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1. Introduction  

Characterization of spatial and temporal changes in the dynamic pattern that arise when a 
wide-area system is subjected to a perturbation becomes a significant problem of great 
theoretical and practical importance. The computation time required to solve large 
analytical models might become prohibitive for practical systems. Thus, to reduce the 
complexity of the problem, several simplifications have been commonly used which may 
result in a poor characterization of global system behaviour. Therefore, a great deal of 
attention has been paid to identify and to characterize oscillatory activity in large 
interconnected systems through use of wide-area monitoring schemes such as global 
positioning systems (GPS) based in multiple phasor measurements units (PMUs) (Messina, 
et al., 2010). When simultaneously measured responses throughout an interconnected 
system are available, modal behaviour should be extracted using correlation techniques 
rather that individual analysis of the system response. This provides a global picture on the 
system behaviour and enables statistical characterization of the observed phenomena. The 
problem of selecting the most significant modes is of considerable interest and it has been 
studied intensively for several researchers (Esquivel & Messina, 2008; Hannachi, et al., 2007; 
Hasselmann, 1988; Holmes, et al., 1996; Kwasniok, 1996, 2007). Statistical models have been 
widely used in many engineering and science applications for the analysis of space-time 
varying system response from measured data (Aubry, et al., 1990; Dankowicz, et al., 1996; 
Delsole, 2001;Lezama et al., 2009; Messina, et al., 2010, 2011; Spletzer, et al., 2010); i.e., 
unsteady fluid flow (Terradas, et al., 2004), turbulence (Hannachi, et al. 2007; Leonardi, et 
al., 2002; Susanto, et al., 1997; Toh, 1987), optimal control (Wallaschek, 1988), structural 
dynamics (Feeny & Kappagantu, 1998; Han & Feeny, 2003; Holmes, et al., 1996; Marrifield & 
Guza,1990; Oey, 2007), heat transfer (Barnett, 1983; Kaihatu, et al., 1997) and system 
identification have been reported (Esquivel, et al., 2009; Feeny, 2008; Hasselmann, 1988; 
Horel, 1984; Kwasniok, 1996, 2007). These methodologies use statistical techniques such as, 
empirical orthogonal function (EOF) (Esquivel & Messina, 2008), principal interaction 
pattern (PIP) (Achatz, et al., 1995), principal oscillation pattern (POP) (Hasselmann, 1988), 
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optimal persistent pattern (OPP) (DelSol, 2001), and the canonical correlation analysis (CCA) 
(Kwasniok, 2007) that capture various forms of spatio-temporal variability. Among other 
approaches, empirical orthogonal functions (EOFs) have been used since the mid-1970s for 
the identification of space-time dynamic systems. More recently, these techniques have 
gained wide popularity in applications related to wide-area data analysis and reduced-order 
modelling of various physical processes or models (Messina, et al. 2010; Spletzer, et al., 
2010). Underlying issues of these techniques, such as the estimation and localization of 
propagating and standing features that may be associated with observed or measured data 
and their applications to space-time varying processes do not seem to be recognized or, at 
least, they have not been reported. This fact motivates the derivation of a model based on 
statistical techniques to identify the behaviour of multivariate processes such as the seismic 
wave propagation components that surge during an earthquake which involve variability 
over both space and time. These processes may contain moving patterns, travelling waves of 
different spatial scales and temporal frequencies that are proposed to identify in our study 
using complex EOF analysis.  

2. Theoretical fundamentals of empirical orthogonal functions 

The conventional analysis of empirical orthogonal functions is primarily a method of 

compressing of time and space variability of a data set into the lower possible number of 

spatial patterns. Each one of these patterns is composed of standing modes of variability and 

modulated by a time function. The conventional formulation of EOF analysis involves a set 

of optimal basis which is forced to approach the original field with modes at infinite 

frequency. In this section is shown that this requirement reduces the ability in the 

conventional method to characterize the travelling and standing features in dynamical 

systems because the spatial variation of the original field are combined with the temporal 

variations. As such, conventional-EOF analysis detects only standing wave components, not 

travelling wave components. The key point to observe is that real-EOF analysis cannot deal 

with propagating features and it only uses spatial correlation of the data set, it is necessary 

to use both spatial and time information in order to identify such features (Esquivel, 2009). 

In this chapter, we extend the conventional empirical orthogonal function analysis to the 

study and detection of propagating features in nonlinear patters such as seismic wave 

propagation components that surge during an earthquake recorded from wide-area 

monitoring schemes such as GPS-based in multiple PMUs, most of the notation used in this 

text is standard, vectorial quantities are denoted by boldface letters and scalar quantities by 

italic letters; others symbols used in the text are too defined. Unlike the real case, complex 

EOF analysis allows compressing the data into the lowest possible number of spatial patters, 

each one composed of modes of variability, which may be either travelling or standing 

modes. The technique allows us to explicitly describe and localize standing and propagating 

oscillations to the leading seismic wave as a number of complex empirical modes. 

