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1. Introduction 

Separations in affinity chromatography are based on specific biological interactions between 

(bio)molecules and in many aspects resemble processes by which these species interact in a 

living organism. The technique is widely used in biomedical sciences to separate and detect 

certain molecules based on their defined specificity to other (bio)molecules immobilized on 

a stationary phase. Moreover,it can also be used for quantitative determination of affinity 

interactions and their physiological and pharmacological role in a living system. In both 

cases the same basic physico-chemical effects (hydrophobic interactions, electrostatic, 

hydrogen bonds etc.) lead to description of the equilibrium state between unbound, free-

floating molecules and those forming a complex with a target. This allows the use of affinity 

chromatography system as a model for analyzing interactions that normally occur in human 

body. This approach was suggested by analytical chemists over 50 years ago, e.g. 

Soczewinski and Bieganowska stated in 1969: 

"... If the body is regarded as an extremely complex chromatographic system, in which the blood plays 
the role of the developing solvent, a certain parallelism can be expected between the behaviour of 
drugs and their chromatographic parameters in common "simple" partition systems." 

Therefore, affinity chromatography is currently successfully employed in medicinal 

chemistry projects for detailed characterization of interactions between drug molecules and 

their protein targets. This type of liquid chromatography is referred to as analytical or 

quantitative affinity chromatography (QAC). 

In most applications the assay is performed in HPLC systems using a column with a protein 

immobilized on the surface of the stationary phase. Relatively simple and rapid procedures 

(time of a single assay average between 5 to 15 min.), ability to multiple use of the same 

column without significant loss of properties of immobilized protein (Jozwiak et al., 2004) 

and the possibility to automate the analysis process, make this technique a promising 

method for screening and determination of relative affinities of a series of analyzed drug 

molecules. Loun & Hage (1996) reported that theirs column was stable even to 500-1000 

injections of an analyte. Above mentioned advantages of this method additionally increase 
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reproducibility of obtained results. Thus, affinity chromatography is considered by many 

medicinal chemists as good alternative to tedious in vitro tests using cell cultures (Jozwiak et 

al., 2004). It also allows to reduce time needed to perform the assays (Jozwiak et al., 2005). 

Special procedures were developed in order to transform retention of a substance or it 

elution profiles to characterize the interaction between a drug and the target protein. 

Therefore, various protocols can be used to characterize binding equilibrium constants, the 

kinetics of drug-protein complex association/dissociation, relative amount of bound drug, 

number of binding sites in the system or forces responsible for complex formation. 

Simultaneous application of more than one active substance on the column allows defining 

interactions between them during binding to immobilized target. It is also possible to 

determine the affinity of various isomeric forms of the drug to immobilized protein, which 

is extremely important in a pharmaceutical research (Chen & Hage, 2006). Data obtained by 

QAC show high correlation with derived from reference methods and can be further used in 

studies of quantitative structure - activity relationships (QSAR) (Markuszewski & Kaliszan, 

2002; Jozwiak et al., 2004).  

This chapter reviews current aspects of application of QAC including basic issues of protein 

immobilization on the surface of the stationary phase, advantages and disadvantages of 

zonal and frontal elution techniques and vast information which can be provided by 

competition displacement in QAC studies. The last subsection provides short review of 

application of these techniques in medicinal chemistry investigations. 

2. Immobilization of target proteins on the surface of the stationary phase 

QAC assay requires a column where one of the partner of the drug-protein complex is 

immobilized on the surface of the stationary phase. Both, drug molecules and protein targets 

may be immobilized on the chromatographic bead particles. The latter option seems to be 

more versatile as it allows to investigate different types of active substances without having 

to change the column bead. It directly permits to compare properties of a series of 

substances on the basis of obtained chromatograms. The way in which the ligand is attached 

to its support is a key factor in any type of affinity chromatography. Immobilization 

methods for soluble cytosolic proteins are well established (Taylor, 1991; Turková, 1999; 

Kim & Hage, 2006; Scheil et al., 2006) and they are based mainly on chemical or physical 

mechanisms. Physical methods include protein adsorption (physical or ionic adsorption) or 

protein entrapment within insoluble gel matrix through which only small drug molecules 

can diffuse. The advantage of these methods is relatively small perturbation of the protein 

native structure, on the other hand immobilisation forces are weak and promotes the leak of 

adsorbed protein from the support during use, especially while temperature, pH or ionic 

strength is changed. Chemical immobilization methods mainly include protein attachment 

to the stationary phase by covalent bonds or cross-linking reactions. Covalent linkage may 

alter the native tertiary structure of the protein and cause a change in drug binding 

properties, but the target associates strongly with the support preventing the desorption 

phenomenon and increasing a column lifetime. The functional groups that usually take part 

in this binding are amino, epoxy, carboxyl, sulfhydryl, hydroxyl, diol and phenolic groups 

which according to the mode of linkage lead to a wide variety of binding reactions such as 

diazotization, amide bond formation, arylation, Schiff’s base formation and amination 

www.intechopen.com



Affinity Chromatography as a Tool for Quantification of  
Interactions Between Drug Molecules and Their Protein Targets 

 

277 

(Girelli & Mattei, 2005). Another type of immobilization method is biospecific adsorption. It 

uses the binding between the ligand of interest and a secondary ligand attached to the 

support. Although a variety of secondary ligands can be used for this purpose, two of the 

most common are avidin and streptavidin for the adsorption of biotin-containing 

compounds, and protein A or protein G for the adsorption of antibodies (Akerstrom & 

Bjorck, 1986; Wilchek & Bayeras, 1990; Bayer & Wilchek, 1996; Wilchek & Bayeras, 1998; 

Page & Thorpe, 2002, as cited in: Kim & Hage, 2006). 

Various supports are commercially available or have been specifically developed for the 
immobilization processes, including silica based derivatized matrices (Narayanan et al., 
1990; Ruhn et al., 1994; Mateo et al., 2000) and monoliths (Josic & Buchacher, 2001; Lebert, 
2008). An important factor is a structure of the support used in preparation of affinity 
column, since it determines accessibility of protein active sites to substrates. The ideal 
support must be inert, stable and resistant to mechanical strength, so it can retain its tertiary 
structure, and this ensures the substrate accessibility to interact with the active sites. Other 
physical properties, such as porosity, pore size distribution and charge are also important, 
because they influence the kinetic process (Girelli & Mattei, 2005). Variety of available 
methods of protein connection with chromatographic beads, gives the opportunity to select 
and optimize right immobilization method for binding of our protein of interest. It should 
be noted that the immobilized ligand must as close as possible imitate the behaviour which 
it exhibits in natural conditions. The method chosen for protein binding should not disrupt 
the structure crucial for drug binding and provide proper orientation to eliminate any 
negative steric interactions. Proper immobilization allows retaining activity of the protein on 
the column, and even its conformational mobility (Beigi et al., 2004), which allows to study 
allosteric interactions (Chen et al., 2004). 

