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1. Introduction  

Botulinum neurotoxins (BoNTs) are some of the most lethal human bacterial toxins and the 
causative agent of botulism (Arnon et al., 2001; Simpson, 2004). The usual routes of 
intoxication for BoNTs are oral ingestion of clostridial spores or pre-formed toxin, 
manifested as infant, foodborne and adult onset botulism. An increasingly common route of 
intoxication is associated with intravenous drug use resulting in wound botulism. BoNTs 
are also classified as Select Agents and have been used as agents of bioterrorism (Arnon et 
al., 2001; Bigalke and Rummel, 2005). Potential methods for toxin exposure include 
intentional contamination of the food and drink supply, or by aerosol spread, leading to 
inhalational botulism. 

Usually, an identification of botulism is made through clinical manifestations and diagnosis, 
with subsequent confirmation by laboratory identification of clostridial spores or toxin in 
foods, environmental or clinical samples (CDC, 1998; Lindström and Korkeala, 2006; 
Solomon and Lilly, 2001). The speed of recovery from botulism increases with the timely 
administration of antitoxin or medical interventions (Arnon et al., 2001; Simpson, 2004). 
Thus, sensitive and rapid toxin detection and diagnostic methods are critical for improved 
recovery time, as well as, facilitate the epidemiologic study of outbreaks. 

Due to the potential for bioterrorism use, much effort and resources have been dedicated to 
the development of detection methods, treatment, and prevention of botulism. A multitude 
of assay formats have been developed over many years, with in some cases, reported 
sensitivities at the attomolar level (Grate et al., 2010). Many assays were designed for use in 
the validation of toxin production, for commercial purposes, or for high-throughput 
screening methods to identify therapeutics that inhibit toxin function. These highly sensitive 
methods usually detect highly purified BoNT samples and are used in research type 
applications. Many such assays are not usable for the detection of BoNT contamination in 
food or other complex samples. This chapter focuses on the diagnostic methods for toxin 
detection and the challenges encountered while adapting analytical methods for the 
detection of BoNTs in foods and other biological and environmental samples. 
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The biology and mechanisms of action of BoNTs are described in a previous chapter in this 
book, and readers should refer to the botulinum neurotoxins chapter by Webb, Roxas-
Duncan and Smith, for more background reading. This chapter will briefly describe the 
properties of BoNTs as they relate to detection methods and will compare and contrast 
currentlyused methods for food and biological sample analyses and methods in 
development. For detailed analyses and descriptions of detection assays please also refer to 
excellent reviews by (Grate et al., 2010; Lindström and Korkeala, 2006; Scarlatos et al., 2005; 
Sharma and Whiting, 2005). We apologize to others not named here due to space 
constraints. 

2. Overview of botulinum neurotoxin structure and function as they relate to 
the development of diagnostic tools 

A single gram of BoNT released and subsequently inhaled can lead to the deaths of more 
than one million people (Arnon et al., 2001; Hill et al., 2007). BoNTs are produced by the 
ubiquitously distributed, gram-positive, strictly anaerobic, spore-forming bacteria 
Clostridium botulinum, C. barati, C. butyricum and C. argentinense. To date, seven different 
botulinum serotypes, indicated by letters A through G, have been identified. Serotypes A, B, 
E, and F have been associated with human disease (Table I).  

 

Type of botulism Average number of 
cases per year 

Percent of total BoNT Serotypes 

Infant 85 66 A, B, E, F 

Wound 24 19 A, B 

Foodborne 19 15 A, B, E, F 

Adult 0.4 0.3 A, B, F 

Unknown 1.4 1 A, B, F 

Table 1. Survey of U.S. human botulism cases from 2001-2009 as reported by the U.S. 
Centers for Disease Control and Prevention (CSTE).  

BoNT serotypes can differ from each other by 34-64% at the amino acid level (Garcia-
Rodriguez et al., 2011; Hill et al., 2007; Jacobson et al., 2011; Smith et al., 2007; Smith et al., 
2005). Genetic variation within each serotype is sometimes significant. And 32 toxin 
subtypes with amino acid level differences of 2.6-32% have been identified thus far, with 
more likely to be identified in the future. Serotype and subtype diversity may impact 
antibody and molecular-based assay designs.  