In this section, we provide a spatio-temporal decomposition based in the use of time 
synchronized measured data recorded from multiple phasor measurement units (PMUs) 
in dynamical systems to cope with increasing complexity of information in the use of 
wide-area monitoring schemes. The methodology is proposed to identify and extract 
dynamically independent spatio-temporal patterns using a biorthogonal decomposition 
based in the complex EOF analysis and the separability of complex correlation functions 
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considered from a statistical perspective (Aubry, et al., 1990; Dankowicz, et al., 1996; 
Spletzer, et al., 2010). This approach provides an efficient and accurate way to compute 
standing and propagating features of general nonstationary processes identifying 
important information for the analysis of dynamical phenomena such as seismic wave 
components recorded from earthquakes. Moreover, this may lead to greater 
understanding of the oscillatory activity in interconnected systems. The method allows 
the introduction of several measures that define moving features in space-time varying 
fields as: spatial amplitude and phase function, temporal amplitude and phase function, 
spatial and temporal energy, wave number, angular frequency and average phase speed 
(Barnett, 1983; Esquivel & Messina, 2008; Susanto, et al. 1997; Terradas, et al., 2004; 
Hannachi, et al., 2007). The method developed is general and could be applied without 
loss of generality to measured or simulated data. As an illustrative case, the method is 
applied to a synthetic example; additionally, data recorded from GPS-based multiple 
phasor measurements units from a real event of seismic wave components recorded 
during a submarine earthquake are used to study the practical applicability of the method 
to characterize spatio-temporal behaviour in wide-area systems. 

2.1 Theoretical development 

Empirical orthogonal function (EOF) analysis is a procedure for extracting a basis for a 
modal decomposition from an ensemble of signals in multidimensional measurements. A 
very appealing property of the basis is its optimality. Among all possible decompositions of 
a random field, the EOF analysis is the most efficient in the sense that for a given number of 
modes, the projection on the subspace used for modelling the random field will on average 
contain the most energy possible. Although EOF analysis has been regularly applied to non-
linear problems (Marrifield & Guza, 1990; Susanto, et al., 1997; Toh, 1987; Kaihatu, et al., 
1997), it is essential to underline that it is a linear technique and that it is optimal only with 
respect to other linear representations. Empirical orthogonal function analysis, also known 
as proper orthogonal decomposition (POD) and Karhunen-Loève transform was introduced 
by (Kosambi, 1943). It is also worth pointing out that EOF analysis is closely related to 
principal component analysis (PCA) introduced by (Hotelling, 1933). For a detailed 
historical review of POD or PCA, the reader is referred to (Barnett, 1983; Hasselmann, 1988; 
Hostelling, 1933; Horel, 1984; Kosambi, 1943; Toh, 1987). 

Let 

 u(x,t)  (1) 

be a zero mean random field on a domain Ω. In practice, the field is sampled at a finite 
number of pints in time. Then, at time tk, the system displays a snapshot u(x,tk) which is a 
continuous function of x in Ω. The aim of the EOF analysis is to find the most persistent 
structure among the ensemble of N snapshots. More precisely, assume that X(xj,tk), j=1,...,n 
and k=1,...,N denotes a sequence of observations on some domain xєΩ where x is a vector of 
spatial variables, and tk is the time at which the observations are made. The method of EOF 
analysis, both spatial and time-dependent, is a specification of the general theory of 
expansion of random functions (random fields or random processes) in a series of some 
deterministic (nonrandom) functions with random uncorrelated coefficients (Feeny & 
Kappagantu, 1998). The essential idea of the proper orthogonal decomposition is to generate 
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an optimal basis, (x), for the representation of an ensemble of data collected from 
measurements or numerical simulations of a dynamic system as is shown in Fig. 1. 

Given an ensemble of measured data, the data set can be written as the N×n-dimension 
matrix 

 
n

j k

N n N

u x t u x t

x t

u x t u x t

1 1 1

1

( , ) ( , )

( , )

( , ) ( , )

 
   
  

X


  


 (2) 

where typically n≠N, so X is generally rectangular (Messina, et al., 2010). The technique 
yields an orthogonal basis for linear, infinite-dimensional Hilbert space L2([0,1]), that 
maximizes the averaged projection of the response matrix for the representation of the 
ensemble of data that is fully orthogonal, and it is assumed to be normalized, i.e., 

 
j

j

j
x L

j

x t x
   x

x
2

2
2

2
( ) ([0,1])

|( ( , ), ( ))|
max subject to ( ) 1

( )


φ

X φ
φ

φ
 (3) 

where .

 

denotes the modulus, .

 

is the L2-norm and, .