In last years new techniques were developed to immobilize membrane proteins on the surface 

of chromatographic bead particles to describe the nature of interactions between drug 

molecules and target receptors. This is very valuable from pharmacological point of view 

considering that the membrane and transmembrane receptor proteins are targets for almost 

75% of current pharmaceuticals (Landry & Gies, 2008). The first membrane protein that was 

analysed using QAC was glucose transporter present on the surface of red blood cells 

(GLUT1) (Yang and Lundahl, 1995). Two immobilization techniques were used in this system: 

in first proteoliposomes or cytoskeleton depleted membrane vesicles containing GLUT1 were 

immobilized in the pores of size exclusion chromatography beads (Superdex) (Gottschalk et 

al., 2000) by technique of repeated freezing - thawing (Lundqvist et al., 1998). In the second 

approach whole cells were immobilized on the surface of beads with positively charged 

groups (Zeng et al., 1997) or columns with wheat germ lectin agarose gel beads (Gottschalk & 

Lundahl, 2000). Currently, there are many reports in literature describing the columns with 

different immobilized receptors and membrane transporters. Most of them use silicon particles 

with immobilized phospholipids (IAM) (Pidgeon & Venkataram, 1989) which connect parts of 

the cell membranes of tissues showing high expression of the receptor or cultured cells 

transformed with receptor gene. It is known as cellular membrane affinity chromatography: 

CMAC, or CMC. Using this method columns with immobilized nicotinic receptor (nAChR) 

subtypes ǂ3ǃ4, ǂ4ǃ2, ǂ3ǃ2, ǂ4ǃ4, ǂ7 and subunits ǃ4 and ǂ3 (Zhang et al., 1998; Wainer et al., 

1999; Moaddel et al., 2005; Moaddel et al., 2008) purinergic receptors, both acting as ion 

channels (P2X family) (Trujillo et al., 2007) as well as G-protein coupled receptors (P2Y family) 
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(Moaddel et al., 2007), the P2Y-like receptor GRP17 (Temporini et al., 2009), ǃ2 adrenergic 

receptor (Beigi et al., 2004) or the μ and κ opioid receptors (Beigi & Wainer, 2003) were 

constructed. Multi-receptor columns containing nAChRs, Ǆ-amino-butyric acid receptors 

(GABA) and N-methyl D-aspartate receptors (NMDA) (Moaddel et al., 2002) were also 

developed. Kitabatake and co-workers (2008) constructed multi-receptor column and 

confirmed presence of two types of nAChRs: ǂ7 nAChR and heteromeric nAChRs but also 

GABA, and NMDA receptors on the surface of 1321N1 and A172 astrocytoma cell lines. The 

results indicate that the columns can be used to characterize binding affinities of small 

molecules to each of the receptors, and that this approach can be used to probe the expression 

of endogenous membrane receptors. With similar immobilization technique beads with 

transmembrane transport proteins such as P-glycoprotein (Zhang, 2000), human organic anion 

transporter protein (hOAT1 and hOAT2) (Kimura et al., 2007) and human organic cationic 

transporter protein (hOCT1) were prepared (Moaddel et al., 2005). 

Alternative method was used to immobilize ǂ1 adrenergic receptor (Yu et al., 2005) or 

muscarinic receptor (Yuan et al., 2005). In this case, the membrane fragments with an 

interesting protein were subjected to adsorption on the surface of silica particles under 

vacuum and with use of ultrasounds. Since the phospholipid bilayer fragments show a 

spontaneous ability to connect, they enfold bead particles forming compact, durable coating 

of cell membrane. Same approach was used to construct multi-receptor column for the 

simultaneous determination of drug interactions with the purinergic, P2Y1 and histamine 1 

receptors (Moaddel et al., 2010) and multi-receptor column prepared using the glioma cell 

membranes in order to identify the types of receptors on the surface of these cells by their 

specific ligands (Kitabatake et al., 2008). 

Immobilization of membrane proteins on the inner surface of silica capillaries (open tubular 

column) is also applied. For this purpose, fragments of cell membrane containing membrane 

protein bind non-covalently with a capillary using the avidin-biotin pair. Capillaries with 

immobilized P-glycoprotein (Moaddel et al., 2004), and recently with immobilized 

cannabinoid receptors (CB1/CB2) (Moaddel et al., 2011) were developed using this approach. 

When a native structure of a target protein cannot be obtained during immobilization a drug 

can be used as an immobilized ligand. However, in this situation any steric interactions 

should be eliminated by connecting drug molecule to the bead using a spacer with adequate 

length and hydrophobicity, in order to secure free access to the binding site on the protein 

molecule. It is important not to connect the drug using functional groups that participate in 

binding to the target protein. Application of QAC with immobilized drug molecules is 

particularly useful for identifying biomolecules targets for substances with known 

therapeutic effect. It is also used as a pre-clinical method of detection of undesired 

interactions with other system biomolecules (Guiffant et al., 2007). 

3. Elution techniques 

3.1 Zonal chromatographic studies of drug-protein binding 

One method of QAC is a technique known as the zonal elution technique. It was first used 

by Dunn and Chaiken (1974) as modified low-pressure liquid chromatography method used 

to investigate the retention of Staphylococcus nuclease on the column with immobilized 
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thymidine-5'-phosphate-3'-aminophenylphosphate. Zonal elution method can also be 

applied using a standard HPLC apparatus equipped with temperature control unit. This 

method involves injection on the column small volume of analyte solution and then isocratic 

elution with mobile phase, which usually has a composition and pH reflecting the 

physiological conditions. Compared to frontal elution (described in subsection 3.2) small 

amount of analyte is needed to perform the assay in zonal format. Detection is carried out 

on-line, however there are applications with off-line detection when chromatographic 

systems has low efficiency (Dunn & Chaiken, 1974). 

In result of the analysis the retention factor also called capacity factor is determined. It is 

expressed by formula k = (tr/tm) - 1, where tr is the retention time of the test substance, and tm 

is the column dead time. Comparing the value of k for different substances, we can 

determine their relative affinity for the immobilized protein. Typical chromatogram 

obtained from zonal chromatography studies is shown in Figure 1. Studies on the affinity of 

benzodiazepines and related coumarins done by Noctor and colleagues using immobilized 

human serum albumin (HSA) (Noctor et al., 1993, as cited in Bertucci et al., 2003) have 

shown a strong correlation (r = 0.999) between the percentage of bounded drug measured 

by the standard method of ultrafiltration, and the data obtained from chromatographic 

studies expressed as k/(k + 1). 

 

Fig. 1. Typical chromatogram obtained from zonal AC. Comparison of elution peak profiles 
of ketamine (solid) and negative control phenylbutazon (dashed line) on the column with 
immobilized nicotinic receptor (nAChR), subtype ǂ3ǃ4. Adapted with permission from 
Jozwiak, K., Ravichandran, S., Collins, J. R., & Wainer, I. W. (2004). Interaction of 
noncompetitive inhibitors with an immobilized ǂ3ǃ4 nicotinic acetylcholine receptor 
investigated by affinity chromatography, quantitative-structure activity relationship 
analysis, and molecular docking. J Med Chem, Vol. 47, No. 16, pp. 4008-4021. Copyright 2011 
American Chemical Society. 