BoNT is synthesized as an ~150 kDa protein, also called the holotoxin, that is subsequently 
processed by a clostridial trypsin-like protease into two polypeptides linked by a single 
disulfide bond; and are thus similar to other known bacterial A-B dimeric toxins (Oguma, 
Fujinaga, and Inoue, 1995; Singh, 2000). The ~100 kDa fragment, known as the heavy chain 
(HC), facilitates toxin binding to specific host cell receptors and later, translocation of the 
toxin from vesicles into the cell cytosol. The ~50 kDa fragment, known as the light chain 
(LC), contains the enzymatic domain. The LC fragment is often used for the development of 
activity-based assays. HC and LC specific antibodies have been developed for toxin 
neutralization and toxin detection immunoassays. 
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BoNT holotoxin is secreted from bacteria in association with other non-toxic proteins, called 

neurotoxin associated proteins or NAPs, forming large protein complexes of 500-900 kDa. 

These large protein complexes are referred to as progenitor toxins or simply as BoNT 

complex (Inoue et al., 1996). Complexed BoNTs are significantly more toxic in oral 

intoxications (Cheng et al., 2008; Ohishi, Sugii, and Sakaguchi, 1977) than holotoxins. NAPs 

are thought to protect the holotoxin from gastric digestion as well as help holotoxins cross 

the intestinal barrier (Fujinaga et al., 2009; Niwa et al., 2007; Simpson et al., 2004). Toxin 

complexes that survive the gastric challenge translocate across the epithelial cell barrier 

(transcytosis) gaining access into the bloodstream, where the holotoxin is released. BoNT 

complexes are the forms that will most likely be found in natural intoxication and 

bioterrorism cases. Thus, the detection of toxin when associated with NAPs or the use of 

NAPs as detection targets in foodborne intoxications is a consideration in the design of new 

assays. 

The target for BoNT holotoxin is the peripheral cholinergic nerve ending, resulting in flaccid 

paralysis (Simpson, 2004). Specific receptors for the toxin HC of BoNTs have been identified; 

BoNT/A binds to glycoprotein SV2; serotype F binds SV2 and gangliosides; and serotype G 

binds synaptotagmin I and II. Toxin binding to nerve cells is followed by receptor-mediated 

endocytosis and subsequent translocation of the LC (directed by the translocation domain of 

the HC) into the cytoplasm. The LC of different serotypes targets different SNARE proteins. 

BoNT serotypes A, C and E target SNAP-25, and serotypes B, D, F, and G target VAMP2, 

while serotype C targets syntaxin (Hakami et al., 2010). Different SNARE targets of BoNTs 

have been used to develop in vitro assays for toxin activity. Peptides with fluorescent labels 

and quencher molecules have been designed and used in various forms of enzymatic 

activity assays. 

3. Challenges to the development of detection assays for botulinum 
neurotoxins 

The development of robust and sensitive detection assays for BoNTs requires consideration 

of at least six factors explored in detail below. 

3.1 Sensitivity 

Assay sensitivity is not a simple criterion to define and is determined in part by the specific 
application. For example, the human lethal dose (LD) for oral intoxication is estimated at 1 
µg/kg or about 70 µg for a 70 kg adult (Arnon et al., 2001; Scarlatos et al., 2005). Assays 
designed for evaluating food must detect at least this amount in a typical portion. Since 
portions vary widely between individual foods, assay sensitivity requirements may vary 
with specific matrixes. Foods that typically have large portion sizes would require assays 
with lower detection limits. Furthermore the dose to cause illness but not death might be 
lower. Our experience with BoNT exposure in rodents is that a level 10-fold lower than the 
minimal lethal dose falls into this latter category. Thus, a dose level 10-fold lower than the 
LD in humans, 7 µg, translates into an assay sensitivity of 70 ng/mL if a serving is typically 
100 mL. A 10-fold threshold lowers the sensitivity to 7 ng/mL. In contrast, detection levels 
for tests used in sera or other clinical matrices should be as sensitive as possible to account 
for low toxin levels. For example, in oral mouse toxicity studies, only a small portion of the 
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ingested BoNT actually survives the harsh conditions in the gut to reach the bloodstream 
(Cheng and Henderson, 2011; Cheng et al., 2008). The lethal toxin intravenous dose varies 
between 20-200 ng in an adult human with approximately 5 liters of blood (Arnon et al., 
2001). Taking into account natural degradation, and clearance of toxin in sera, the assay 
sensitivity for diagnostic evaluation must be in the low to sub-pg/ml range. 