 

implies the use of an average 

operation (Holmes, et al., 1996). The corresponding functional for the constrained 

variational problem is solved and reduced to: 

          x x x dx x x dx
*1 1 * *

0 0
' ' ' 0        u u  (4) 

where the (*) denotes the conjugate transpose (sometimes denoted as Hermitian, H), and the 

(') denotes transpose vector. Thus, if Ǚ*(x)=0, the optimal basis are given by the 

eigenfunctions j(x) of the integral equation, 

        x x x dx x
1 *

0
' ' '   u u  (5) 

whose kernel is the averaged autocorrelation function      x x x x* , 'u u C . Under this 

assumption, the integral (5) can be written as 

    x x C  (6) 

where the resulting autocorrelation matrix C, is real, symmetric, positive and semi-definite 

matrix. Therefore, the optimization problem can be recast as the problem of finding the 

largest eigenvectors, (x), of the equation (6), called empirical orthogonal functions (EOFs); 

its corresponding eigenvalues are real, nonnegative, and ordered so that 

j1 2 , , 0      . This method, also called conventional EOF analysis, cannot be used to 

detect propagation features due to the assumption that each field is represented as a spatial 

fixed pattern of behaviour and lack of phase information, becoming prohibitive to practical 

applications. 

Now, if we assume that Ǚ*(x)≠0, then (4) can be rewritten as 
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            x x x x dx dx x x dx
1 1 1* * * * *

0 0 0
' ' '      u u  (7) 

such that, the inner product     x x* * 0 C , with orthogonal eigenvectors (x), Ǚ(x), 

i.e., 

  
T
i j

i j

i j

0,

,


  
 


 and,  

T
i j

i j

i j

0,

,


  
 


 (8) 

From (4) it can be seen that if there exists an arbitrary variation (spatial), Ǚ*(x)≠0, then the 

original field can be reconstructed using two optimal orthogonal basis given from (7). Based 

in this notion, an efficient technique to find the optimal basis using complex EOF analysis 

(CEOFs) is proposed (Esquivel, 2009). 

Our proposed methodology based in EOF analysis and the Hilbert transform is developed 

to be applied for representations of complex data fields in a biorthogonal decomposition 

illustrating the phenomenon of spatial and temporal variability in interconnected systems. 

This method consists first in extend each real field data to the complex world using the 

Hilbert transform to provide the phase information; and second, the EOF analysis is 

developed to the complex data field for the detection and localization of propagation 

features into dynamical systems. 

 

Fig. 1. Global positioning system (GPS) and PMU data in terms of a time-space varying field. 

2.2 Complex data fields 

Conventional EOF analysis of real-data fields is commonly carried out under the 
assumption that each field can be represented as a spatially fixed pattern of behaviour. This 
method, however, cannot be used for detection of propagating features because of the lack 
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of phase information (Esquivel & Messina, 2008). To fully utilize the data, a technique is 
necessary unknowing the nonstationarity of the time-series data. 

Let u(xj,tk) be a space-time varying scalar field representing a time series recorded from a 
wide-area distribution system, where xj, j=1,...,n is a set of spatial variables on a space Ω, and 
tk, k=1,...,N is the time at which the observations are made. Provide u(x,t) is simple and 
square integrable, it has a Fourier representation of the form 

 j j m j m
m

x t a ω mωt b ω mωt( ) ( )
1

( , ) [ ( )cos( ) ( )sin( )]



 u  (9) 

where αj(m)(ω) and bj(m)(ω) are the Fourier coefficients defined as 

 

 

 

j m j

j m j

a u x t mωt dω

b u x t mωt dω

( )

( )

1
( , )cos

1
( , )sin























 (10) 

This allows the description of travelling waves propagating throughout the system. 
Equation (9) can be rewritten in the form 

 imωt
c j j m

m

x t c ω e( )
1

( , ) ( )





 u  (11) 

where cj(m)(ω)= αj(m)(ω)+ibj(m)(ω), i 1   is the unit complex number. Expanding (11) and 

collecting terms gives 

 

 

 

c j j m j m
m

j m j m
m

j H j

x t a ω mωt b ω mωt

i b ω mωt a ω mωt

x t i x t

( ) ( )
1

( ) ( )
1

( , ) [ ( )cos( ) ( )sin( )]

[ ( )cos( ) ( )sin( )]

( , ) ( , )







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 

 





u

u u

 (12) 

where the real part of uc(xj,t) is given by (9) and the imaginary part is the Hilbert transform 
of u(xj,t). In formal terms, the Hilbert transform of a continuous time series u(xj,t) is defined 
by the convolution 

 H j

u y
x t dy

t y

( )1
( , )








u  (13) 

where the integral is taken to mean the Cauchy principal value. The most well-known 
classical methods for computing the Hilbert transform are derived from the Fourier 
transform. However, this transform has a global character and hence, it is not suitable for 
the characterization of local signal parameters. Alternatives for local implementation of the 
Hilbert transformation which are based on local properties are developed and tested in this 
analysis (Hannchi, et al., 2007; Lezama, et al., 2009; Terradas, et al., 2004, Barnett, 1983). 
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For discretely sampled data, the Hilbert transform can be derived in the time domain by 
applying a rectangular rule to (13). It can be shown that 

 H j
k

u t k
x t

k

2 ( (2 1) )
( , )

2 1








 


u  (14) 

where τ is the step size. When (13) is applied to a discrete time series u(xj,t), k=0,±1,...,  

we get 

 
H j k

k

k

u t k
x t

k

u t k u t k
k0

2 ( 2 1)
( , )

2 1

2 1
[ ( 2 1) ( 2 1)]

2 1











 



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





u

 (15) 

In previous formulations, the Hilbert transform was estimated by truncating the series (15). 

