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1. Introduction 

Synthetic aperture radar interferometry (InSAR) is an important remote sensing technique 
to retrieve the terrain digital elevation model (DEM)[1][2]. Image coregistration, InSAR 
interferometric phase estimation (or noise filtering) and interferometric phase 
unwrapping[3][4][5][6] are three key processing procedures of InSAR. It is well known that 
the performance of interferometric phase estimation suffers seriously from poor image 
coregistration.  

Image coregistration is an important preprocessing operation that aligns the pixels of one 
image to the corresponding pixels of another image. A review of recent as well as classic 
image registration methods can be found in Ref.[7]. Mutual information used for the 
registration of remote sensing imagery are presented in the literature[8]. In literature[9], the 
feature-based registration methods are presented. A new direct Fourier-transform-based 
algorithm for subpixel registration is proposed in Ref.[10]. In Ref.[11], a geometrical 
approach for image registration of SAR images is proposed, and the algorithm has been 
tested on several real data. A image registration method based on isolated point scatterers is 
proposed in Ref.[12].  

Almost all the conventional InSAR interferometric phase estimation methods are based on 

interferogram filtering[13][14][15][16][17][18], such as pivoting mean filtering[13], pivoting 

median filtering[14], adaptive phase noise filtering[15], and adaptive contoured window 

filtering[18]. However, when the quality of an interferogram is very poor due to a large 

coregistration error, it is very difficult for these methods to retrieve the true terrain 

interferometric phases. In fact, the interferometric phases are random in nature with their 

variances being inversely proportional to the correlation coefficients between the 

corresponding pixel pairs of the two coregistered SAR images[2]. Therefore, the terrain 

interferometric phases should be estimated statistically. 

In this chapter, the interferometric phase estimation method based on subspace projection 
and its modified version were proposed. Theoretical analysis and computer simulation 
results show that the methods can provide accurate estimation of the terrain interferometric 
phase (interferogram) even if the coregistration error reaches one pixel. The remainder of 
this chapter is organized as follows. Section 2 presents the signal model of a single pixel pair 
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and the problem formulation. In Section 3, we discuss the interferometric phase estimation 
method based on subspace projection. In Section 4, the modified interferometric phase 
estimation method via subspace projection is presented in details. Finally, numerical and 
experemental results are presented in Section 5. Section 6 concludes the whole chapter. 

2. Data model and problem formulation 

Assuming that the SAR images are accurately coregistered and the interferometric phases 

are flattened with a zero-height reference plane surface. The complex data vector, denoted 

as ( )is , of a pixel pair i  (corresponding to the same ground area) of the coregistered SAR 

images can be formulated as follows[19], 

 1 2 1 2( ) [ ( ), ( )] [ ( ), ( )] ( ) ( ) ( )i ii s i s i ( ) x i x i (i) i i      s a n a x n     (1) 

where ( ) [1, ]ij T
i e  a  is the spatial steering vector (i.e., the array steering vector) of the 

pixel i , superscript T  denotes the vector transpose operation, i  is the terrain 

interferometric phase to be estimated,   denotes the Hadamard product, ( )ix  is the 

complex magnitude vector (i.e., complex reflectivity vector of scene received by the 

satellites) of the pixel i , and ( )in  is the additive noise term. The complex data vector ( )is  

can be modeled as a joint complex circular Gaussian random vector with zero-mean and the 

corresponding covariance matrix ( )s iC  is given by 
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where ( )isR  is called the correlation coefficient matrix, I  is a 22 identity matrix, ( )mnr i  

( 0 ( ) 1mnr i  , 1,2n  , and 1,2m  ) are the correlation coefficients between the satellites m  

and n , {}E  denotes the statistical expectation, superscript H  denotes vector conjugate-

transpose, 2( )s i  is the echo power of the pixel i  and 2
n  is the noise power. In order to 

simplify the mathematical expressions, the denotation i  (denoting the pixel) in the right 

side of the following expressions is omitted. In practice, the statistical covariance matrix of 

(2) can be adaptively estimated using the sample covariance matrix.  

