations available for June 2005. 

 

 
 

Fig. 3. Comparison of hourly ozone observed and modelled at EMEP stations. Left panel: 

scatter plot of 5th, 25th, 50th, 75th and 95th percentiles at all available stations. Right panel: 

boxplot of statistical indices shown in Tab. 3. Horizontal reference lines denote the quality 

level suggested by EPA (1991). 

The impact of IC on ozone is studied through the difference between CTRL and NIC runs. 

We arbitrarily define the influence of ΨIC as the relative difference between CTRL and NIC 

simulations and the spin-up time τIC as the time needed to reduce ΨIC to less than 1%. In Fig. 

4 we show the average ozone timeseries as measured and modelled at EMEP stations. After 

about 4 days of simulations the average ΨIC becomes negligible. According to our definition 
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the average τIC is 3.9 days, but ranges from 0.5 to 8.1 days. In Fig. 5 we may appreciate the 

spatial distribution of τIC. We find a clear positive gradient from the North-West to the 

South-East of the domain. The reason may be found in the ozone distribution itself. In Fig. 6 

we show the average ozone concentrations simulated by the model and we note that τIC 

gradients follows closely ozone gradients: the model just takes more time to build up ozone 

from the zero concentration starting point when the ozone level to be reached is higher. 

While this may pose questions on the method we used to estimate the “lifetime” of IC, this 

test is useful to verify that the model is essentially able to completely forget a whatever 

“wrong” initial condition after about 9 days of run. 

 

Fig. 4. Simulated influence of initial (IC) and boundary conditions (BC) in CHIMERE ozone 
at the European scale. The average timeseries at EMEP monitoring stations are shown. For 
explanation of simulation labels please refer to Tab. 2. The definition of ΨIC, ΨBC, τIC, and τBC 
is given in main text. 

The influence of boundary conditions is studied in an analogous way. We define ΨBC as the 
difference between CTRL and NBC runs and the time of arrival of BC τBC as the first time 
when ΨBC is larger than 1%. In Fig. 4 we see that the behaviour of ΨBC mirrors that of ΨIC. 
As expected, the influence of BC grows as that of IC decreases. According to our definition, 
the average τBC is 16 hours, and ranges from 1 to 29 hours. As shown in Fig. 5, shortest times 
are found near the domain edges, while longest times are found in the interior of the 
domain. The variability inside the domain is attributable to the specific meteorological 
situations, since the time of arrival of BC at a specific location is determined by the winds 
encountered along the travel from the edges. 

Until the spin-up time (τIC) is elapsed, ΨBC continues to ramp until a plateau is reached: the 
model is “warmed-up”, and the ozone production at certain place is determined by the 
equilibrium between the sources inside the domain and the boundary conditions (eq. 2). For 
any time and location, ΨBC quantifies the relative influence of BC with respect to local 
production. The periods with higher values of ΨBC in timeseries of Fig. 4, thus indicate 
periods of less intense photochemical activity. 
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Fig. 5. Spatial distribution of the influence time of IC and BC on ozone. 

 

Fig. 6. Average surface ozone simulated with CHIMERE in June 2005. 

The spatial distribution of the average ΨBC at the surface calculated from 10 to 30 June 2005 
with CHIMERE is shown in Fig. 7. As also noted above, we find that the maximum 
influence of BC is around the borders, and it is striking to see that it is higher than 80-90% 
even in the polluted North-Western Europe. ΨBC reaches a minimum of less than 50% over 
Po Valley where the local production is invigorated by the elevated precursors emissions 
and very active photochemistry. This result imply that an error in BC may be effectively 
propagated into the simulation domain. For example, an error of 1 in the BC becomes 0.7 in 
a place where ΨBC = 0.7. 

Liu et al. (2001) found that 3-D model results are consistent with analytical solution of a 
simple one-dimensional model, where the influence of BC may be written as: 

 /
/ ( )Lx u

BC BC x uC e S t   (8) 
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where x is the distance to boundary and u is the wind speed, so that x/u is the time of BC 
arrival. S is a step function which is 0 for t < x/u (before BC arrival) and 1 for t ≥ x/u (after BC 
arrival). If the ozone lifetime τ = 1/L is known, equation (8) can be applied directly to 
estimate ΨBC. Since the lifetime is generally unknown, but the BC arrival time τBC can be 
easily estimated, equation (8) can be inverted to roughly estimate the local averaged ozone 
lifetime. Inserting our definition of relative influence of BC on ozone ΨBC we obtain: 

  logBC BC     (9) 

The result is shown in Fig. 7. Ozone lifetime estimated with this simple method ranges 1-3 

days in the continental boundary layer and is longer than 5 days over the ocean, which is 

quite consistent with our expectations. 