This truncation was approximated using a convolution filter as 

 
L

H j k j k
L

x t u x t h L( , ) ( , ) ( ) ,


   


 u  (16) 

where h is a convolution filter with an unit amplitude response and 90º phase shift. In this 

research, it has been found that a simple filter that has the desired properties of approximate 

unit amplitude response and π/2 phase shift is given by 

 
l l

h l l
l

22
sin ( 2) , 0

( )

0 , 0



  
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 (17) 

where -L≤l≤L. We omit the calculations. 

As L→∞, equation (16) yields an exact Hilbert transform. This represents a filtering 

operation upon u(xj,t) in which the amplitude of each Fourier spectral component remains 

unchanged while its phase is advantaged by π/2. In (Hannachi, et al., 2007) has been found 

that 7≤L≤25 provides adequate values for the filter response. 

In what follows, we discuss the extension of the conventional EOF analysis using the above 

approach to compute standing and propagating features of general nonstationary processes 

where the eigenvectors of the covariance matrix are complex and it can be expressed 

alternatively as a magnitude and phase pair. 

3. Complex empirical orthogonal function analysis 

The method of complex EOF analysis is an optimal technique of biorthogonal 

decomposition to find a spatial and temporal basis that spans an ensemble of data collected 

from experiments or numerical simulations. The method essentially decomposes a 

fluctuating field into a weighted linear sum of spatial orthogonal modes and temporal 

orthogonal modes such that the projection onto the first few modes is optimal. 
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Drawing on the above approach, an efficient formulation to compute a complex expansion 

for the data set has been derived. 

Assume that X(x,t) is augmented by their imaginary components to form a complex data 

matrix such as (Esquivel, 2009) 

 c R Ix t x t i x t( , ) ( , ) ( , ) X X X  (18) 

where the subscripts c, R and I indicate the complex, real and imaginary vectors 

respectively. Implicit in the model is the assumption that Xc can be represented as 

 
c cc c X Xcos t isin t[ ( ) ( )] Ƹ Ƹ θ θ  (19) 

where cƸ  and 
cXθ  are the magnitude and phase of Xc. Under this assumption, the 

complex autocorrelation matrix becomes, 

 H
c c

N

1
C X X  (20) 

where it is straightforward to show that the autocorrelation matrix ,C, for the case complex 

data can be written in the form C=CR+iCI which the real part is a symmetrical matrix, (i.e., 
T

R RC C ) and the imaginary part is a skew-symmetric matrix (i.e., T
I I C C ). If the size of 

IC  is odd, then the determinant of IC  will always be zero. Because the symmetrical matrix 

is a particular case of the Hermitian matrix, then all its eigenvectors are real. Furthermore, 

the eigenvalues of the skew-symmetric matrix are all imaginary pure and, it is a normal 

matrix; its eigenvectors are complex conjugate. 

From (20), It can be easily verified that 

 

T T
c cc c

T T
c cc c

T T
c cc c

H T
c c c c X X

T
c c X X

X X

cos t i t cos t i t

cos t cos t t t

i cos t t t cos t

[ ( ) sin( )][ ( ) sin( )]

{[ ( ) ( ) sin( )sin( )]

[ ( )sin( ) sin( ) ( )]}

  
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 

Ƹ Ƹ

Ƹ Ƹ

Ƹ Ƹ

Ƹ Ƹ Ƹ Ƹ θ θ θ θ

Ƹ Ƹ θ θ θ θ

θ θ θ θ

 (21) 

From the decomposition given in (21) can be seen that the imaginary part is zero when the 

time is in phase with the extremum of the cosine or sine, that is, the sum of the two 

components is zero; at this time instant both are symmetrical matrices (Feeny, 2008). The 

imaginary part of (21) measures the degree of asymmetry when the sum of both matrices 

is different from zero; this is used to define the existence of arbitrary variations into the 

space, Ǚ*(x)≠0; this feature is used to define the existence of travelling wave components 

in the space-time varying fields and to determine leading seismic wave propagation 

components. 

From the decomposition for the complex autocorrelation matrix (20), the optimal basis for 

the proposed spatio-temporal decomposition is defined by the eigenfunctions R(x) and 

I(x) for the real and imaginary part respectively. A test to split the spatial-temporal 

covariance functions is given by (Wallaschek, 1988; Fuentes, 2006). 
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Once the spatial eigenvectors associated with real and imaginary part of (20) are computed, 

the original field can be approximated by a spatio-temporal model. Assuming that this 

model is composed of standing and travelling wave components, the space-time varying 

field can be written as 

 swc twcx t x t x t( , ) ( , ) ( , ) X X X  (22) 

where swcX  and twcX  denotes the standing and travelling wave components respectively. 