If the SAR images are accurately coregistered and the cross-correlation coefficients (i.e., the 

nondiagonal elements) of ( )isR  are large enough, the number of the principal eigenvalues 

of the covariance matrix ( )s iC  is one; i.e., the dimensions of the signal subspace and the 

noise subspace are both one (in the absence of the layover). In this case, the eigen-

decomposition of the covariance matrix ( )s iC  is as follows: 

 2 2( ) ( )( ( ) )( ( ) )H H
rs n i rs i rs n n ni       sC a ǃ a ǃ ǃ ǃ      (4) 
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where rs  and rsǃ  are the principal eigenvalue and the corresponding eigenvector (i.e., the 

signal eigenvector) of ( )isR , respectively, and nǃ  is the noise eigenvector corresponding to 

the insignificant eigenvalue of ( )s iC . From (4) we can note that ( ( ) )i rsa ǃ is in the signal 

subspace, nǃ  is in the noise subspace, and ( ( ) )i rsa ǃ  are orthogonal to nǃ , which is used 

to estimate the interferometric phase i .  

The definition of cost function is, 

 1 ( ( ) ) ( ( ) )H H
i rs n n i rsJ   a ǃ ǃ ǃ a ǃ            (5) 

The minimization of 1J  can provide the optimum estimate of the interferometric phase i . 

The eigenvalues of Cs(i) result in a low dispersion due to the increase of the coregistration 
error. Actually, it is induced by the increase of noise eigenvalue, i.e., the signal component 
spreads into the noise space. Moreover, the 2-dimensional space will be fully occupied by 
signal component with a worse coregistration error of one pixel. At this instant, the noise 
eigenvalue is almost equal to the bigger one. The noise subspace dimension becomes zero. 
The degree of the signal component spreading to the noise subspace is smaller, the 
estimation of the InSAR interferometric phase is better(the subspace projection technique is 
used to estimate the InSAR interferometric phase ). On the contrary, the degree of the signal 
component spreading to the noise subspace is larger, the estimation of the InSAR 
interferometric phase is worse. The conclusions obtained from the preceding analysis are 
briefly summarized as follows: the degree of the signal component spreading to the noise 
subspace becomes larger and larger as the coregistration error increases when the example 
of formula (1) is used to build the data vector. In other words, the degree of dispersion is 
heavily impacted by the coregistration error. The simulation result shown in Fig.1 
demonstrates the above conclusions. 

 

Fig. 1. Eigenspectra of the covariance matrix for accurate coregistration, coregistration errors 
of 0.5 and 1 pixels, respectively. 

The cost function given by (5) can be used to estimate the InSAR interferometric phase when 

the SAR images are accurately coregistered. However, in the presence of coregistration 
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error, the cross-correlation coefficients are smaller than 1 and the noise eigenvalue becomes 

large. In the completely misregistered case, the rank of ( )isR  becomes 2, which means that 

the noise subspace vanishes in the eigenspace of ( )s iC . So the cost function given by (5) can 

not be used to estimate the InSAR interferometric phase in the presence of coregistration 

error. 

3. Interferometric phase estimation via subspace projection 

Considering the difficulties in accurate coregistration, we use not only the corresponding 

pixel pair i  of the coarsely coregistered SAR image pair (as given in (1)) but also the 

neighboring pixel pairs centered on the pixel pair i  to jointly construct the data vector. An 

example of the construction method for the data vector is shown in Fig.2, where a circle 

represents a SAR image pixel and i  denotes the centric pixel pair (i.e., the desired pixel pair 

whose interferometric phase is to be estimated). We call this extended data vector ( )isi  the 

joint data vector. The number of the neighboring pixel pairs to construct the joint data vector 

is 8 as shown in Fig.2. 

 

Fig.2. A construction method for the joint data vector. 

The joint data vector ( )isi  as shown in Fig.2 can be written as: 

  ( ) [ ( 4) , ( 3) , , ( ) , , ( 4) ]T T T T Ti i i i i   si s s s s        (6) 

The corresponding joint covariance matrix is given by 

 
2

4 3 4 4 3 4

( ) { ( ) ( )}

( , , , ) ( , , , ) ( )

H

H
i i i i i i n

i E i i

i           



 
si

si

C si si

ǂ ǂ R I  
    (7) 

where 4 3 4 4 3 4( , , , ) [ ( ), ( ), , ( )]T T T T
i i i i i i          ǂ a a a   and ( )isiR  are referred to as the 

joint steering vector and the joint correlation function matrix of the pixel pair i , respectively. 