Similar results were reported by Cheng et al. (2004). In this case, the working curve between 

literature values of % drug bounded to HSA (by either ultrafiltration or dialysis method) 

and k/(k + 1) factor determined by chromatography method showed good linearity with the 

www.intechopen.com



 
Affinity Chromatography 

 

280 

coefficient of 0.96, which is acceptable considering diversity of drugs tested and the variety 

of %binding data resources used.  

According to the Equation 1 (Chaiken, 1987, as cited in Cheng et al., 2004): 

 a L

M

K m
k =

V
 (1) 

compound retention factor is closely related with equilibrium constant of binding reaction 
to immobilized protein target. This allows to define an order relative binding strength of 
different compounds by comparing their retention factors (Xuan & Hage, 2005) In Equation 
1, VM is the void volume of the column (i.e., the elution volume of a non-retained solute), mL 
is the moles of active binding site and Ka is association equilibrium constant for the injected 
solute at this site . 

Zonal elution technique is also used to determine the forces that play a fundamental role in 
the formation of drug-protein complex. Changing assay conditions (e.g., pH, ionic strength, 
content of organic modifier) allows to determine which factors affect the most binding 
reaction. For example, retention dependence on mobile phase pH indicates a considerable 
contribution of Coulomb interactions in the binding of a drug. In turn, addition of organic 
modifier can accelerate the elution of analyte by disturbing the hydrophobic interactions 
(Hage & Chen, 2006). It also allows to examine the change in binding of drugs when 
standard physiological system conditions will be changed as a result of pathological lesions 
(Basiaga & Hage, 2010).  

Temperature studies allow to define changes in enthalpy and entropy of interactions 
between the drug and immobilized protein. It follows from the equilibrium constant 
depending on temperature, which can be described by the Equation 2: 

 ln a

ΔH ΔS
K = +

RT R


 (2) 

where ΔH express a change of enthalpy and ΔS entropy change in a place of interaction, R is 
the gas constant and T is absolute temperature. So if the system meets the assumption that 
the number of binding sites (mL) does not change with temperature, and this is a single-site 
binding then lnKa plotted against 1/T should be linear with a slope equal to -ΔH/R, and 
intercept to ΔS. The total energy change can be calculated using Equation 3 (Kirkwood & 
Oppenheim, 1961, as cited in Yang & Hage, 1993): 

  ln aΔG = RT K  (3) 

The method, however, requires earlier determination of Ka at given temperature, for 
example, by conducting self-competition studies with test compound at different 
temperatures. It is also possible to designate the enthalpy and entropy of binding directly 
from the value of retention factor. In this case, if a binding has a single-site character, the 
plot of lnk against 1/T is linear with a slope equal to -ΔH/R and the intercept equal to 
[ΔS/R + ln(mL/VM)]. However, the calculation of the value of ΔH and ΔS requires the 
prior determination of concentration of binding sites for the analyte (mL/VM) (Yanda & 
Hage, 1993). 
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3.2 Frontal affinity chromatography (FAC) in drug-protein interaction investigations 

Another commonly used method of determining the drug-target protein affinity is the 
frontal technique. Although this elution format is practically no longer used in analytical 
applications of chromatography, it is still successfully applied in QAC assays, and has 
some advantages over zonal elution methods. For the first time it was used in 1975 by 
Kasai and Ishii. In contrast to zonal elution, a test substance is applied continuously on 
the column as an addition to the mobile phase in specified concentration. The result is 
essentially a titration of active sites within the column. As the mobile phase flows through 
the column, the analyte saturates binding sites on the immobilized protein and we can 
observe a gradual increase of the amount of unbound analyte leaving the column. This 
produces a vertical rise in the chromatographic trace, called breakthrough curve which 
ends or plateaus when the immobilized target is fully saturated. Initial, relatively flat 
portion of the chromatographic traces represents the non-specific and specific binding of 
the tested compound to the cellular membranes and the target. Inflection points of 
breakthrough curves shift to shorter breakthrough times (volumes) as the ligand 
concentration increases (see Figure 2).  

 

Fig. 2. Typical breakthrough curves of two analyte concentration [A]1 (higher) and [A]2 (lower). 
Vo represents breakthrough volume of the ligand in the absence of the binding event.  

Extent and asymmetry of obtained chromatographic profile are related to the analyte-target 

protein binding kinetics. Measuring the breakthrough times for several concentrations and 

fitting the results to equations based on various reaction models allow to characterize a 

nature of binding affinity and the amount of immobilized target on a column. This is 

accomplished by plotting number of apparent moles of analyte required to reach the mean 

point of the breakthrough curve (1/mLapp) versus 1/[A] (where [A] is applied analyte 

concentration). According to Equation 4 (Loun & Hage, 1992), in case of single site reaction, 

plot (1/mLapp) versus 1/[A] should give a linear response (see Figure 3) with a slope equal to 

1/(KAmL) and an intercept of 1/mL. Dividing the intercept by the slope allows to obtain 

information about equilibrium binding constant of analysed interaction.  
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 
 1

L A
Lapp

A

m K A
m =

+ K A
 or 

 
1 1 1

Lapp A L L

= +
m K m A m

 (4) 

A similar approach, but using a combination of both nonlinear and linear fits, can be used 

for more complex systems that involve multisite interactions (Jacobson et al., 1993; Tweed et 

al., 1997, as cited in Hage & Chen, 2006). 

 

Fig. 3. Examples of double-reciprocal frontal analysis plots for systems with (a) single-site 
binding and (b) multisite binding. Reprinted with permission from: Loun, B., & Hage, D. S. 
(1994). Chiral separation mechanisms in protein-based HPLC columns. 1. Thermodynamic 
studies of (R)- and (S)-warfarin binding to immobilized human serum albumin. Anal Chem, 
Vol. 66, No. 21, pp. 3814-3822; Tweed, S. A., Loun, B., & Hage, D. S. (1997). Effects of ligand 
heterogeneity in the characterization of affinity columns by frontal analysis. Anal Chem, Vol. 
69, No. 23, pp. 4790-4798. Copyright 2011 American Chemical Society.  