3.2 Specificity 

There are currently seven known serotypes of BoNTs, and 32 known subtypes. New 

subtypes are expected to be identified in the future. Amino acid sequence differences can 

vary as much as 70% among serotypes (Hill et al., 2007; Smith et al., 2005). This level of 

genetic diversity and variation can prove challenging for both molecular and antibody-

based diagnostic methods. False negative results could be obtained if a gene or protein 

structure of the toxin differ from what established oligonucleotides/PCR primers or 

antibodies can recognize. At the very least, assay performance needs to be established on as 

many toxin sero- and subtypes as practical. Reagents generated for detection assays should 

ideally recognize all known subtypes of each serotype. 

3.3 Matrix effects 

In almost all scenarios, BoNT samples to be tested would be found in a wide variety of 

matrices of food, clinical (serum, sputum, feces, etc) or environmental samples (dust, soil, 

water, etc). Yet, most assay methods are designed, tested and optimized in buffer conditions 

and thus the sensitivity or application in complex matrices may be diminished. Complex 

matrices may contain many challenging conditions such as high fat, high protein or salt 

content, low or high pH; the presence of other active proteases could also interfere with 

detection sensitivity, increase background signal, and give false positive or negative signals. 

Methods to alleviate matrix interference range from simple sample dilution, pH rebalancing, 

addition of protease inhibitors, to specific affinity binding steps prior to detection. Extensive 

analysis of different matrices will be necessary to evaluate assay sensitivity and determine 

the best methods to circumvent matrix effects on assay performance. 

3.4 Activity 

The potent toxicity associated with BoNTs is attributed to their enzymatic properties. The 

differentiation of active versus inactive forms of the toxin is needed for proper risk 

assessment and should be an important consideration in assay design. An active BoNT has 

many roles, it must be able to bind host cell receptors, translocate across membranes and 

finally reach the host cell cytosol and cleave its target protein. Few assays can measure all 

aspects of toxin function. Immunoassays (IA) can generally detect both active and inactive 

toxin and may give false positive results even when no active toxin is present. However, 

positive results from IA requiring the presence of both HC and LC are predictive of active 

toxin (Stanker et al, 2008). Assays measuring endopeptidase activities of BoNTs are available 

but are not as sensitive and amenable to use in complex matrices. Genomic methods, while 

sensitive, detect the presence of toxin genes but not that of toxin. Depending on the 

diagnostic needs, a combination of methods may have to be used to get a full activity profile 

of the toxin. 
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3.5 Ease of use 

For the widest application of an assay, it must be user-friendly and allow for a timely 
diagnosis. Furthermore, assays need to be validated in multiple laboratories, use equipment 
or tools that are readily available, and require minimal training to execute. Ideally, the assay 
should also be field deployable. 

3.6 Cost 

The cost of an assay in terms of reagent or equipment availability can be an important factor 
on how widely an assay is used and deployed.   

4. Current diagnostic methods of toxin detection 

The current “gold standard” for detection of BoNTs is the mouse bioassay. Despite many 
attempts and much research to replace the use of animals, it is still the best assay to model 
all aspects of BoNT intoxication: binding, translocation and enzymatic activity (Grate et al., 
2010). In attempts to replace the mouse bioassay and improve assay time and sensitivity, 
both in vitro and in vivo systems have been developed for the detection of BoNTs. The 
development of a robust detection assay for BoNT requires that the assay meet as many of 
the six challenges mentioned above as possible. This section of the chapter will mainly focus 
on assays that can be used in food and biological samples for the detection of BoNTs. 