In fact, most of the nature terrain can be approximated by a local plane. After we estimate the 

local slopes and correct the neighboring pixels, we can assume that the neighboring pixels 

have the almost identical terrain height[20]. That is, the spatial steering vectors of the pixel 

pairs in ( )isi  are assumed to be identical, i.e., 4( )i a ＝ 3( )i a ＝＝ 4( ) [1, ]ij T
i e   a  and 

4 3 4( , , , ) [ ( ), ( ), , ( )] [1, ,1, ]i ij jT T T T T
i i i i i i e e          ǂ a a a   . The simplified joint 
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steering vector of the pixel i  is denoted by ( ) [ ( ), ( ), , ( )]T T T T
i i i i   ai a a a  (18×1). 

Substituting ( )iai  for 4 3 4( , , , )i i i    ǂ   in (7), we have, 

 

2

18
( ) ( ) ( ) ( ) ( )2

1 1

18
( ) ( ) ( ) ( ) ( )2 2

1 1

( ) ( ) ( ) ( )

( )( ( ) )( ( ) )

H
i i n

K K
k k k H l l H

ncsi csi csi nsi nsi
k l

K K
k k k l l HH

n i i nrsi rsi rsi nsi nsi
k l

i i

EVD

  

 

    



 


 

 



  

 

 

si siC ai ai R I

ǃ ǃ ǃ ǃ

ai ǃ ai ǃ ǃ ǃ



 

    (8) 

where K  is the number of the principal eigenvalues of ( )isiC , ( )k
csiǃ Ȑ 1,2, ,k K  ȑ are the 

eigenvectors corresponding to the principal eigenvalues ( )k
csi  of ( )isiC , ( )k

rsiǃ  ( 1,2, ,k K  ) 

are the eigenvectors corresponding to the principal eigenvalues ( )k
rsi  of ( )isiR . 2

n   and  
( )l
nsiǃ  ( 1,2, ,18l K  ) are the noise eigenvalue and the corresponding eigenvectors of 

( )isiC ,respectively. From (8) we can note that ( )( ) k
i rsiai ǃ  ( 1,2, ,k K  ) are in the signal 

subspace of ( )isiC , ( )l
nsiǃ  ( 1,2, ,18l K  ) are in the noise subspace of ( )isiC , and 

( )( ) k
i rsiai ǃ  are orthogonal to ( )l

nsiǃ . 

If the SAR images are accurately coregistered, the structure form of the joint correlation 

function matrix ( )isiR  are given by 
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where ( )msR  and 2( )s m  ( 4, 3, , 4m i i i    ) in the diagonal of the ( )isiR  are the 

coherence coefficient matrix (given by (3)) and the echo power of the pixel pair m , 

respectively. We can notice from (9) that when the SAR images are accurately coregistered, 

only the elements in ( )msR  are nonzero, while all the other elements of ( )isiR  (or ( )isiC ) 

are zero (assuming the complex reflectivity is independent from pixel to pixel and 

neglecting the noise). In other words, ( )isiR  is a block diagonal matrix. However, if the SAR 

images are not accurately coregistered, the nonzero elements in the submatrices ( )msR  are 

diffused to other non-diagonal element positions of ( )isiR , as shown in Fig.3(b) and Fig.3(c). 

The dimensions of the joint correlation function matrix ( )isiR  are 18×18. Fig.3(a) is the 

structure of ( )isiR  for accuracy coregistration; Fig.3(b) is the structure of ( )isiR  for the 

coregistration error of 0.5 pixel; Fig.3(c) is the structure of ( )isiR  for the coregistration error 

of 1 pixel. From Fig.3 we can see that when the SAR images are not accurately coregistered, 
the same imaged ground area can be coregistered to different pixel positions; thus its 

correlation information appears in other non-diagonal element position of ( )isiR . The gray 

level denotes the magnitude of each element with the white strongest and black zero. 
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              (a)       (b)                                                (c) 

Fig. 3. Structures of joint correlation function matrix for different coregistration errors: (a) 
accurate coregistration; (b) coregistration error of 0.5 pixels; (c) coregistration error of 1 
pixel.  