The simplest binding event, involving the interaction of a ligand with a single type of 

binding site can also by described by Equation 5. There may be multiple, equivalent sites in 

a given target molecule but the model assumes their independence. 
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 0

0

t

d

B
V V =

A + K
  (5) 

In this basic FAC equation (5), two variables are present: [A]0 (ligand infusion concentration) 
and V-V0 (breakthrough volume V for the ligand corrected by the breakthrough volume of 
the ligand in the absence of the binding event V0). This simple equation indicates that once 
Bt (corresponding to the dynamic capacity of the affinity column for the ligand) and the 
concentration of the analyte are known, the dissociation constant can be determined from a 
single measurement of its V-V0. In order to determine Bt, various concentrations of the 
compound are pumped through the column and the corresponding V-V0 values are 
measured. The analysis of changes in V-V0 versus [A]0 by means of Lineweaver–Burk type 
double reciprocal plot or standard nonlinear regression analysis, Bt (equal to the reciprocal 
of the y intercept) and dissociation constant Kd (in M, expressed as negative reciprocal of the x 
intercept) are obtained (Calleri et al., 2009). Reliable measurement of V0 requires a suppression 
of specific binding or application of a saturating ligand concentration. In case of membrane 
proteins it can be done by measuring retention of marker using a column constructed with 
membranes from cells that do not express the target protein (Moaddel et al., 2005). Other 
approach that can be employed to differentiate between specific and non-specific interactions 
is parallel chromatography system in which analysed compounds are simultaneously applied 
on a column with immobilized membranes containing target protein (experimental) and on a 
column with immobilized membranes from the same cell line that does not express the target 
protein (control). The assumption is that all of the non-target interactions between a test 
compound or protein and the cellular membranes will be the same for the control and 
experimental cell lines and will be reflected in the chromatographic retention on the control 
column. Then the difference in compound retention between control and experimental column 
will reflect only the specific binding. This system may be applied in both, zonal and frontal 
chromatographic studies (Baynham et al., 2002, as cited in Moaddel & Wainer, 2006). 

In frontal QAC connected with mass spectrometry (FAC-MS), ligand is sequentially infused 
at increasing concentrations, but with no washing steps between infusions. This allows to 
determine binding parameters in a single experiment. This is accomplished by infusing a 
FAC–MS column sequentially starting with the lowest of a series of concentrations of 
analyte. For this approach, referred to as a modified staircase, the summed concentrations 
([A]0+y) refer to initial concentration of the ligand for the first step of the staircase but for the 
second step of the staircase, it will be the sum of the initial concentration plus the 
concentration of the second step. Similarly, the concentration of the ligand for the third step 
of the staircase will be the sum of the initial, second and third steps, and so on for the 
remaining concentrations. A plot of [A]0+y versus reciprocal breakthrough volume supports 
the determination of Bt and Kd by linear regression analysis. This type of assays referred to 
as direct measurements might not always be advantageous, especially if each tested ligand 
required unique mass spectrometric conditions. (Chan et al., 2003; Slon-Usakiewicz et al., 
2005). Indirect methods will be described further (see subsection 3.3) since they require 
usage of known competitive marker ligand. Figure 4 illustrates an ideal chromatogram that 
would arise from the application of this procedure. Note that successively higher void 
marker (a compound that has no affinity for the immobilized protein target and gives the 
same elution front whether the target protein is present in the column or not) concentrations 
are applied as well, to ensure accurate measurement of V0. 
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Fig. 4. Depiction of a typical ‘modified staircase’ experiment to evaluate Kd for a protein 
target (immobilized in the column) and a small molecule ligand. (a) The ligand (blue) is 
infused at increasing concentrations starting from an initial (i) to a final (j) concentration 
along with a void marker (red). (b) The reciprocal of the breakthrough volumes, 1/(Vj-V0), 
are plotted against the summed ligand concentrations, [A]0+yj, to produce a linear 
correlation from which the Kd value can be determined from the y intercept. The total 
amount of immobilized protein (Bt) in the column is then obtained from the slope . 
Reprinted from Drug Discovery Today, Vol. 10, No. 6, Slon-Usakiewicz, J. J., Ng, W., Dai, J. R., 
Pasternak, A., & Redden, P. R. (2005). Frontal affinity chromatography with MS detection 
(FAC-MS) in drug discovery, pp. 409-416, Copyright 2011, with permission from Elsevier. 

The association constant measured from frontal chromatography can be directly related to the 

retention factor obtained from zonal elution chromatography using the same column. Kim & 

Wainer (2008) reported a linear relationship (r2 = 0.9993, n = 7) between the standard 

association constants from frontal analysis and retention factors from zonal elution using 

reference drugs analysed on a column with immobilized HSA. This standard plot was later 

used for rapid determination of association constants of various drugs which show low to 
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medium binding affinity to HSA. Determination of association constants was as fast as 1.5 min 

and showed a high correlation to equilibrium dialysis or ultrafiltration. The combination of 

frontal and zonal chromatography for determining association constants showed several 

advantages, one being rapid determination of association constant of drug to HSA. 

Other notable advantages include an ease of automation and simultaneous ability to 

distinguish association constants of chiral compounds at the same time. Authors suggested 

that the same approach could be used for studying interaction of other drugs and proteins 

and should further improve overall drug screening process. 

There are several advantages of frontal over zonal chromatographic method. In the FAC 

technique, the dynamic capacity of the affinity column for the ligand and the dissociation 

constant for the interaction can be obtained from a single set of experiments. In case of 

zonal elution technique to determine number of binding sites a separate assay or self- 

competition studies are required This makes this approach valuable in characterizing the 

properties of a column and in obtaining accurate measurements of binding affinity and 

activity. 

The direct methods described above are applicable for a broad Kd range from 

submicromolar to low millimolar. The lower limit to Kd determination is dictated by the 

detectability of a given ligand, and while this is both compound- and detector-dependent. 

Zonal chromatographic approach requires a protein stationary phase concentration much 

greater than the applied ligand concentration to ensure the experiment is conducted in the 

linear region of the binding isotherm. Thus consumption of target protein is increased and 

miniaturization capabilities are lower. Smaller column leads to lower amount of 

immobilized protein but also require lower ligand concentrations and this challenges the 

detectability of the ligand. From the same reasons application of zonal chromatography is 

limited to low and mid-micromolar Kd range because either strong (and thus difficult to 

remove from a column) or weak (and thus not well retained) interactions can lead to low 

concentrations of ligand at the detector (Chan et al., 2003 ). 

Frontal elution technique is particularly useful in studies on solvent and temperature 

influence on drug interaction with target molecule. As it was mentioned earlier, analyte 

retention shifts may be due to alterations in either the affinity or number of binding sites. In 

frontal chromatography this is not a problem, since data on both affinity and activity are 

provided in the same experiment. However, frontal techniques need to use much larger 

amount of analyte (Hage & Chen 2006). 

For more theoretical information and practical considerations about frontal and zonal 

elution techniques see comprehensive chapters about QAC in book “Handbook of Affinity 

Chromatography” (2006) edited by prof. David S. Hage. 

3.3 Competition displacement studies 

QAC allows to study relationships between different drugs interacting with the same target 

protein by observing the effect of the addition of one compound on the retention of the 

second. In zonal technique, the retention of a drug is measured in specially prepared mobile 

phase with addition of constant, known concentration of competitive agent. Consecutive 
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injections of an analyte can be applied to a series of mobile phases with increasing 

concentration of competitive agent and changes in the retention as a function of competitor 

concentration allow describing its interaction with test analyte. In case of direct single site 

competitive interactions we should see direct, linear dependence of reciprocal of analyte 

retention factor (1/k) on concentration of competitor added to the mobile phase [I]. 