4.1 Mouse bioassays 

The mouse bioassay is still one of the most sensitive and robust methods to detect BoNTs 
(Schantz and Kautter, 1978; Solomon and Lilly, 2001).  The mouse bioassay measures BoNT 
in minimal lethal dose (MLD) units, which is the lowest dose at which all tested mice die. 
Mice are usually injected intraperitoneally with 0.5 ml of BoNT sample in a dilution series, 
and then monitored over several days for signs of intoxication and death (CDC, 1998; 
CFSAN, 2001). Signs of intoxication include: ruffled fur, wasp-waist (Figure 1), labored-
breathing, paralysis and death. Signs of intoxication can appear from a few hours post-
injection to a few days depending on the dose and type of BoNT. When enough sample is 
available, the identity of the unknown BoNT can simultaneously be tested by the addition of 
neutralizing antibodies against each of the serotypes (A-G). The serotype is identified by the 
antibody that protects their respective mice from death. The mouse bioassay sensitivity is in 
the range of 20-30 pg for BoNT/A and 10-20 pg/ml for BoNT/B (Ferreira et al., 2004; 
Wictome et al., 1999). 

While the mouse bioassay has high sensitivity, can detect different serotypes and subtypes, 
measures different aspects of active toxin, and is amenable to use in different matrices, it has 
many drawbacks. These include: long assay times, requires specialized animal facilities, 
trained staff, and the use of animals (with death used as an endpoint). There is also 
substantial variation of results observed among different research laboratories.  

Alternative refined animal assays that do not use death as an endpoint such as the mouse 
phrenic nerve hemi-diaphragm assay have been evaluated (Rasetti-Escargueil et al., 2009). 
Although they may be sensitive and faster than the use of whole animals, these assays 
require use of sophisticated equipment and training, and are not amenable for use with 
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large samplings of complex matrices (Grate et al., 2010). A recently developed in vivo assay 
using the toe-spread reflex model was tested for the detection of BoNT in buffer, serum and 
milk samples (Wilder-Kofie et al., 2011). This new assay can provide results more quickly 
than standard mouse bioassays. The robustness of this assay and how easily staff can be 
trained to perform this assay have yet to be determined. 

 

Fig. 1. Mouse bioassay. Mice were intraperitoneally treated with BoNT/A (right mouse) or 
phosphate buffered saline (left mouse). The intoxicated mouse shows a typical wasp-waist 
phenotype. 

4.2 Nucleic acid based methods of detecting C. botulinum in food matrices and other 
biological samples 

4.2.1 Polymerase chain reaction 

The use of the polymerase chain reaction (PCR) to identify the presence of C. botulinum 
DNA was originally used to detect the presence of bacterial spores. The method could detect 
the presence of as few as 102 spores per reaction mixture for serotypes A, E and F and only 
10 spores per reaction mixture for BoNT/B. To enhance sensitivity, Lindström and 
colleagues developed an enrichment method that could detect as few as 10-2 spores/gram of 
sample for serotypes A, B and F and 10-1 spores/gram of sample for BoNT/E (Lindstrӧm et 
al., 2001). However, one critical drawback of this method is that enrichment often requires 5 
days. Furthermore, the applicability of the assay for detection of food contamination was 
diminished by the observation that beef could interfere with the sensitivity of the assay. 
Also, if contamination were to occur with the actual toxin, and not cells, this traditional PCR 
method would not be useful.   

4.2.2 Multiplex polymerase chain reaction 

It is highly desirable to analyze unknowns for multiple targets, such as different pathogens 
and/or associated gene products of those pathogens. This approach, known as Multiplex 
technology, is conceptually simple for PCR based assays. Different sets of PCR primers, each 
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one highly specific for a gene of interest can be easily generated, allowing for the 
amplification of multiple targets in one reaction tube. One such multiplex method was able 
to discriminate among BoNT serotypes A, B, E, and F, corroborating mouse bioassay results 
(De Medici et al., 2009). Furthermore, Peck and colleagues developed a culture enrichment 
methods that when coupled with multiplex PCR, can identify strains of C. botulinum that are 
non-proteolytic (BoNT serotypes B, E, and F) (Peck et al., 2010). Importantly, this method 
was robust and reasonably rapid for use with food samples contaminated with C. botulinum. 