 

Fig. 7. Left: average influence of BC on ozone simulated in June 2005 (excluding first 9 days 
of spin-up). Right: ozone lifetime estimated with eq. 9. 

3.1.2 Effect of alternative BC on surface ozone 

We analyse the effect of different BC on simulated surface ozone using four simulations as 

listed in Tab. 4. We choose a longer summer period of two months, June and July 2005, to 

have a more robust statistics. Consistently with what found in previous section, we spin-up 

the model for 10 days. 

 

Simulation Label Description 
CTRL Control simulation (w/ reference LMDz-INCA BC) 
BCGM BC from GEOS-Chem monthly output 
BCGD BC from GEOS-Chem daily output 
BCGH BC from GEOS-Chem hourly output 

Table 4. List of simulations performed to study the effect of alternative boundary conditions 
on ozone. 

In Fig. 8 we compare the timeseries of ozone BC in the simulations averaged over the western 
border (leftmost rectangle in Fig. 2). The GEOS-Chem model simulates lower (higher) ozone 
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values with respect to LMDz-INCA in June (July). One important reason, apart the many 
differences in models’ formulation, is that the latter simulation is an average over five years of 
run, while GEOS-Chem simulates the “actual” (i.e. assimilated) meteorology of the CHIMERE 
simulation. The introduction of more detailed in time BC introduces much more variability, 
with differences up to ±30% with respect to the fixed monthly BC. 

 

Fig. 8. Timeseries of the ozone boundary condition averaged over the west side of the 
European domain (left side of the box in Fig. 2). For explanation of the simulation labels 
please refer to Tab. 4. 

In Tab. 5 we report the statistical summary, i.e. the average indices over all available EMEP 
stations, of the four simulations. The comparison with reference simulation over the two-
month period is consistent with the one month simulation without spin-up (Tab. 3). The 
introduction of GEOS-Chem BC benefits the high CHIMERE model bias, reducing both the 
normalized bias and the gross error, probably because they are more specific of the 
simulation period than the LMDz-INCA climatology. The introduction of time resolution 
into the BC produces further reduction of model error and also significantly increases the 
correlation with the measurements. 

 

Simulation Observed mean Modelled mean MB MNBE MNGE r 
Units µg/m3 µg/m3 µg/m3 % %  

CTRL 77.6 81.5 3.9 28.0 42.3 0.55 

BCGM 77.6 77.2 -0.3 20.8 38.9 0.56 

BCGD 77.6 75.4 -2.2 16.9 36.8 0.59 

BCGH 77.6 75.3 -2.6 13.1 33.4 0.58 

Table 5. Statistical indices of sensitivity simulations against EMEP hourly ozone 
measurements for June-July 2005. Values are averaged over all times and stations available. 
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In Fig. 9 we compare the simulated ozone with measurements at two selected EMEP 

stations, one near the border and very sensitive to BC (Mace Head, Ireland), the other about 

the centre of the domain and much less sensitive to BC (Heidenreichstein, Austria). For the 

Irish site we note interesting differences among the runs. During the first week of 

simulation, the monthly GEOS-Chem alternative BC enhances model underestimation with 

respect to reference, while the time-resolved GEOS-Chem BC slightly alleviates the bias with 

respect to reference. In the days around June 17th the time-resolved BC allow the model to 

capture a low ozone episode, but the subsequent week GEOS-Chem values are even too 

low. Also in other periods, the time-resolved BC allow the model to go closer to 

observations (July 7-10, 20-23). The correlation with measurements goes from 0.38 of the 

CTRL run, to 0.29 of the BCGM, to 0.44 of BCGD and BCGH. The gross error is reduced 

from 26% to 22% from CTRL to BCGD and BCGH runs. We also point out that the difference 

of the impact of hourly and daily BC is minimal. 

The effect of alternative BC on the Austrian site, as expected is much less evident. However, 

the statistical indices of comparison with observation constantly get better as we introduce 

more resolution in time. The correlation increases from 0.56 to 0.61, the bias decreases from 

23% to 14%, and the gross error decreases from 39% to 35%. Again, we note that using 

hourly or daily resolved BC does not significantly impact the simulation. 

These results point out that the time resolution of BC may greatly affect the simulation, but 

an higher resolution may episodically worsen model skills. The big step is between monthly 

and daily resolved BC, while going down to hourly resolved BC, at the expense of more disk 

space and pre-processing time, does not yield further significant improvements.. 