Increasing value of 1/k (drop in the retention) with an increase of additive concentration 

suggest positive competition of both molecules on the binding site. If this relationship is 

nonlinear, and the increase of competitive reagent in the mobile phase decreases the 

retention of the analyte (increasing 1/k), this suggests that there is negative allosteric 

interaction between them or multisite competitive interaction. The nonlinear nature of the 

dependence 1/k on [I] characterized by an increase in analyte retention as higher 

concentrations of compound are added to the mobile phase, indicates a positive allosteric 

interaction (Hage & Chen, 2006). Examples of such plots representing interactions above 

mentioned are shown in Figure 5. 

 

Fig. 5. Reciprocal plots prepared for analyte and competing agents with various types of 
competition on immobilized HSA columns . Reprinted from Journal of Chromatography B, Vol. 
768, No. 1, Hage, D. S. (2002). High-performance affinity chromatography: a powerful tool for 
studying serum protein binding, pp. 3-30, Copyright 2011, with permission from Elsevier. 

When the interaction is limited to a single binding site on the protein molecule, and 

analysed substances show no other interaction with the stationary phase, the Equation 6 

describes the observed retention: 
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 1 I M M

a L a L

K V I V
= +

k K m K m
 (6) 

In this equation, the VM determines the volume of eluted substances when they are not 
interacting with the ligand (the column dead volume) mL describes the number of moles of 
binding sites for the analyte (A) and competitive agent (I), [I] the concentration of added 
competitive agent, and Ka and KI binding equilibrium constants, respectively (Hage et al., 
2009). In this case, the ratio of the slope of a graph of 1/k dependence on [I] to its intercept will 
determine the KI. Determination of Ka requires separate measurement of the concentration of 
binding sites in the column (mL/VM). Similar approach can be used to define binding affinity 
of multisite and allosteric interaction by choosing the equation best describing the shape of the 
dependence 1/k on [I] (Hage & Chen, 2006; Joseph & David 2010). In case of simple allosteric 
interactions this Equation 7 will have the form (Chen & Hage, 2004): 

 
     

0

0

1 1
1

1I A IL

k
= +

k k β K I

 
     

 (7) 

In this equation, k0 defines the retention factor of an analyte without addition of compound I 
in the mobile phase, and the KIL equilibrium binding constant of I with the immobilized 
protein. In the case of allosteric interactions between compound A and I, the presence of 
compound I leads to increase or decrease in the binding of substance A, which in turn 
changes the equilibrium binding constant (KAL to K'AL). This change is represented in above 
equation as βA → I, which is equivalent to the ratio of K'AL/KAL. If the analysed interaction 
fulfill the assumption described by above equation (7), the plot of k0/(k0-k) against 1 / [I] 
should be linear. Intercept in this case is equivalent to 1/(βA → I - 1), and the slope is 1/[(βA → I -
 1)KIL]. Based on these values it is possible to calculate the βA → I and KIL. The value of βA → I > 1 
indicates a positive allosteric effect of compound I on binding of the analyte A, while βA → I < 1 
indicates a negative allosteric interaction between these two substances. The value of βA → I 
equal to zero suggests competitive interaction between I and A on the immobilized ligand, 
while the value of βA → I equal to unity indicates the absence of any effect of compound I on the 
binding of the substance A (Chen & Hage, 2004). Therefore, it is important that the retention of 
injected analyte resulted solely from its interaction with the immobilized ligand, and not from 
the column overload. In order to confirm this, the retention time should remain unchanged at 
different initial concentration of injected sample. If not, the amount should be decreased until 
the retention time remains constant and/or increase the volume of the column. Also number 
of injections at different flow rates should be done to confirm that the processes of 
association/dissociation are fast enough (compared to how much time analyte spends in the 
column) to create inside the column local state of a binding equilibrium (Loun & Hage, 1995). 
Considerations on the factors that need to be pointed out using the zonal QAC are described in 
publications by prof. D. S. Hage (2002). 

Competition and displacement technique allows to study drug-protein interactions 

occurring on a single binding site, which interacts with injected compound even though the 

drug is bound to several different sites on the protein. In this case, the analysed compound 

(drug) should be used as a competitive addition to the mobile phase, and as injected 

compound analyte with known, specific binding site on the protein. In addition, this 

approach allows to directly calculate the binding equilibrium constant of analysed drug 
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from the ratio of slope to intercept in plot 1/k against [I] (Loun & Hage, 1995; Chen et. al., 

2004; Yoo et al., 2009, Mallik et al., 2008). 

Knowing the location of specific binding site for a substance on the target protein and 

applying an analyte on the column in presence of it, becomes possible to define binding site 

of analysed drug (Yoo et al., 2009; Mallik et al., 2008). Carrying out series of this type of 

experiments we can draw a map of allosteric protein binding sites (Chen et al., 2004). 

It is also possible to use the same compound as an injected analyte and a competitive agent 

(self-competition studies). In this case the Equation 8 describing single site competitive 

interaction will take the form (Hage, 2002): 

 
 1 M m

L a L

V A V
= +

k m K m
 (8) 

Plotting the dependence of 1/k on [A] we can obtain information about the number of 
binding sites for the analyte. In case of a single site interactions it should be a linear 
relationship with a slope equal to mL/VM, and the ratio of the slope to intercept will 
determine Ka (Xuan & Hage, 2005). 

As the zonal elution method, frontal chromatography can also be used in combination with 

competition-displacement technique. Increasing concentrations of the competitive ligand in 

the presence of constant concentration of a marker are added to the mobile phase and the 

effect on the breakthrough volumes of marker is measured. Decreasing breakthrough time 

of marker with increasing concentration of competing agent suggests direct competition 

between them. If positive or negative allosteric effect of displacement agent on binding 

reaction is occurring, shift to lower or higher marker breakthrough times should be 

observed. Using Equation 9 the relationship between displacer concentration [D] and 

marker retention volume can be used to determine the Kd value of the displacer as well as 

the number of active binding sites (Bt). 

     
  0

t

d

B D
D V V =

K + D
  (9) 

In above equation V is the retention volume of marker and V0 is the retention volume of 

marker when the specific interaction is completely suppressed. From the plot of [D](V-V0) 

versus [D], dissociation constant values for displacer ligand can be obtained (Moaddel & 

Wainer, 2006). 

Chan and co-workers (2003) reported an alternative ‘‘competitive’’ assay format for Kd 

determination of tested ligands. FAC column is equilibrated with increasing concentrations 
of test ligand, with no washing between infusions. Each equilibration is bracketed by an 
infusion of the indicator (marker ligand detectable by MS) and void marker, and the 
adjusted breakthrough volume (V-V0) of the indicator is monitored by mass spectrometry. 
At high indicator dilution relative to Kd of the particular interaction ([A]0 is negligible 
compared with Kd ), the breakthrough value is insensitive to slight changes in its 
concentration and achieves its maximum value (Vlimit). In this mode the indicator is not 
competing with test ligand, but merely quantitating uncomplexed immobilized protein 
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(column capacity). This operational mode is very practical because a weak ligand (i.e., with 
high Kd) can be applied at modest concentrations and still function in the linear region of its 
binding isotherm. Weak ligands break through the column quickly and are easily washed 
out, thus providing a rapid probe of column capacity. This method is referred to as the 
indirect staircase approach for Kd determination (Chan te al., 2003).  