Recently, Fach and colleagues have adapted the use of the GeneDisc Cycler (GeneSystems 
PCR Technology) to amplify C. botulinum genes encoding BoNT serotypes A, B, E, and F on 
different microchambers (Fach et al., 2011). This technology allows the simultaneous 
amplification of multiple targets along with a number of different internal controls. A 
number of different toxin-producing clostridia and non-toxin producing bacteria that were 
isolated from different food, clinical, and environmental samples and results were compared 
with those obtained from the mouse bioassay. Notably, all of the botulinum genes were 
detected correctly and no cross-reactivity was observed with either non-toxin producing 
bacteria or with C. botulinum serotypes C, D, and G. Four European laboratories evaluated 
this technology, examining 77 toxin producing clostridia as well as 10 food and clinical 
samples. In all cases, this GeneDisc Cycler was specific and reliable for identifying C. 
botulinum serotypes A, B, E, and F; and was also useful for screening naturally contaminated 
food and fecal samples.  

4.2.3 Real-time polymerase chain reaction 

Real-time or quantitative PCR is useful in studies of gene expression; specifically differential 
expression of genes under different environmental conditions or for comparative studies 
among different organisms. For detection of clostridia, real-time PCR methods that examine 
expression of the NTNH (non-toxic, non-hemagglutinin) genes have been developed, as 
well as methods to study toxin gene expression in C. botulinum serotypes A, B, E, and F 
(Fach et al., 2009). In that study, twenty-nine different strains of toxin-producing C. 
botulinum were screened, and compared with expression profiles from non-toxin producing 
clostridia as controls. This assay has a sensitivity of 100-fg/1000 fg total DNA in the PCR 
tube (equivalent to approximately 25-250 genomes). Converting this DNA concentration to 
its equivalent in cells/ml, suggested a detection limit of approximately 103 to 104 cells/mL. 
Following a 48-hour enrichment under anaerobic conditions, these investigators reported 
the detection of C. botulinum serotype A in a naturally contaminated sample of foie gras 
suspected in a botulism outbreak. Recently, pentaplex methods have been developed to 
simultaneous identify and discriminate among larger numbers of different serotypes using a 
wider array of different genes (Kirchner et al., 2010). This technology should prove to be 
efficient and cost-effective. 

4.2.4 DNA microarrays 

Microarray technology for toxin identification of contaminated food has not been widely used. 
This may be due to the challenge in isolating high-quality RNA samples from clostridia in 
food matrices. A recent oligonucleotide microarray with 62 different sequences based on 
known strain variable regions in the genome of C. botulinum strain ATCC 3502 was 
constructed and used to differentiate different C. botulinum type A strains (Raphael et al., 
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2010). Regions corresponding to BoNT genes of various serotypes, and other markers 
components, and other markers were observed. Further development of microarray based 
assay approaches may provide a means to rapidly identify toxin-producing strains.  

4.3 Antibodies as detection tools for BoNT contamination in food 

High-affinity monoclonal antibodies (mAbs) that specifically bind individual or multiple 

BoNT serotypes (and subtypes) have been generated using either mouse hybridoma 

technology or yeast affinity maturation methods (Grate et al., 2010). These antibodies have 

been used extensively in traditional ELISA, bead-based, immuno-PCR, microarray assays or 

in sample preparation before use in a detection assay. Several such assays used in food and 

biological matrices are highlighted below. 