Comparing Fig.3 with (4), the conventional estimation approaches based on the single pixel 
pair will be not feasible if the coregistration error is very large, for example, larger than 0.5 
pixel, while our approach can still achieve the optimum estimation due to the use of 
multiple neighboring pixel pairs. 

From the literature[21], we can know that: for the accurate coregistration, the dimensions of 

the signal subspace and the noise subspace of the joint covariance matrix ( )isiC  ( 18 18 ) 

are both 9. For the coregistration error of 1 pixel, the dimensions of the signal subspace and 

the noise subspace of the joint covariance matrix ( )isiC  are changed to 12 and 6, 

respectively. The method can also provide accurate estimation of the terrain interferometric 

phase even if the coregistration error reaches one pixel only by changing the dimension of 

the noise subspace from 9 to 6. 

As mentioned above, the signal subspace ( )( ) k
i rsiai ǃ  ( 1,2, ,k K  ) is orthogonal to the 

noise subspace (1) (2) ( ){ , , }M K
nsi nsi nsispan cN ǃ ǃ ǃ , which is used to estimate the interferometric 

phase i .  

   The definition of cost function is, 

 ( ) ( ) ( ) ( )
2

1 1

( ( ) ) ( ( ) )
K M K

k l l H kH
i irsi nsi nsi rsi

k l

J  


 
  ai ǃ ǃ ǃ ai ǃ     (10) 

The minimization of 2J  can provide the optimum estimate of the interferometric phase i . 

Fig.s 4 shows the simulation results for various coregistration errors by the subspace 
projection method. Comparing these figures, we can observe that the large coregistration 
error has almost no effect on the interferograms obtained by the proposed method. We can 
see that the subspace projection method in this chapter is robust to large coregistration 
errors (up to one pixel). 
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             (a)                                                  (b)                                                   (c) 

Fig. 4. The interferograms obtained by the subspace projection method for the accurate 
coregistration (a), the coregistration error of 0.5 pixels (b) and the coregistration error of one 
pixel (c). 

4. Modified interferometric phase estimation via subspace projection 

The joint subspace projection method mentioned above employs the projection of the joint 

signal subspace onto the corresponding joint noise subspace which is obtained from the 

eigendecomposition of the joint covariance matrix to estimate the terrain interferometric 

phase, and takes advantage of the coherence information of the neighboring pixel pairs to 

auto-coregister the SAR images, where the phase noise is reduced simultaneously. 

However, the noise subspace dimension of the covariance matrix changes with the 

coregistration error. For accurate estimating the InSAR interferometric phase, the noise 

subspace dimension of the covariance matrix must be known, and the performance of the 

method (i.e. subspace projection method) degrades when the noise subspace dimension is 

not estimated correctly. In this chapter, an modified joint subspace projection method for 

InSAR interferometric phase estimation is proposed. In this method, the benefit from the 

new formulation of joint data vector is that the noise subspace dimension of the covariance 

matrix is not affected by the coregistration error (i.e., the noise subspace dimension of the 

corresponding covariance matrix with the coregistration error  (0 1)  pixel is the same 

as that of the covariance matrix with accurate coregistration). So the method does not need 

to calculate the noise subspace dimension before estimating the InSAR interferometric 

phase. 

4.1 Data modeling of the modified method 

For avoiding the trouble of calculating the noise subspace dimension before estimating the 
InSAR interferometric phase, the new formulation of joint data vector is used in the 

proposed method. An example to construct the new joint data vector ( )isi is shown in Fig.5. 

The joint data vector ( )isi shown in Fig.5 can be written as 

 1 2 2 2 2 1 2 2 2 2

1 2 2 2 2 1 2 2 2 2

( ) [ ( 1), ( 6), ( 5), ( 2), ( 1), ( ), ( 4), ( 3), ( ), ( 1),

( 3), ( 2), ( 3), ( 6), ( 7), ( 4), ( 4), ( 5), ( 8), ( 9)]T

i s i s i s i s i s i s i s i s i s i s i

s i s i s i s i s i s i s i s i s i s i

        

         

si
   (11) 

The corresponding covariance matrix ( )isiC  is given by  
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( ) { ( ) ( )}

( ) ( ) ( )
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H
i i n

i E i i

i  



 
si
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C si si

ai ai R I
        (12) 

where 

( ) 1, , , , ,1, , , , ,1, , , , ,1, , , ,i i i i i i i i i i i i i i i i
Tj j j j j j j j j j j j j j j j

i e e e e e e e e e e e e e e e e                   ai and

( )isiR  are referred to as the joint generalized steering vector and the joint correlation 

function matrix of the pixel pair i, respectively. The deduction of equation (12) is presented 
in appendix A. 