The competition displacement methods are insensitive to non-specific binding since they are 
measuring a retention changes only due to allosteric or competitive interactions between 
drugs on a specific binding surface of target protein. 

Aside from the utility of the FAC technique to provide accurate dissociation constants 
measurements for individual ligands, combination of frontal QAC with mass spectrometry 
allows rapid screening of mixtures of substances for their pharmacological activity, and the 
results show a high correlation with those obtained by traditional methods. FAC-MS 
screenings can be done with and without an indicator. In the second case detection is 
performed at selected m/z values to detect individual ligands and void marker. This allows 
to evaluate set of ligands in a single experiment (Ng et al., 2007). 

In the indicator method, analysed compound is applied on the affinity column 
simultaneously with the indicator and the extent (or percentage) to which they shifts an 
indicator is determined. To compare the reductions in the breakthrough times for indicator 
in the presence of the ligands, the %shift is quantified from Equation 10. This FAC–MS 
readout can be used to rank the binding of a series of ligand or ligand mixtures: the greater 
the percentage shifts, the greater the degree of competition with the indicator. Mixtures in 
which a significant displacement (or shift) of the indicator is observed merit further 
investigation and deconvolution (Slon-Usakiewicz et al., 2004, as cited in Calleri et al., 2010). 

 100I

I NSB

t t
%shift =

t t





 (10) 

 

Fig. 6. Typical FAC curves obtained using the “indicator” screen method.  

In above equation (10) t is the breakthrough time difference, measured at the inflection 
point, of the sigmoidal fronts between the indicator and a void marker in the presence of 
any competing ligand(s); tNSB is the non-specific binding breakthrough time difference in the 
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absence of immobilized protein (and is a constant for the indicator used); and tI is the 
breakthrough time difference in the absence of any competing ligands. Typical FAC curves 
obtained using the indicator screen method is shown in Figure 6. 

For more detailed information about FAC-MS technique the readers are referenced to 

reviews (Chan et al., 2003; Slon-Usakiewicz et al., 2005; Calleri et al., 2009). 

3.4 Nonlinear chromatography for determination of kinetics parameters 

Peaks obtained in zonal AC differ from Gaussian shape observed frequently in classical 

chromatographic analyses. Because we have to deal with column overload and slow kinetics 

of adsorption/desorption during assays, peaks exhibit a strong tailing, which increases with 

increased concentration of an analyte. Observed asymmetry can arise from a variety of other 

factors-including extra column effects, heterogeneity of the stationary phase, heterogeneous 

mass transfer or a non-linear isotherm (Wade et al., 1987, as cited in Moaddel & Wainer, 

2006). The degree of deviation from a Gaussian distribution is a function of applied ligand 

concentration and the kinetics of ligand–receptor interactions occurring during the 

chromatographic process. An example of the effect of solute concentration on peak shape is 

presented in Figure 7, which shows the example of usage of nonlinear chromatography 

(NLC) for determination of kinetic parameters for the ǂ3ǃ4 nAChR allosteric inhibitors 

(Jozwiak et al., 2002). 

Fig. 7. The effect of increasing concentraions of mecamylamine, from 1 to 1,000 mM, on the 

chromatographic profiles of mecamylamine. For experimental details, see reference (Jozwiak 

et al., 2002). 

While peak tailing (or fronting) is a problem in analytical separations, concentration-

dependent asymmetry can be used with NLC techniques to characterize the separation 

processes occurring on the column. When the chromatographic process includes binding 

interactions between a ligand and an immobilized membrane bound receptor, the NLC 
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approach can be used to calculate the association rate constant (kon), dissociation rate 

constant (koff) for the ligand–receptor complex and the equilibrium constant for complex 

formation (K). One approach to the analysis of NLC data is the Impulse Input Solution for 

the mass balance equation developed in 1987 by Wade and collaborators (Wade et al., 1987, 

as cited in Moaddel & Wainer, 2006). This approach is based upon the observation that 

when adsorption/desorption rates are slow, band broadening is insensitive to a moderate 

degree of column overload. In contrast to numerical integration methods this approach uses 

the analytical solution, which can be applied directly to fit experimental peak profiles. The 

Impulse Input Equation has been included in commercially available deconvolution 

software, and can be easily applied to NLC studies. The peak area parameter (a0), peak 

center parameter (a1), its width (a2) and distortion (a3) are the parameters used to describe 

the chromatographic traces. Thermodynamic and kinetics parameters of a drug-receptor 

complex formation are then calculated on the basis of the relationship:  

k' = a1 the real thermodynamic capacity factor 

kd = 1/a2t0 desorption reaction rate constant 

Ka = a3/C0 adsorption equilibrium constants, where C0 is the concentration of solute injected 
multiplied by the width of the injection pulse (as a fraction of column dead volume)  

ka = kd Ka reaction rate constant of adsorption 

4. Examples of application 

QAC was successfully used to describe drug interactions with multiple different system 

proteins. In case of soluble proteins this approach was applied to determine binding of 

different active substances (drugs, hormones) with e.g. serum albumins (HSA), ǂ1-acid 

glycoprotein (AGP) or nucleic estrogen receptors (hER). 

Xuan & Hage (2005) conducted research on immobilized ǂ1-acid glycoprotein (AGP) 
demonstrating good correlation (0.954) of observed retention factors of several compounds 
with their equilibrium binding constants to AGP designated by other methods. In the same 
work authors, using the self-competition technique, confirmed the literature data on 
existence of one binding site for propranolol enantiomers on this protein. Determined values 
of Ka were also included in the range of values known from other experiments. Performing 
the analysis at different temperatures, changes in enthalpy and entropy of propranolol 
enantiomers binding to ǂ1-acid glycoprotein, and their contribution in the total energy 
change in the process of binding were determined. It was found, that this reaction depends 
mainly on the enthalpy, but entropy change also significantly affects the binding of 
propranolol. Linearity of the plot confirmed the single-side character of binding of this 
compound by the AGP. 