4.3.1 ELISA and ELISA-based methods of detection 

ELISA is a widely used detection assay format that uses anti-BoNT capture and detector 
antibodies usually in a sandwich type format. The read-out for the assay can be colorimetric, 
luminescence or other formats. Most older generation BoNT immunoassays are about 10 
times less sensitive than the mouse bioassay (Ferreira et al., 2004; Scarlatos et al., 2005; 
Sharma and Whiting, 2005). Although not as sensitive, ELISA based methods are relatively 
fast, inexpensive and simple. They are also less subject to matrix effects. Sharma and 
colleagues designed an amplified enzyme-linked immunosorbent assay (ELISA) for 
detecting toxins in food matrices (Sharma et al., 2006). Specifically, toxins for serotypes A, B, 
E, and F could be detected in liquids, solid, and semisolid food. Assay performance in a 
range of foods include broccoli, orange juice, bottled water, cola soft drinks, vanilla extract, 
oregano, potato salad, apple juice, meats, and dairy items were evaluated. Assay sensitivity 
varied for each botulinum complex serotype, and were reported as 60 pg/ml for BoNT/A, 
176 pg/ml for BoNT/B, 163 pg/ml for BoNT/E, and 117 pg/ml for BoNT/F. The tests 
readily detected 2 ng/ml of serotypes A, B, E, and F in a variety of the foods tested. 

Recently, traditional format sandwich ELISA assays using highly sensitive mAbs against 
BoNT/A and BoNT/B have detected as low as 5 pg/mL and 25 pg/mL BoNT/A, in buffer 
and in a milk matrix, respectively (Stanker et al., 2008); and 100 fg and 39 pg/ml of BoNT/B 
in the buffer and milk matrix, respectively (Scotcher, Cheng, and Stanker, 2010). These 
mAbs were also used in electrochemiluminescence ELISA type assays using a Meso Scale 
Discovery (MSD) instrument. Detection sensitivities for BoNT/A using the MSD instrument 
were similar to traditional ELISAs in the buffer system but offered marked improvement in 
detection limits and reduction in backgrounds in liquid food matrices (Cheng and Stanker, 
unpublished results). The higher sensitivity and less time required for these new ELISA 
assays make them great alternatives or complements for the mouse bioassay.  

4.3.2 Multiplex antibody-based detection systems 

The multiplex technology has been applied to the development of methods to analyze 

multiple epitopes on a single antigen or multiple targets in a single sample. This approach 

uses multiple mAbs as well as polyclonal antibodies to reduce false-positive and false-

negative results. The Luminex xMAP technology utilizes microsphere beads conjugated 

with antibodies. The antibody-bead complexes detect multiple epitopes in single sample; for 
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instance, this technology was used to detect abrin, ricin, botulinum toxins, and 

staphylococcal enterotoxins in spiked food samples (Garber, Venkateswaran, and O'Brien, 

2010). The study used paramagnetic beads instead of non-magnetic polystyrene beads to 

help in the analysis of food matrices, such as chipotle mustard, which contain large amounts 

of particulate matter.  

4.3.3 Affinity immunochromatography column-based methods  

Accurate and sensitive detection of contaminated food and other biological samples in the 
field is critical. To this end, Brunt and colleagues (Brunt, Webb, and Peck, 2010) have 
developed a number of rapid affinity immunochromatography column (AICC) assays for 
the detection of BoNT serotypes A, B, E, and F in food matrices. These authors reported a 
detection limit for BoNT/A of 0.5 ng, two fold more sensitive than earlier reported lateral 
flow methods. For serotypes B, E, and F, the minimum detection limit ranged from 5 ng to 
50 ng. Although not as sensitive as ELISA or mouse bioassays, immunochromatographic 
methods generally are rapid assays, requiring only 15 to 30 minutes to complete, do not 
require enrichment steps, making them highly amenable to use in the field. 

4.3.4 Lateral flow technology  

The application of lateral flow methods for detecting toxins has led to the development of a 

number of kits for sensitive and rapid testing. The principle here is that capture antibodies 

are printed on nitrocellulose membranes. Detection antibodies are labeled with materials 

that can be visualized (eg., colloidal gold, or colored latex beads) The sample is added to a 

reagent pad containing labelled detection antibodies that bind toxin, wick across the 

membrane where toxin is retained, thus concentrating the labelled detection antibody. A 

positive reaction leads to a colorimetric change that is usually detected as a line. These 

assays are generally qualitative, and determine the presence or absence of toxin. Sharma and 

coworkers tested different commercial lateral flow devices (such as the Bot-Tox-BTA kit) for 

their capacities to detect toxin in food samples (Sharma et al., 2005). They were able to detect 

as little as 10 ng/ml of BoNT serotypes A and B and 20 ng/ml of BoNT/E in a variety of 

liquids such as milk products, soft drinks, and fruit juices. Results by Stanker (unpublished) 

show sensitivity of 0.5 and 1 ng/ml for BoNT/A in buffer and milk, respectively, in lateral 

flow devices using sensitive mAbs described in the ELISA section above (Stanker et al., 