1SAR 2SAR

i1i 2i 1i

6i 5i 4i 3i

2i 3i 4i 5i

6i 7i  8i  9i 

1i i

3i 4i

6i1i  5i  2i i1i  3i1i i3i4i 4i7i 6i3i2i 9i8i5i4i
 

Fig. 5. Formulation of the joint data vector. 

In the following the noise subspace dimension of the joint covariance matrix ( )isiC  for 

different coregistration errors are discussed. 

a. Accurate coregistration. 

For the accurate coregistration, the joint data vector, ( )isi , that is shown in Fig.6, where 

circles represent SAR image pixels pair whose interferometric phase has to be estimated.  

We can rearrange the elements (pixels) of ( )isi to obtain '( )isi as shown in Fig.6, which does 

not change the eigenvalues of the corresponding covariance matrix[21]. The joint data 

vector '( )isi , shown in Fig.6, can be written as 

 
'

1 2 1 2 1 2 1 2 2 2

2 2 2 2 2 2 2 2 2 2

( ) [ ( 1), ( 1), ( ), ( ), ( 3), ( 3), ( 4), ( 4), ( 6), ( 5),

( 2), ( 4), ( 3), ( 1), ( 2), ( 6), ( 7), ( 5), ( 8), ( 9)]T

i s i s i s i s i s i s i s i s i s i s i

s i s i s i s i s i s i s i s i s i s i

        

         

si
  (13) 

The corresponding covariance matrix ( )isi'C ( 20 20 ) is given by  

 2

( ) { '( ) '( ) }

( ) ( ) ( )

H

H
i i n

i E i i
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

 
si'

si'

C si si

ai ai R I        (14) 
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( )i si

1SAR 2SAR

i1i 2i 1i
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2i 3i 4i 5i

6i 7i  8i  9i 

1i i

3i 4i

6i1i  5i  2i i1i  3i1i i3i4i 4i7i6i3i2i 9i8i5i4i

6i1i  5i  2ii1i  3i 1i i 3i4i4i 7i6i3i 2i 9i8i5i4i'( )i si
 

Fig. 6. Joint data vector for the accurate coregistration.  
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   (15) 

From (14) we can see that the number of the principal eigenvalues of ( )isi'C  is 16 Ref.[21].  

The noise subspace dimension of the covariance matrix ( )isi'C ( 20 20 ) is 4, thus, the noise 
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subspace dimension of the covariance matrix ( )isiC estimated from the joint data 

vector ( )isi is 4 Ref.[21]. 

b. Coregistration error of one pixel. 

When the azimuth coregistration error is one pixel and its direction is upwards (i.e., the 
pixel of the image from the second satellite is shifted upwards compared to the pixel in the 

first satellite image), the joint data vector, ( )isi , is shown in Fig.7. 

We can rearrange the elements (pixels) of ( )isi to obtain '( )isi as shown in Fig.7, which does 

not change the eigenvalues of the corresponding covariance matrix[21]. The joint data 

vector '( )isi , shown in Fig.7, can be written as 

 
'

1 2 1 2 1 2 1 2 2 2

2 2 2 2 2 2 2 2 2 2

( ) [ ( 1), ( 1), ( ), ( ), ( 3), ( 3), ( 4), ( 4), ( 2), ( 2),

( 1), ( 5), ( 6), ( 7), ( 10), ( 11), ( 8), ( 9), ( 12), ( 13)]T

i s i s i s i s i s i s i s i s i s i s i

s i s i s i s i s i s i s i s i s i s i

        

         

si  (16) 
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Fig. 7. Joint data vector for the coregistration error of one pixel.  

The corresponding covariance matrix ( )isi'C  is given by  

 
2
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H
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i E i i
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   (17) 
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    (18) 

From the above discussion, we know the noise subspace dimension of the covariance matrix 

( )isiC estimated from the joint data vector ( )isi is 4. 

c. Coregistration error of  (0 1)   pixel. 