Combination of zonal QAC with competition-displacement studies confirmed the negative 
allosteric nature of the interaction between verapamil and tamoxifen. It was determined that 
verapamil causes 41% decrease in binding constant of tamoxifen by immobilized HSA 
(Malik et al., 2008). As mentioned earlier, using compound of interest as a competitive 
addition to the mobile phase it is possible to define its interactions with target protein on a 
single binding site even though the drug is bound to several different sites on the protein. 
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Such solution has been used in the study of binding of both; hormones (Loun & Hage, 1995) 
and drugs (Chen et. al., 2004; Yoo et al., 2009; Mallik et al., 2008) to different places in the 
HSA molecule. Simultaneous injection of imipramine with L-tryptophan on the column with 
immobilized HSA, showed a competitive interaction between those two drugs, confirming 
that imipramine specifically connects to the indole-benzodiazepine binding site on the 
molecule of albumin (Sudlow site II). This analysis also allowed to determine the 
equilibrium constant of this interaction (Yoo et al., 2009). Analogously was defined binding 
site for the verapamil on this protein, demonstrating in this case, competitive interaction 
with warfarin, specifically connecting to Sudlow site I. This was confirmed by elution in the 
presence of tamoxifen. Nonlinear dependence of retention of this compound on verapamil 
concentration showed a high correlation to the equation describing the allosteric interaction, 
characteristic for interaction that is observed between the tamoxifen binding site and the 
warfarin binding site (Sudlow I) (Mallik et al., 2008). Team of Chen and colleagues (2004) 
determined the nature of the interaction of phenytoin by drawing a map of interactions of 
the drug with the major binding sites on the surface of HSA on the basis of the relationship 
between 1/k of the compounds with confirmed specific binding site on albumin molecule, 
and various concentrations of phenytoin as a mobile phase additive during elution. Thus 
suggested the potential impact of other concomitant medications on the efficacy of therapy 
with phenytoin. 

The effect of different assay conditions on drug-protein interaction was used, for example to 
define the influence of long-chain fatty acids concentration in the plasma and glycation of 
plasma transport proteins on the binding of sulfonylurea drugs in diabetes. Experiments 
were carried out using columns with immobilized HSA (Basiaga & Hage, 2010). 

Recently Sanghvi and co-workers (2010) successfully immobilized the ligand binding 
domains of the estrogen related receptors ERRǂ and ERRǄ onto the aminopropyl silica 
liquid chromatography stationary phase, as well as the surface of the open tubular 
capillaries, creating the ERR-silica and ERR-OT columns. Both types were characterized 
using frontal chromatographic techniques with diethylstibesterol and the binding affinities, 
expressed as Kd values, to the immobilized receptors were consistent with the literature 
data. Biochanin A, the ERRǂ agonist, was also used to further characterization of properties 
of the ERRǂ-silica column, and obtained Kd value was consistent with the previously 
reported data. The ERRǄ-silica column was characterized using nonlinear chromatographic 
techniques using a series of tamoxifen derivatives (tamoxifen, 4-hydroxy tamoxifen and N-
desmethyl 4-hydroxytamoxifen, Endoxifen). The relative Kd values obtained for the 
derivatives were consistent with relative ability of the compounds to inhibit the cellular 
proliferation of the human-derived T98G glioma cell line, expressed as IC50 values. The 
results indicate that the relative retention of compounds on these columns reflects the 
magnitude of their inhibitory activity. Therefore columns containing immobilized ERRs can 
be used for a preliminary screen for anti-glioma agents, such as tamoxifen, which work as 
selective estrogen receptor modulator and that this method may replace current laborious 
and time consuming cellular uptake studies. 

QAC has been applied to study drug-receptor interactions in the ǂ1 adrenergic receptor 

system. The results showed a positive correlation of chromatographic data (k') with 

literature data defining the affinity of ligands on the basis of radio ligand studies with cell 

membrane homogenates containing ǂ1 adrenergic receptor (Yu et al., 2005).  
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QAC was also used in determination of binding site structure of the ǂ3ǃ4 nAChR. 

Comparing the retention time of tritium labelled epibatidine ([3H] EB) on four different 

columns: with immobilized either receptor subunit ǂ3 or ǃ4 subunit, both subunits 

immobilized on the same column and complete pentameric ǂ3ǃ4 receptor, it was found that 

the binding site for this compound is formed by several subunits of the complete receptor, 

and not on the individual subunits. This was confirmed by assays with nicotine as a 

competitive additive to the mobile phase. No impact of nicotine on the retention of [3H] EB 

on columns with immobilized subunits was observed, while the epibatidine retention on the 

column with complete receptor decreased from k = 8.4 to k = 1.5, which indicates the 

interaction of nicotine on [3H] EB binding site (Wainer et al., 1999). In the same work the 

effect of pH and ionic strength of mobile phase on the retention of [3H] epibatidine in the 

ǂ3ǃ4 nAChR column was also examined using zonal elution technique. Analyses showed an 

increase in epibatidine retention with increasing mobile phase pH from pH 4 to pH 7 and a 

significant decrease in the retention of this compound with increasing ionic strength of 

mobile phase (5-200 mM ammonium acetate concentration). These results showed that the 

binding of competitive agonists is mainly electrostatic interaction between drug molecule 

and the binding site on the nAChR. 

QAC in combination with displacement studies were used in case of ǂ3ǃ4 nAChR to 
confirm the location of binding sites of allosteric inhibitors of this receptor. Elution of 
bupropion, ketamine and dextromethorphan was conducted in the presence of 
mecamylamine (nAChR blocker) as an addition to the mobile phase. The linear dependence 
of eluted compounds 1/k' on the displacer concentration indicates that all tested inhibitors 
compete for the same binding site on the receptor molecule. Additional studies also showed 
no effect of mecamylamine in the mobile phase on epibatidine retention and no effect of 
nicotine in the mobile phase on the retention of ketamine and bupropion. It indicates that 
ketamine, bupropion, mecamylamine bind to other sites on the receptor surface than 
nicotine and epibatidine and do not compete for the binding site (Jozwiak et al., 2002). In the 
same work nonlinear chromatography (NLC) model was used to analyse interactions 
between the immobilized ǂ3ǃ4 nAChR, and its allosteric inhibitors. Peak profiles from zonal 
elution of allosteric inhibitors (ketamine, bupropion, mecamylamine, and dextrometorfan), 
recorded by the mass spectrometry were numerically fitted to Impulse Input Solution model 
using PeakFit v4.11 software (SPSS Inc., Chicago, IL). The results (kon, koff, K) were consistent 
with available literature data, thus confirming the effectiveness of the NLC in receptor drug 
binding kinetics study, in this case allosteric nAChR inhibitors. In further work 
enantioselectivity of the interaction of dextromethorphan (DM) and levomethorphan (LM) 
with an immobilized ǂ3ǃ4 nAChR subtype liquid chromatographic stationary phase has 
been compared to DM- and LM-induced non-competitive blockade of nicotine-stimulated 
86Rb+ efflux from cells expressing the ǂ3ǃ4 nAChR. Since DM and LM are enantiomers and 
have the same physicochemical properties, any chromatographic and pharmacological 
differences must be due to specific interactions with nAChR. Asymmetrical peaks were 
observed for both compounds and DM had significantly longer retention time than LM 
(Figure 8). Determined by NLC kon values of both compounds did not significantly differ 
while koff of DM was significantly lower than koff value of LM. That was in good agreement 
with results of the functional inhibition studies which showed that DM and LM had 
equivalent potencies, i.e. the same IC50 values, but that DM inhibition lasted longer than the 
effect produced by LM. The effect of temperature on the chromatographic retention of DM 
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and LM on the nAChR column was also determined using a sequence of temperature 
experiments ranging from 5 to 30°C. Respective k’s values of independently injected 
compound were determined and van’t Hoff plots were constructed by plotting ln k versus 
1/T. Results showed that the binding reaction is enthalpy driven. In addition, for DM and 
LM there was no significant difference in the ΔS° values, while the ΔH° value for the DM-
nAChR interaction was significantly lower than respective value for LM-nAChR interaction 
showing that the enantioselectivity of ǂ3ǃ4 nAChR is mostly enthalpy-based (Jozwiak et al., 
2003).The results of those studies demonstrated that non-linear chromatography approach 
of investigations of immobilized nAChRs can be useful in characterizing ligand–receptor 
binding interactions and predicting of properties of drugs and drug candidates. Additional 
NLC studies with this system were used to construct QSAR models of non-competitive 
inhibitors of the nAChR (Jozwiak et al., 2004), to develop a molecular model of these 
interactions (Jozwiak et al., 2004) and to predict IC50 values (Jozwiak et al., 2005) 