 

 

Fig. 9. Ozone timeseries in June-July 2005 as observed at two EMEP stations and simulated 

with CHIMERE with four sensitivity simulations (Tab. 4). Left: Mace Head station, close to 

the Western border of the domain and sensitive to BC (ΨBC ~0.95). Right: Heidenreichstein 

station, by the centre of the domain and less sensitive to BC (ΨBC ~0.63). 
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3.2 Aerosol 

3.2.1 Effect of alternative BC on surface PM10 

Similarly to ozone, we study the effect of alternative BC on simulated surface PM10 using 
the same simulations listed in Tab. 4. For this study, we choose to introduce alternative BC 
into CHIMERE only for dust, because the inflow of Saharan dust into the European domain 
is expected to contribute much more to the PM10 simulation than the other species (Curci et 
al., 2008; Curci & Beekmann, 2007). While transboundary pollution from anthropogenic 
sources is expected to impact background levels of PM (Park et al., 2003; 2004), Saharan dust 
may episodically yield to the exceedance of the PM10 limit for the protection of human 
health of 50 µg/m3 (Gobbi et al., 2007; Koçak et al., 2007; Perrino et al., 2009). It is estimated 
that in Italy the subtraction of natural dust to PM10 may yield to a reduction from 5% to 
50% of the number of threshold exceedances depending on the meteorology and the station 
type (Pederzoli et al., 2010). 

In Fig. 10 we compare the boundary conditions to CHIMERE from the Southern border in 
the four simulations. GEOS-Chem monthly mean dust values are higher than LMDz-INCA, 
and similarly to ozone the time-resolved BC have a much higher variability, with differences 
of ±50% and one episode with hourly values three times higher than monthly values. 

 

Fig. 10. Timeseries of the dust boundary condition summed over all CHIMERE size-bins and 
averaged over the south side of the European domain (bottom side of the box in Fig. 2). For 
explanation of the simulation labels please refer to Tab. 4. 

In Tab. 6 we report the average statistical indices over all available EMEP stations of the four 
simulations. The higher dust values in GEOS-Chem BC drastically reduce the model bias 
from -40% to -7%, but the “noise” introduced by the large dust variability gradually 
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degrades the correlation and the gross error as we increase the BC time resolution. This fact 
points out how tricky is the simulation of the Saharan dust contribution on European PM10 
levels. 

 

Simulation Observed mean Modelled mean MB MNBE MNGE r 
Units µg/m3 µg/m3 µg/m3 % %  

CTRL 17.5 9.0 -8.5 -41.9 47.4 0.63 

BCGM 17.5 15.1 -2.4 -8.6 42.8 0.53 

BCGD 17.5 16.0 -1.5 -6.9 50.2 0.50 

BCGH 17.5 16.0 -1.5 -7.0 50.3 0.50 

Table 6. Statistical indices of sensitivity simulations against EMEP daily PM10 

measurements for June-July 2005. Values are averaged over all times and stations available. 

In Fig. 11 we compare the PM10 timeseries at two EMEP stations, one near the South-
Western border of the domain and more affected by Saharan dust (Barcarrota, Spain), and 
another to the North (Schauinsland, Germany). At the Spanish site, higher dust values in 
GEOS-Chem BC reduces the mean bias from -14 µg/m3 to less than 1 µg/m3, but the 
correlation decreases from 0.77 to 0.56 in CTRL and BCGH runs, respectively. The better 
resolved BC allow the model to better capture the observed PM10 variability by the end of 
the simulated period, but they also induce episodic overshoots during the first period of 
simulation that are completely unrealistic. Very similar features may be also noted at the 
German site, indicating that the importance of dust BC are not limited to the Southern part 
of the European domain. 

 

Fig. 11. PM10 timeseries in June-July 2005 as observed at two EMEP stations and simulated 
with CHIMERE with four sensitivity simulations (Tab. 4). Left: Barcarrota station, close to 
the South-Western border of the domain and strongly impacted by Saharan dust. Right: 
Schauinsland station, by the centre of the domain. 

We now focus on the dust episode of 27-29 July 2005. In Fig. 12, the daily AOD observed by 
MODIS/Aqua between 24-29 July clearly tracks a dust cloud swapping Southern Europe 
from West to East. In Fig. 13 we show the same episode as recorded at ground level by the 
EMEP network and simulated by CHIMERE. The introduction of time-resolved BC helps the 
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model in better reproducing both timing and magnitude of the event. Unfortunately, as we 
have seen in previous timeseries, this is not a general conclusions and further work is 
certainly warranted on the dust BC issue. 

 

Fig. 12. The Saharan dust episode of July 2005 as seen from space through daily Aerosol 
Optical Depth (AOD) observations by MODIS/Terra. 