When the azimuth coregistration error is  (0 1)   pixel and its direction is upwards 

(i.e., the pixel of the image from the second satellite is shifted upwards compared to the 

pixel in the first satellite image), the joint data vector, ( )isi ,is shown in Fig.8(a). 

From the literature[21], we can know that the eigenspectrum (i.e., the distribution of 
eigenvalues) of a covariance matrix is invariant no matter how the elements of the 

corresponding data vector are permuted. So we can rearrange the elements of ( )isi to obtain 

( )ijs as shown in Fig.8(b) [21], which does not change the eigenvalues of the corresponding 

covariance matrix. The joint data vector ( )ijs , shown in Fig.8(b), can be written as 

 
1 2 1 2 1 2 1 2 2 2

2 2 2 2 2 2 2 2 2 2

( ) [ ( 1), ( 1), ( ), ( ), ( 3), ( 3), ( 4), ( 4), ( 2), ( 2),

( 1), ( 5), ( 6), ( 7), ( ), ( ), ( 8), ( 9), ( ), ( )]T

i s i s i s i s i s i s i s i s i s i s i

s i s i s i s i s A s B s i s i s C s D

        

     

js
  (19) 

The corresponding covariance matrix ( )ijsC  is given by  
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    (20) 
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Fig. 8. Joint data vector for the coregistration error of  pixels.  
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    (21) 

We know the noise subspace dimension of the covariance matrix ( )ijsC  ( 20 20 ) is 4, thus, 

the noise subspace dimension of the covariance matrix ( )isiC estimated from the joint data 

vector ( )isi  is also 4[21]. 

From the results derived above, we can see that: the new formulation of joint data vector 

proposed in this chapter has the advantage that the noise subspace dimension of the 

corresponding covariance matrix is independent of the coregistration error. That is to say, 

the noise subspace dimension of the corresponding covariance matrix with the 

coregistration error  (0 1)   pixel is the same as that of the accurate covariance matrix. 

Therefore, it is not required to calculate the noise subspace dimension, thus avoiding the 

trouble of calculating the noise subspace dimension before estimating the InSAR 

interferometric phase. 

4.2 Summary of the modified method 

In this section, we give the detailed steps for the modified interferometric phase estimation 

method based on subspace projection. 

Step 1. Coregister SAR images. The SAR images are coarsely coregistered using the 
crosscorrelation information of the SAR image intensity or other strategies[1][2] 
after SAR imaging of the echoes acquired by each satellite. However, the allowable 
coregistration error of the proposed method can be very large (such as one pixel), 
which is useful in practice. The low coregistration accuracy requirement can greatly 
mitigate the complexity in image coregistration processing. 
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Step 2. Estimate the covariance matrix. The covariance matrix ( )isiC can be estimated by 

using joint data vector ( )isi  shown in Fig.5. Under the assumption that the 

neighboring pixels have the identical terrain height and the complex reflectivity is 

independent from pixel to pixel[20][21], the covariance matrix ( )isiC  can be 

estimated by its sample covariance matrix ˆ ( )isiC , i.e., 

 
1ˆ ( ) ( ) ( )

2 1

L
H

k L

i i k i k
K 

  
 siC si si        (22) 

where 2 1L   is the number of i.i.d. samples from the neighboring pixel pairs.   

Remark 1: It is easy to obtain enough i.i.d. samples for locally flat terrains. However, an 

imaging terrain in practice can not be relied upon to be so flat that the adjacent pixels have 

the identical terrain height. If the local terrain slope is available in advance or can be 

estimated[20], the steering vector (i.e., the interferometric phase) variation due to the 

different terrain height from pixel to pixel can be compensated, which greatly enlarges the 

size of the sample window. 