Therefore, the associated approximation for the complex data field (19) in terms of a 

truncated sum of dominant modes (EOFs basis) p and q, is defined as 

 
p q

c R j R j I j I j
j j

x t t x i t x( ) ( ) ( ) ( )
1 1

( , ) ( ) ( ) ( ) ( ) 

 
  X A φ A φ  (23) 

where the time-dependent complex coefficients associated with each eigenfuntion, AR(j)(t) 

and AI(j)(t) are obtained as the projection of the basis R(j)(x) and I(j)(x) respectively into 

complex field Xc of the form 

 
R j c R j

I j c I j

t x

t x

( ) ( )

( ) ( )

( ) ( )

( ) ( )





A X φ
A X φ

 (24) 

These complex coefficients are conveniently split into their amplitude and phase, therefore, 

from the complex model (23), the ensemble of data can be expressed as 

 R j R j I j I j

p q
i t x i t x π

c R j R j I j I j
j j

x t t x e t x e( ) ( ) ( ) ( )( ( ) ( )) ( ( ) ( ) )
( ) ( ) ( ) ( )

1 1

( , ) ( ) ( ) ( ) ( )
  

 
  θ Ʒ θ Ʒ

X R S R S  (25) 

where R(t) and S(x) are the temporal and spatial amplitude functions associated with the 

wave decomposition respectively and, θ(t) and Ʒ(x) are the temporal and spatial phase 

function. 

Now, four measurements that define moving features in u(x,t) can then be defined: 

1. Spatial distribution of variability of each eigenmode 

2. Relative phase fluctuation 

3. Temporal variability in magnitude 

4. Variability of the phase of a particular oscillation 

The succeeding sections describe the properties of these representations to assess and to 

extract swing oscillations patterns and modal characteristics directly from recorded data in 

wide-area dynamical systems. It is shown that the proposed method can be used to predict 

the correct spatial location in the modal distribution of seismic wave. 

3.1 Spatial amplitude function, S(x) 

This function shows the spatial distribution of variability associated with each eigenmode. 

The spatial amplitude functions in the proposed model (25) are defined as (Hannchi, et al., 
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2007; Marrifield & Guza, 1990; Susanto, et al., 1997; Terradas, et al., 2004; Toh, 1987; 

Barnett, 1983)., 

 
R j R j R j

I j I j I j

x x x

x x x
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( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )









S φ φ

S φ φ
 (26) 

3.2 Spatial phase function, (x) 

This function shows the relative phase fluctuation among various spatial locations where 

u(x,t) is defined, it is given by 
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φ
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 (27) 

3.3 Temporal amplitude function, R(t) 

This function gives a measure of the temporal variability in the magnitude of the modal 

structure in the original field. Similar to the description of the spatial amplitude function, 

the temporal amplitude function is defined as 
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 (28) 

3.4 Temporal phase function, θ(t) 

This function shows the temporal variation of the phase associated with the magnitude of 

the modal structure of u(x,t). It is given by 
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 (29) 

Equations (26-29) provide a complete characterization of any propagating effects and 

periodicity in the original data field which might be obscured by standard cross-spectral 

analysis. These equations give a measure of the space-time distribution and can be used to 

identify the dominant modes and their phase relationships. Furthermore, for each dominant 

mode of interest, a mode shape can be computed by using the spatial part of (23). This 

method effectively decomposes the data into spatial and temporal modes. 
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4. Analysis of propagating features in space-time varying fields 

In this section, we turn our attention to the analysis of spatial and temporal behaviour of 
propagating features in space-time varying fields. 

4.1 Space-time biorthogonal decomposition 

In order to investigate travelling and standing features into a space-time varying field, the 
real physical field is reconstructed by taking the real part of the complex model given in 
(25), so, its wave form is given by (Esquivel & Messina, 2008; Esquivel, 2009) 

 
p q

R j R j R j I j I j I j I j
j j

x t t x t t x t x π( ) ( ) ( ) ( ) ( ) ( ) ( )
1 1

( , ) ( ) ( )cos( ) ( ) ( )cos( )
 

    X R S ǚ R S ǚ Κ  (30) 

where K(x) is the wave number, and ǚR(t), ǚI(t) represent the angular frequency of the real 
and imaginary wave components, respectively. The wave number is only defined for 
travelling waves and its components in terms of the complex representation (25) are given 
by: K=d(Ʒ)/dx, with physical units of rad.m-1, and ǚ=d(θ)/dt, in rad/s. The relationship 
between complex modes and the wave motion is given from average phase speeds cR(j), cI(j) 
obtained by using the relation c=ǚ/K, in m/s. 