 

Fig. 8. The comparison of peak profiles of DM and LM obtained in independent experiments 
of consequent injections. Reprinted from Journal of Chromatography B, Vol. 797, No. 1-2, 
Jozwiak, K., Hernandez, S. C., Kellar, K. J., & Wainer, I. W. (2003). Enantioselective 
interactions of dextromethorphan and levomethorphan with the ǂ3ǃ4-nicotinic 
acetylcholine receptor: comparison of chromatographic and functional data, pp. 373-379, 
Copyright 2011, with permission from Elsevier 

Competition displacement studies with [3H]epibatidine and [125I]ǂ-bungarotoxin as marker 

radioligands specific for ǂ3ǃ4 and ǂ7 nAChRs subtypes respectively were applied to 

determine Ki values and check subtype selectivity of newly synthesized derivatives of 

epiboxidine, synthetic epibatidine-related compounds (Rizzi et al., 2008). 

Another interesting application of QAC is use of immobilized-enzyme reactors (IMERs). In 

medicinal chemistry research IMERs are applied to drug metabolism studies, 

enantioselective analyses and for the identification of substrates and inhibitors as potential 

drugs. Interestingly, the investigated enzymatic reaction took place directly on the column. 

www.intechopen.com



Affinity Chromatography as a Tool for Quantification of  
Interactions Between Drug Molecules and Their Protein Targets 

 

295 

Attractive features of immobilized enzyme reactors are the increased enzyme stability and 

the reusability coupled to accuracy, automation and potential high throughput when they 

are inserted in a HPLC system (Bartolini et al., 2005). The approach requires neither highly 

purified enzyme nor use of labelled substrates (radio- or color labelled). In immobilized 

enzymes, inhibitors efficacies can be measured either as IC50 values or Ki values using 

numerical transformation. Enzyme kinetic parameters are determined by successive 

injection of a substrate at increasing concentrations and measuring the rate of enzymatic 

reaction (V) expressed as peak area of product formed after each injection. Fitting the data to 

Lineweaver–Burk double-reciprocal plot of 1/(V) against the substrate concentration [S] 

(what is a linear transformation of the Michaelis–Menten plot), Km and Vmax values can be 

obtained. The y-intercept of such graph is equivalent to the inverse of 1/Vmax, the x-intercept 

of the graph represents -1/Km. In order to obtain correct results the concentration of 

substrate should be normalized according to the formula 11. 

   inj injC V
S =

BV


 (11) 

where Cinj is the injected substrate concentration, Vinj is the injected volume and BV is the 

bed volume of the IMER. 

To determine the inhibition constant (Ki) for a test drug a set of inhibitor injections in several 

different concentrations ([I]) at two or more concentration of a substrate should be 

performed. As noted by Dixon in 1953, if 1/V is plotted against inhibitor concentration [I], a 

straight line plot is obtained for each substrate concentration [S]. The [I] value of a intersect 

of those lines is equal to -Ki. If curves obtained for several different [S] converge in the left 

upper quadrant of a chart, the inhibitor is competitive. If curves converge on the [I] axis, the 

inhibitor is non-competitive. For not competitive inhibition, the lines are parallel. 

Simultaneous injections of both a substrate at a fixed saturating concentration and increasing 
concentration of an inhibitor, result in increasing reduction of the peak area (Ai) in comparison 
to area obtained for a substrate alone (A0). The percent inhibition (100 - (Ai/A0 x 100)) is then 
plotted against the inhibitor concentration to obtain the inhibition curves (Girelli & Mattei, 
2005; Nie & Wang, 2009). Recently this technique has been used for the kinetic characterization 
of inhibitors specific to brain-targeted butyrylcholinesterase (BuChE) (Bartolini et al., 2009), 
acetylocholinesterase (AchE) (Bartolini et al., 2004; Bartolini et al., 2005; He et al., 2010) and ǃ-
secretase (human recombinant ǃ-amyloid precursor protein cleaving enzyme, 
hrBACE1)(Mancini & Andrisano, 2010) as potential therapeutics for Alzheimer’s disease. 
IMER was also used for rapid and cost-effective on-line chromatographic screening of matrix 
metalloproteinases (MMP-9 (Ma & Chun Yong Chan, 2010) and MMP-8 (Mazzini et al., 2011)) 
inhibitors that may be useful in cancer therapy and for determining the role of some derived 
plant products for treating NO-dependent smooth disorders using monolithic micro-IMER 
with covalently bounded arginase (André et al., 2011). 

5. Conclusions 

The drive to bring innovative drugs to market faster, without compromising quality and 
safety, induced need for new experimental techniques and methodologies. It is crucial to 
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determine biological activity, drug-target interactions and physico-chemical properties of 
drug candidates as predictors of administration, distribution, metabolism, excretion 
(ADME) characteristics. In fact, development of rapid methodologies enabling to obtain 
those information is a key aspects of the drug discovery process. QAC as rapid, relatively 
simple technique with the possibility of automation proved to be useful alternative to 
conventional methods in the field of drug discovery and analysis. This method is facilitated 
by multiple use of the same column with the immobilized target and as a consequence the 
reproducibility of assays is increased. Thanks to the above features QAC becomes popular 
method of measuring binding affinity of the drug-protein interactions. Variety of data that 
we can obtain via this technique allows characterization of binding reactions as well as 
description of the binding site. The development of techniques of high-yielding synthesis 
increases demand for technology that would allow pharmaceutical companies for efficient 
and rapid biological screening of thousands of synthesized compounds (Renaud & Delsuc, 
2009). Taking into account that approximately one drug is produced after 8000-10000 
compounds were subjected to primary and secondary drug screens, the classical approach, 
one compound-one assay, becomes unsatisfactory (Caldwell, 2000; as cited in Nie & Wang, 
2009) . Studies conducted by Ng and colleagues have shown that use of an automated high 
performance chromatographic system consisting of two affinity columns and a mass 
spectrometer as the detector, allow to analyse and rank activity of 10 000 compounds in just 
24 hours (Ng et al., 2007). Thus QAC techniques seem to be an promising method of 
preliminary verification of drug candidates, which is an alternative to expensive and tedious 
in vitro assays.  
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