2008). Although simple lateral flow tests have poorer sensitivities compared to other 

methods, they produced rapid results, require no additional reagents or equipment, are 

easily interpreted, and have many applications. They can be useful for the quick screening 

of samples where the presence of BoNT may be more abundant. 

4.3.5 Immuno-polymerase chain reaction (I-PCR) 

An innovative approach for toxin detection combines antibodies with the amplification 

power of PCR in an assay called immuno-PCR (I-PCR). Here, instead of a secondary 

antibody conjugated to the detection enzyme, template DNA is conjugated to the 

antibody; and upon binding of antigen by the antibody, an indirect test for the presence of 

the BoNT is carried out using PCR. Chao et al. described a sensitive I-PCR method 

(femtogram amounts, 10-15 grams) for detection of BoNT/A. These investigators also 
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compared standard ELISA as well as sandwich ELISA methods with the sensitivity of the 

I-PCR method. Both ELISA methods were sensitive for toxin detection down to 50 fg, and 

the I-PCR method was between 103 to 105 times more sensitive (Chao et al., 2004; Wu et 

al., 2001). For more background on the basic principles of I-PCR, the reader is referred to 

Niemeyer and colleagues (Niemeyer, Adler, and Wacker, 2005). The use of I-PCR for 

highly sensitive detection of BoNT in food matrices or other biological backgrounds has 

yet to be developed. 

4.4 Activity based assays for detecting food contamination 

Rapidly distinguishing between the presence and absence of active versus inactive toxin is 
critical for intervention. Since BoNTs are zinc metalloproteases, enzyme-substrate assays 
have been developed using knowledge of the human targets for these enzymes. Activity 
assays range from mixing toxin with recombinant versions of host targets (such as SNAP-25) 
and then using immunoblotting to detect cleavage of those substrates, to measuring 
fluorescence emitted from cleavage of fluorogenic peptide substrates. One such peptide, 
called SNAPtide, used in an assay with a reverse phase HPLC with a fluorescence detector, 
can detect as low as 5 pg/mL of BoNT/A in skim milk (Christian, Suryadi, and Shine, 2010). 
Other peptide substrates: VAMPtide and SYNTAXtide, useful for their cognate BoNTs have 
been developed. The levels of substrate cleavage correlate well with toxin activity. 

Other investigators have looked for other indications of substrate cleavage by BoNTs. For 
instance, Nuss and colleagues generated antibodies that specifically recognize the full-
length version of human SNAP25 and not the cleaved form (Nuss et al, 2010). Use of this 
antibody to confirm the absence of toxin activity (by detecting only the intact, full length 
substrate) might be useful to confirm the absence of bioactive forms of the toxin. 

Other activity-based approaches have used physical methods such as surface plasmon 
resonance to detect cleavage of substrates. For instance, Ferraci and colleagues have 
demonstrated that cleavage of the BoNT/B substrate VAMP2, a membrane SNARE protein 
associated with synaptic vesicles, can be measured using real-time surface plasmon 
resonance; vesicle capture is detected by specific antibodies coupled to microchips (Ferracci 
et al., 2010). This assay is functional in low ionic strength buffers and stable over a wide 
range of pH values (5.5-9.0). Cleavage of VAMP2 was detected within 10 minutes with 2 pM 
of native BoNT/B holotoxin. Contamination of liquid food products such as carrot juice, 
apple juice, and milk with low picomolar amounts of BoNT/B toxin is revealed within 3 
hours. BoNT/B activity was detected in sera samples from botulism patients but not in 
healthy patients or in patients with other neurological diseases. 