Step 3. Subspace estimation by Eigendecomposing. The estimated covariance matrix ˆ ( )isiC  

of the dimensions 20 20  can be eigendecomposed into  

 
20

( ) ( ) ( ) ( ) ( ) ( )

1 1

ˆ ˆ ˆ ˆˆ ˆ ˆ( )
K K

m m m H l K l l H
csi csi csi csi nsi nsi

m l

i  




 
  siC ǃ ǃ ǃ ǃ     (23) 

where K  is the number of the principal eigenvalues of 
ˆ ( )isiC , (1) (2) ( ) ( 1) (20)ˆ ˆ ˆ ˆ ˆK K

csi csi csi csi csi            , eigenvectors ( )ˆ l
nsiǃ  ( 1,2, ,20l K  ) 

corresponding to the smaller eigenvalues ( )ˆ l K
csi  ( 1,2, ,20l K  ) span the noise subspace, 

i.e, 

  (1) (2) (20 )ˆ ˆ ˆ, , , K
nsi nsi nsispan cN ǃ ǃ ǃ     (24) 

whereas the larger eigenvectors ( )ˆ m
csiǃ ( 1,2, ,m K  ) corresponding to the principal 

eigenvalues ( )ˆ m
csi ( 1,2, ,m K  ) span the signal subspace, i.e.,  

  (1) (2) ( )ˆ ˆ ˆ, , , K
csi csi csispancS ǃ ǃ ǃ     (25) 

The noise power is often estimated by 

 
20

( )2

1

1 ˆˆ
20

K
l K

n csi
lK

 







      (26) 

The joint correlation function matrix ˆ ( )isiR  can be approximated as the amplitude (i.e., the 

absolute value) of the estimated covariance matrix ˆ ( )isiC [20], i.e.,  

 2ˆˆ ˆ( ) ( ) ni i  si siR C I           (27) 
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By eigen-decomposing ˆ ( )isiR , we obtain K  principal eigenvectors ( )ˆ m
rsiǃ Ȑ 1,2, ,m K  ȑ. 

As shown by (8), the same signal subspace spanned by the principal eigenvectors 
( )ˆ m
csiǃ Ȑ 1,2, ,m K  ȑof ˆ ( )isiC  can be spanned by the Hadamard product vectors 

( )ˆ( ) m
i rsiai ǃ Ȑ 1,2, ,m K  ȑ, i.e.,  

  (1) (2) ( )ˆ ˆ ˆ( ) , ( ) , , ( ) K
i i irsi rsi rsispan   cS ai ǃ ai ǃ ai ǃ        (28) 

Step 4. Projection of signal subspace onto noise subspace. The projection of the signal 
subspace onto the corresponding noise subspace is performed as follows: 

 
20

( ) ( ) ( ) ( )
3

1 1

ˆ ˆ ˆ ˆ( ( ) ) ( ( ) )
K K

m l l H mH
i irsi nsi nsi rsi

m l

J  


 

   ai ǃ ǃ ǃ ai ǃ           (29) 

where 

 ( ) 1, , , , ,1, , , , ,1, , , , ,1, , , ,i i i i i i i i i i i i i i i i
Tj j j j j j j j j j j j j j j j

i e e e e e e e e e e e e e e e e                   ai  (30)                          

The cost function given by (29) is used to estimate the terrain interferometric phase i . And 

the minimization of 3J can provide the optimum estimate of the interferometric phase i , 

i.e., ˆ
i i  . 

Remark 2: The computational burden will be high if the minimization of 3J  is obtained via 

search of i  in the principal phase interval [ , ]   . To reduce the computational burden, a 

fast algorithm to compute the minimization of 3J  is developed in Appendix B, where the 

closed-form solution to the estimate of i  is directly obtained by using the fast algorithm.  

Using the above four steps, the terrain interferogram can be recovered after the pixel pairs of 
the SAR images are processed separately. 

5. Numerical and experemental results 

In this section we demonstrate the robustness of the modified method via subspace 
projection to coregistration errors by using simulated data and real data. 

The simulated data are described as follows. We assume there are two formation-flying 

satellites in the cartwheel formation, and we select one orbit position for simulation, with an 

effective cross-track baseline of 281.46 m, an orbit height of 750 kilometers and an incidence 

angle of 45. We use a two-dimensional window to simulate the terrain and use the 

statistical model to generate the complex SAR image pairs[23]. The signal-to-noise ratio 

(SNR) of the SAR images is 18 dB.  

Here, the number of the samples to estimate the covariance matrix is 7 (in range)  7 (in 
azimuth)=49.  

Fig.s 9-12 compare the simulation results for various techniques and coregistration errors. 
Comparing Fig. 9,10 ,11and 12, we can observe that the large coregistration error heavily 
affects the interferograms obtained by pivoting median filtering, pivoting mean filtering and 
adaptive contoured window filtering. On the contrary, the large coregistration error has 
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almost no effect on the interferograms obtained by the modified method. We can see that 
the modified method in this chapter is robust to large coregistration errors (up to one pixel). 