From (30), it can be seen that the term associated with the j-th travelling wave component 
can be expressed as 
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R S ǚ Κ
 (31) 

where we can see that the travelling wave components are also identified as the sum of two 
intermodulated standing wave components with negative sign. To obtain the decomposition 
of the original data field in its pure standing wave components, it is necessary to compute 
the difference with the pure travelling wave components as 

           -

p

swc twc R j R j R j
j

x t x t x t t x t
1

( , ) ( , ) ( , ) cos


 X X X R S   (32) 

with 

 
q

twc I j I j I j I j
j

x t t x t x π( ) ( ) ( ) ( )
1

( , ) ( ) ( )cos( )


  X R S ǚ Κ  (33) 

where Xswc and Xtwc represent the decomposition of the original field given by the pure 
standing and travelling wave components respectively. Furthermore, the damping factor of 
each mode is given by its amplitude. 

From the modal decomposition given in (32-33), the statistical modes are also called 
orthogonal temporal and spatial modes respectively. Based in the proposed model, a 
practical criterion for choosing the relevant modes is given in the next section. 
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4.2 Approximation order and energy distribution in the space-time varying modes 

The relationship between spatial and temporal behaviour in space-time varying fields can be 
obtained by noting that the spatio-temporal information can be mapping into a space and 
time grid, i.e., each component u(x,t) of the space-time varying field is represented by the 
field value at time t and spatial position x. Based in the proposed biorthogonal method, the 
analysis is used to determine the spatial and temporal energy distribution in the space-time 
varying field, a criterion for choosing the number of relevant modes from proposed model is 
given by the energy percentage contained in the p and q dominant modes of the form 

 

p q

j swc j twc
j j
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ǌ ǌ
E p q

E p q E p q E

( ) ( )
1 1

2

0

% ( , ) 100 99%

subject toargmin{ ( , ) : ( , ) }

 


  

 

 

X

 (34) 

where 
F

.
2

 denotes the Frobenius norm, E0 is an appropriate energy level, and 

0 %E(p,q) 100   is the percentage of energy that is captured by the optimal basis. By 

neglecting modes corresponding to the small eigenvalues a reduced-order model can be 

constructed (Esquivel, 2009; Messina, et al. 2010). 

We note from (34) that 
F

E
2 X ; so the spatial-temporal energy distribution can be 

computed by 

 
swc F

F

2

2
100

X

X
swc

%E =  (35) 

which is associated with the temporal energy distribution, and 

 
twc F

F

2

2
100

X

X
twc

%E =  (36) 

is associated with the spatial energy distribution. Figure 2 shows a conceptual 
representation of spatial and temporal variability illustrating the energy distribution in a  

 

Fig. 2. Three-dimensional view of energy distribution of a time-space varying field. 
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space-time varying field. In an effort to better understand the mechanism of wave 
propagating using complex EOF analysis, in the next section is presented a first example 
as illustrative case to determine the theoretical fundamentals from the complex EOF 
analysis. 

5. Motivating examples: Modeling of propagating wave using the covariance 
matrix 

As illustrative case, in this section we consider a first example of wave propagation to study 

the modelling of propagating wave using the complex EOF analysis (Marrifield, 1990). 

For simplicity, we consider a nondispersive plane wave propagating at phase speed c, and 

wavenumber as k= ω/c, past an array of sensors at positions j given by 

 j j jt kx t kx t( ) [ ( )cos( ) ( )sin( )]


        u  (37) 

Expanding (37) and using identities 

 
j j j

j j j

a kx kx

b kx kx

( ) ( )cos( ) ( )sin( )

( ) ( )sin( ) ( )cos( )

    

    

 

 
 (38) 

we can rewritten (37) as 

  j j jt a t b t( ) ( )cos( ) ( )sin( )


    u  (39) 

where, for this example, uj(t) is a white, band-limited signal given by 
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To obtain phase information between stations, a complex representation of (39) is invoked. 

Its complex covariance matrix jk j k
t

t t*( ) ( )C u u , where 
t

  denotes time averaging and 

the asterisk complex conjugation, is given as 
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which, simplifying and using condition given in (40), Cjk can be rewritten as 

   jkik x
jk j k j kkx kx i kx kx e

2
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


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where jk j kx x x   . Replacing the summatory of (42) with an integral, yields 

 jkik x
jk e d

2

1

2
( ) 2

, to






 

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 C  (43) 

Integrating (43) by parts and after some algebra, we can show that 
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 (45) 

where k  is the wave number bandwith, x  is the array length and M is the frequency. 

Equation (44) illustrates some important properties of C. General algebraic expression in 
order to computating the eigenvalues and eigenfunctions of C for an arbitrary number of 
sensors (n), are very difficult to determine and which are not purposed here. For the case of 
two sensors, the above model can be reduced to 
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From the relation above is followed that the eigenvalues of C are given by j k,det[ ] C , 

i.e., it is easy to see further that 
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It then follows that the eigenvectors of C defined as j k,[ ] 0  C  , are given by 
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 (48) 

and 
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 (49) 

which can be simplified to 
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where 
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and 
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 (52) 

The following observations can be made from the analysis: 

1. As can be seen from (51) and (52), the method yields complex conjugate eigenvectors 

and an average wave number, k . 