4.4.1 Cell-based assays and their possible use in detecting food contamination 

Cell-based assays measure BoNT receptor biding, translocation and enzymatic activity and 
can be viable alternatives to the mouse bioassay. A number of different neuronal and non-
neuronal derived cell lines have been generated for use in BoNT assays. These include: rat 
spinal cord cells (Pellett et al., 2007); chick embryo neuronal cells (Stahl et al., 2007); 
neuroblastoma cells N2A (Eubanks et al., 2007); and BE(2)-M17 cells (Hale et al., 2011). The 
read-out for most of the cell-based assays for detection of BoNT/A is the cleavage of SNAP-
25. Antibodies for SNAP-25 allow immunoblot detection of cleavage products, specifically 
detecting a decrease in size of endogenous SNAP-25 protein. 
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Investigators continue to examine different parameters in order to develop a more robust 

cell-based assay. The U.S. Food and Drug Administration recently approved a cell-based 

assay developed by Allergan for use as possible replacement of the mouse bioassay. Details 

of the assay have yet to be published. Cell -based assays may yet prove valuable for toxin 

detection in food. 

4.5 Combining assay methods to increase detection sensitivity 

Detection methods can exploit the power of sensitive antibodies for enrichment or sample 

preparation, as well as the signal amplification ability of enzymatic assays. Two recent 

approaches are highlighted below. 

4.5.1 ALISSA (assay with a large immunosorbent surface area) 

The ALISSA utilizes a two-step approach; first, an antibody-mediated step concentrates 

toxin onto a large bead surface. Captured toxin molecules are then subjected to a SNAPtide 

protease assay (Bagramyan et al., 2008). When compared to other established methods for 

toxin detection in food matrices, the ALISSA assay can detect toxin concentrations as low as 

50 fg/mL, more sensitive than the mouse bioassay or either immunoassay or SNAPtide 

assay alone. The use of this method to evaluate a number of different food matrices suggests 

that it may be useful in food contamination studies. 

4.5.2 ENDOPEP-MS: antibodies, activity assays, and mass spectrometry 

The ENDOPEP-MS method uses antibodies to concentrate and extract BoNT serotypes A, B, 

E, and F from test samples. The concentrated toxins are then subjected to an endopeptidase 

activity-based assay to generate target cleavage products. Finally, mass spectrometry is used 

to identify cleavage target products (Kalb et al., 2005; Kalb et al., 2006). This approach has 

been successful in identifying BoNT serotypes A, B, E, and F in a variety of food and clinical 

sample matrices with sub-mouse bioassay sensitivities. To advance this technique even 

further, a single, high-affinity mAb (4E17.1) that can simultaneous identify BoNT serotypes 

A, B, E and F has been developed (Kalb et al., 2010). The use of this mAb reduced assay time 

while maintaining assay sensitivity. The use of mass spectrometry can give fast and 

definitive results. With the future development of low cost equipment, this method may be 

more readily available to investigators. 

5. Conclusion 

Detection of BoNT presents a unique set of challenges. The high toxicity of BoNT requires 

detection methods capable of toxin measurement in the low to sub pg/mL range. PCR 

methods can readily detect the presence of low levels of C. botulinum DNA but do not detect 

the presence or absence of the toxin. In many cases, such as blood samples, only toxin may 

be present. Current methods for toxin detection rely on 1) the gold standard mouse 

bioassay, or 2) in vitro tests such as molecular tests, immunoassays and/or activity-based 

assays. Recent improvements in the generation of high-affinity mAbs have resulted in 

immunoassays with sensitivities equal to or lower than the mouse bioassay. However these 

tests generally do not distinguish active from inactive toxin. Activity-based assays can detect 
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active toxin but generally have poorer detection limits than immunoassays. New assays 

must also be carefully validated in individual food matrices or for as many toxin subtypes as 

possible, in order to establish assay performance standards. With refinement of the methods 

described above, the prospect of an assay that is sensitive, cost effective, and fast could be 

possible for use in food or other biological samples. Furthermore, these new strategies for 

assay development can easily be extended to other toxins and pathogens.  
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