 
             (a)              (b)                      (c) 

Fig. 9. The interferograms obtained by the pivoting median filtering for the accurate 
coregistration (a), the coregistration error of 0.5 pixels (b) and the coregistration error of one 
pixel (c). 

 

 
             (a)         (b)               (c) 

Fig. 10. The interferograms obtained by the pivoting mean filtering for the accurate 
coregistration (a), the coregistration error of 0.5 pixels (b) and the coregistration error of one 
pixel (c). 
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              (a)       (b)               (c) 

Fig. 11. The interferograms obtained by the adaptive contoured window filtering for the 
accurate coregistration (a), the coregistration error of 0.5 pixels (b) and the coregistration 
error of one pixel (c). 
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Fig. 12. The interferograms obtained by the modified method for the accurate coregistration 
(a), the coregistration error of 0.5 pixels (b) and the coregistration error of one pixel (c).  

In the following, we will verify the validity of the modified method with the ERS1/ERS2 
(European Remote Sensing 1 and 2 tandem satellites) real data. 

Fig. 13 shows the interferograms generated from the ERS1/ERS2 real data. Fig.13(a) is the 
interferogram obtained by the conventional processing, and Fig.13(b) is that obtained by the 
modified method proposed in this chapter. 

 
           (a)                    (b) 

Fig. 13. The interferograms obtained by (a) the conventional processing, and (b) the 
modified method for the ERS1/ ERS2 real data. 

6. Conclusions 

In this chapter, the interferometric phase estimation method based on subspace projection 
and its modified method were presented. The interferometric phase estimation methods 
based on joint subspace projection can provide accurate estimate of the terrain 
interferometric phase (interferogram) even if the coregistration error reaches one pixel. 
Benefiting from the new formulation of joint data vector, the modified method does not 
need to calculate the noise subspace dimension, thus avoiding the trouble of calculating the 
noise subspace dimension before estimating the InSAR interferometric phase. A fast 
algorithm is developed to implement the modified method, which can significantly reduce 
the computational burden. Theoretical analysis and simulations demonstrate the efficiency 
of the proposed new algorithms. 

www.intechopen.com



 
Recent Interferometry Applications in Topography and Astronomy 

 

128 

7. Acknowledgement 

This work is supported in part by the National Natural Science Foundations of China under 
grant 60736009, 61071194 and 60979002, by the Fund of Civil Aviation University of China 
under grant ZXH2009D018 and 2011kyE06. 

8. Appendix A 

8.1 Proof of equation (12) 

For easy discussion, we assume that the structure of joint data vector ( )iss is shown in 

Fig.A.1, where circles represent SAR image pixels and i denotes the desired pixel pair 

whose interferometric phase is to be estimated. 

 
 
 
 
 
 

1SAR 2SAR

i 1i

4i 3i

i

i 1i i3i4i( )i ss
 

 
 
 
 

Fig. A.1. Formulation of the joint data vector ( )iss . 

The joint data vector ( )iss , shown in Fig.A.1, can be written as 

 1 2 2 2 2( ) [ ( ), ( 4), ( 3), ( ), ( 1)]Ti s i s i s i s i s i   ss         (A.1) 

The corresponding covariance matrix ( )issC  is given by 
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where  
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So the covariance matrix ( )isiC  of the joint data vector ( )isi , shown in Fig.5, can be given by 
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9. Appendix B 

9.1 Fast algorithm for optimal interferometric phase estimation 

If U , V and W are arbitrary complex column vectors, then[20] 
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Using the equation (B.1), we can rewrite the cost function of (29) as 
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where 
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Let                   
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It can be easily proved that B  is a Hermitian matrix, i.e.,  

 1 1n nb b  ( 2,3,4,5n  )    (B.6) 
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so we can get 
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Using (B.5) and (B.6), the cost function of (B.3) can be rewritten as  
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Obviously, the minimization of 3J  can be obtained for 2i k        ( k  is an integer). 

Since       and i     , thus 
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So the closed-form solution to the estimate of i  is directly obtained by using the fast 

algorithm, which can significantly reduce the computational burden. 
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