2. The value jkx  gives the mode shape; this can be used for detection of wave propagating 

into original field and can be useful to identify the dominant stations involved in the 
propagating wave of dynamical oscillations. We remark that the performance of the 
complex EOF analysis as measured by the percentage of variance given in (47) depends 

on the spread in wave number relative to the array size, as the parameter k x   

decreases, more of the variance is contained in the lowest complex EOF modes. 
3. A point of particular interest is that, as a standard technique for describing coherent 

variability in spatial data, a relatively wide number bandwidth k x[ 0(2 )]    results 

from (47). 

The development given in this section indicates that modal spatial patterns from a time 
domain complex EOF analysis may be computed in a straightforward manner. In the next 
section, data obtained from GPS-based multiple phasor measurements units from a real 
event of seismic wave of an earthquake are used to study the practical applicability of the 
method to characterize spatio-temporal behaviour in wide-area systems. Additionally, we 
discuss the practical computation of mode shape identification in relation to the proposed 
decomposition from measurements data that can be used to identify coherence groups in 
vast wide-area interconnected systems where the propagating wave are given. 
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6. Complex EOF analysis to wide-area system oscillatory dynamics 

This section examines the application of the proposed technique to assess oscillations 

patterns in dynamical systems. Attention is focused on the identification of critical modes 

and the associated areas involved in the oscillations. In order to test the ability of the 

method to analyze complex oscillations, we use data recorded from time-synchronized 

measurements. The data were obtained from the Geophysical Institute of the National 

Autonomous University of México. A brief description of the data is given below. 

At local time 15:36:14.730, October 9, 1995 a submarine earthquake was occurred near the 

Mexican coast (Colima-Jalisco); this earthquake was recorded by sixteen stations of phasor 

measurement units (PMUs) over a 225 s window sampled with time interval of 0.005 s 

during its propagating that was felt over much of Jalisco and parts of Colima. We examined 

evidence of seismic wave arrival times of the earthquake in PMUs based in global positing 

system (GPS). For simplicity, in Table 1 is given the description of the locations of each 

station. This earthquake was located at a depth of 5km about (18.740ºN, 104.670ºW). Figure 3 

shows with a geographical diagram the PMUs locations and the location of the event.  

 

  
Location 

PMUs Station Latitude N Longitude W Altitude (msnm) 

1 Ciudad Guzman 19.6º 103.4º 1507 

2 Santa Rosa corona centro 20.912º 103.708º 770 

3 Santa Rosa margen izquierda 20.912º 103.708º 780 

4 Ciudad Granja 20.672º 103.398º 1680 

5 Jardines del sur 20.648º 103.366º 1583 

6 Arcos 20.671º 103.362º 1585 

7 Obras publicas Zapopan 20.699º 103.361º 1561 

8 Miravalle 20.633º 103.342º 1610 

9 Rotonda 20.673º 103.34º 1542 

10 San Rafael 20.654º 103.311º 1560 

11 Planetario 20.717º 103.308º 1543 

12 Tonala 20.641º 103.279º 1660 

13 CICEJ superficie 20.6º 103.2º 1575 

14 CICEJ pozo 9m 20.6º 103.2º 1566 

15 CICEJ pozo 35m 20.6º 103.2º 1540 

16 Oblatos 20.6º 103.2º 1580 

 
Earthquake 18.740º 104.670º 5km (depth) 

Table 1. Description and location of stations of phasor measurements units. 
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Fig. 3. Schematic showing the location of stations of the PMUs. 

During the time interval 15:36:14.730-15:40:42 the earthquake experiment severe fluctuations 

where its seismic wave components such as frequency and amplitude were felt. Figures 4,5 

and 6 give an extraction from PMUs measurements of this event showing the observed 

oscillations in the selected stations, where for simplicity, the seismic wave features are 

selected in longitude, latitude and altitude components. As a first step towards the 

development of the proposed methodology, the observed records are placed in a data 

matrix representing equally spaced measurements in sixteen different geographical 

locations. For our simulation, 45000 snapshots are available. Each time series is then 

augmented with an imaginary component by the Hilbert analysis to provide phase 

information and the corresponding birthogonal decomposition is applied to the dataset. 

System measurements in Figs. 4,5 and 6 demonstrate significant variability suggesting a 

nonstationary process in both space and time. Furthermore, in these figures are shown the 

associated mode to the travelling wave components based in the proposed method of 

birthogonal decomposition. The results clearly show the seismic wave decomposition, it is 

evident that the travelling wave mode in longitude and latitude is quite prominent at CICEJ 

and Oblatos stations, while that in the Ciudad Guzman and Santa Rosa stations are more 

stronger in altitude. A point of particular interest is the agreement between the results from 

the proposed model and the real behaviour of the space-time variability presented during 

the seismic wave. In (Ortiz, et al., 1998) was analyzed the tsunami data generated by the 

Colima-Jalisco earthquake, where the results of the tsunami arrival time are consistent with 

the presented in this analysis. 
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Fig. 4. Seismic fluctuating components in longitude and the leading mode showing spatio-

temporal variability in the location of stations. 