 

Fig. 13. The dust episode observed at EMEP stations and simulated with CHIMERE using 
different time-resolutions for the boundary conditions. 
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3.2.2 Eye-witness of a Saharan dust event over Central Italy 

In a sort of “divine intervention”, Sahara desert decided to produce one of its episodes 

while writing this chapter, during the first days of September 2011. The event was eye-

witnessed by the author, and by its fellow citizens of L’Aquila in Central Italy, during the 

days 2-4. A large “bubble” of dust travelled over the South-Western Mediterranean and it 

was captured by the MODIS/Terra satellite instrument, as depicted in Fig. 14, which 

estimated a maximum optical thickness of more than 1.5. In Fig. 15 we show the striking 

effect on atmospheric visibility as observed from the ground: the mountain peak by the 

centre of the pictures, having a distance of about 25 km from the shot location, was almost 

obscured by the dust layer. The latter did actually hit the ground, as witnessed by the 

PM10 monitoring station in L’Aquila valley, which exceeded 50 µg/m3 on September 3rd 

(Fig. 16), and also by the dust deposited over surfaces at the ground (e.g. the author’s car 

depicted in Fig. 15). 

 

    

Sep 1st Sep 2nd Sep 3rd Sep 4th 

Fig. 14. The Saharan dust event over Italy in September 2011 as seen from MODIS/Terra 
AOD observations. 

  

 

Fig. 15. Left: view of L’Aquila valley in a clean summer day (10/09/2011); the mountain 
peak in the centre is at a distance of about 25 km. Middle: same view during a Saharan dust 
event (03/09/2011). Right: dust deposited over ground surfaces during the night. 
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Fig. 16. PM10 concentration measured in L’Aquila at the ground monitoring station across 
the September 2011 Saharan dust event. 

Interestingly, Fig. 17 shows that the arrival of the dust layer was qualitatively predicted by 

the ForeChem experimental chemical weather forecast system operating at University of 

L’Aquila (Curci, 2010), consisting of MM5/CHIMERE models automatically running, which 

is fed with the default monthly boundary conditions from LMDz-INCA global model (see 

Sec. 2.1). 

 

  

Fig. 17. Saharan dust event over Italy in September 2011 as forecasted with MM5/CHIMERE 
(ForeChem experimental chemical weather forecast operational at University of L’Aquila, 
http://pumpkin.aquila.infn.it/forechem/). Images show the fraction of PM10 at the ground 
due to dust from outside the domain, which is a nest within a European scale domain. 
Boundary conditions to the latter are provided with monthly mean fields from the LMDz-
INCA global model. 

4. Conclusion 

The effect of initial (IC) and boundary conditions (BC) on the simulation of surface ozone 
and PM10 over the continental scale European domain is evaluated with several sensitivity 
tests of the CHIMERE chemistry-transport model. 

Zeroing alternatively IC and BC in the model, and comparing the results with a reference 
run, we estimate an optimal model spin-up time of 9 days for the domain used in this study 
(35°-58°N; 15°W-25°E; 79 x 47 cells at 0.5° horizontal resolution). The BC have a significant 

L’Aquila 
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impact on simulated ozone, especially in a belt of about 1000-2000 km around the domain 
borders. There, BC dominates ozone variability, while in the interior of the domain they 
have a weight similar to the local photochemical production. Through the BC test, the 
surface ozone lifetime is estimated to be 1-3 days over the continent and longer than 5 days 
over the oceans. 

The impact of different time-resolution of BC is studied feeding the CHIMERE model with 
GEOS-Chem global model simulations. With respect to the reference BC, provided by five 
years monthly mean LMDz-INCA model simulations, the GEOS-Chem model has generally 
lower ozone and enhanced dust values during the period of simulation (June-July 2005). The 
positive ozone bias with respect to EMEP measurements is alleviated by GEOS-Chem BC, 
and also the introduction of BC better resoled in time benefit model skills. The average 
correlation increases from 0.55 to 0.59 and the normalized bias decreases from 28% to 17%. 
The large improvement is noticed when passing from monthly to daily BC, while hourly BC 
do not produce further improvements. We noticed, however, that time-resolved BC may 
episodically worsen model skills. 

The introduction of different aerosol BC is tested focusing on dust, because of the prominent 
role that Saharan dust events play on the PM10 levels especially in Southern Europe. GEOS-
Chem predicts higher dust concentrations with respect to LMDz-INCA, and its use as BC 
alleviates the CHIMERE low bias with respect to EMEP measurements. However, the 
agreement with observations get better during the events by the end of the simulated period 
(July 2005), but worsen at the beginning (June 2005). In particular, GEOS-Chem has a tendency 
to episodically overshooting dust at unrealistic levels. The introduction of time-resolved dust 
BC may allow the model to better reproducing both time and magnitude of Saharan events, 
but this is not a general conclusion with models’ set-up used in this study. Further work on 
dust BC for European scale models is certainly needed in the future, possibly combining 
satellite observations with ground measurements of the aerosol composition and size-
distribution that may better constrain the dust contribution to particulate matter. 
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