 

Fig. 5. Seismic fluctuating components in latitude and the leading mode showing spatio-

temporal variability in the location of stations. 

 

Fig. 6. Seismic fluctuating components in altitude and the leading mode showing spatio-

temporal variability in the location of stations. 

Additional insight into the frequency variability of the seismic oscillations can be obtained 

from the analysis of instantaneous frequency. Recognizing that the instantaneous frequency 

is the derivative of the temporal phase function given from the proposed model (30), the 

instantaneous frequency is estimated for each mode of concern. However, other approach 

can be used to characterize the spectral behaviour that requires other analytical formulations 

(Ortiz, et al., 2000). 

The study focuses on the travelling wave mode which is the mode that captures most of the 

variability in the seismic wave. Figure 7 gives the spectrogram of the travelling wave modes 

associated to the longitude, latitude and altitude for the interval of interest in this study. 
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From this figure is evident that the earthquake was feeling with fluctuating components 

after 10 s since it was occurred. 

Spectral analysis results for the leading travelling wave shows that the main power is 

concentred in oscillations with frequencies about 4.8, 5.2 and 4.0 Hz, to the longitude, 

latitude and altitude components which are associated with the major time interval of the 

seismic wave. 

 

 

Fig. 7. Spectrograms to the seismic wave from the longitude, latitude and altitude 

components using the travelling wave modes. 

One of the most attractive features of the proposed technique is its ability to detect changes 

in the mode shape properties of critical modes arising from systems. Changes in the mode 

shape may indicate changes in topology of the dynamic systems and may be useful for the 

design of special protection systems. This is a problem that has been recently addressed 

using spectral correlation analysis (Wallaschek, 1988). 

Using the spatial phase and amplitude (the mode shape), the phase relationship between 

key system locations can be determined. In this analysis, we display the complex values as a 

vector with the length of its arrow proportional to eigenvector magnitude and direction 

equal to the eigenvector phase. Figure 8 shows the mode shape for the three travelling wave 

computed from the longitude, latitude and altitude components for the seismic wave, this 

information is useful to identify the dominant stations involved in the oscillations. 

Simulation results to the mode shape clearly show that the CICEJ (13,14,15) stations are 

more stronger evident at the longitude components; CICEJ (13,14) stations in latitude, and 

finally the Ciudad Guzman, Los Arcos, CICEJ (1,6,13,14) stations in altitude. 
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These results are in general agreement with the shown in Figs. 4,5 and 6 from the observed 

oscillations giving validity to the results. The new results provide clarification on the exact 

phase relationship between key stations as a function of space. 

 

Fig. 8. Mode shape fluctuating in longitude, latitude and amplitude of the leading mode 
showing the phase relationship between stations. 

7. Conclusion 

Approaches for detection of propagation features in space-time varying system 

measurements through its travelling and standing components are proposed. 

The conceptual framework developed provides bases for the analysis, detection, and 
simplification of seismic wave components through use of wide-area monitoring schemes 
such as global positioning systems (GPS) based in multiple phasor measurements units 
(PMUs) for interconnected systems, and enables the simultaneous study of synchronized 
measurements. The main advantage of the approach is its ability to compress the variability 
of large data sets into the fewest possible number of spatial and temporal modes. The 
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technique is especially attractive, because, it does not require previous notion about the 
behaviour associated with abrupt changes in system topology or operating conditions. 

Complex empirical orthogonal function analysis is shown to be a useful method to identify 
standing and travelling patterns in wide-area system measurements. In the use of 
information in interconnected systems, spatio-temporal analysis of wide-area time-
synchronized measurements shows that transient oscillations may manifest highly complex 
phenomena, including nonstatonary behaviour. Numerical results show that the proposed 
method can provide accurate estimation of nonstationary effects, modal frequency, mode 
shapes, and time instants of intermittent transient responses. This information is important 
to determine strategies for wide-area monitoring and special protection systems. 

The main contributions in this chapter are based in the estimation of propagating and 
standing features in space-time varying processes using statistical techniques to identify 
oscillatory activity in interconnected systems through the use of wide-area monitoring 
schemes in interconnected systems. 

The proposed technique is based on the complex correlation structure from space-time 
varying fields, which can treat both, spatial and temporal information; this provides a global 
picture on the system behaviour to characterize oscillatory dynamics. Its significant 
drawbacks are associated to treat with their space-time scales. These include geographical 
distribution and the time interval to the modal extraction using measured data. For some 
applications may be desirable to have these data at very high space-time resolution that 
allow the study of processes close to inertial frequency, then a technique of space-time 
interpolation can be used. Wide-area monitoring may prove invaluable in interconnected 
system dynamic studies by giving a quick assessment of the damping and frequency content 
of dominant system modes after a critical contingency. The alternative technique based on 
space-time dependent complex EOF analysis of measured data is proposed to resolve the 
localized nature of transient processes and to extract dominant temporal and spatial 
information. 
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