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1. Introduction 

Today, groundwater is a major source of supply for domestic and agricultural purposes; 
especially in arid and semi arid regions. More water is being consumed to meet of a society 
whose population increases steadily. Worldwide, irrigated land has increased from 50 
million ha in 1900 to 267 million ha in 2000 (Cay and Uyan, 2009). The climatic changes 
stemming from global warming also have negative effects on water resources. Both over 
exploitation from aquifers, and drought events have caused severe water table level drop in 
many areas. However, the level of groundwater has reduced remarkably in many areas, as a 
result of unconscious and excessive irrigation. Depletion of groundwater supplies, conflicts 
between groundwater and surface water users and potential for groundwater contamination 
are the main concerns that will become increasingly important as further aquifer 
development takes place in any basin.  

The natural chemical composition of groundwater is influenced predominantly by type and 

depth of soils and subsurface geological formations through which groundwater passes. 

Groundwater quality is also influenced by contribution from the atmosphere and surface 

water bodies. Quality of groundwater is also influenced by anthropogenic factors. For 

example, over exploitation of groundwater in coastal regions may result in sea water ingress 

and consequent increase in salinity of groundwater and excessive use of fertilizers and 

pesticides in agriculture and improper disposal of urban/industrial waste can cause 

contamination of groundwater resources.  

Groundwater systems possess features such as complexity, nonlinearity, being multi-scale 
and random, all governed by natural and/or anthropogenic factors, which complicate the 
dynamic predictions. Therefore many hydrological models have been developed to simulate 
this complex process. Models based on their involvement of physical characteristics 
generally fall into three main categories: black box models, conceptual models and physical 
based models (Nourani and Mano, 2007). The conceptual and physically based models are 
the main tools for predicting hydrological variables and understanding the physical 
processes that are taking place in a system. In these models, the internal physical processes 
are modeled in a simplified way. Even if not applying the exact differential laws of 
conservation, conceptual models attempt to describe large scale behavior of hydrological 
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processes in a basin. However, these models require a large quantity of good quality data, 
sophisticated programs for calibration using rigorous optimization techniques and a 
detailed understanding of the underlying physical process. Because of the recognized 
limitations of these models and the growing need to properly manage overdeveloped 
groundwater systems, significant researches have been devoted to improve their predictive 
capabilities. Despite large investments in time and resources, prediction accuracy attainable 
with numerical flow models has not improved satisfactorily for many types of groundwater 
management problems. Studies on groundwater levels reveal spatial and temporal 
information on aquifers and aquiferous systems and help us to take appropriate measures. 
For management of groundwater resources, traditional numerical methods, with specific 
boundary conditions, are able to depict the complex structures of aquifers including 
complicated prediction of groundwater levels. However, the vast and accurate data required 
to run a numerical model are difficult to obtain owing to spatial variations and the 
unavailability of previous hydrogeology surveys. As a result, numerical methods have been 
restricted in their use in remote, sparsely monitored areas. If sufficient data are not 
available, and accurate predictions are more important than understanding the actual 
physics of the situation, black box models remain a good alternative method and can 
provide useful predictions without the costly calibration time (Daliakopoulos et al., 2005).  

In recent years, Artificial Neural Network (ANN) as a black box model has been widely 
used for forecasting in many areas of science and engineering. ANNs are proven to be 
effective in modeling virtually any nonlinear function to an arbitrary degree of accuracy. 
The main advantage of this approach over traditional methods is that the method does not 
require the complex nature of the underlying process under consideration to be explicitly 
described in mathematical form. This makes ANNs attractive tools for modeling water table 
fluctuations. 

The development of ANNs began approximately 70 years ago (McCulloch and Pitts, 1943), 
inspired by a desire to understand the human brain and emulate its behavior. Although the 
idea of ANNs was proposed by McCulloch and Pitts, the development of these techniques 
has experienced a renaissance only in the last decades due to Hopfield’s effort (Hopfield, 
1982) in iterative auto-associable neural networks. A tremendous growth in the interest of 
this computational mechanism has occurred since Rumelhart et al. (1986) rediscovered a 
mathematically rigorous theoretical framework for neural networks, i.e., back propagation 
algorithm. Consequently, ANNs have found applications in many engineering problems.  

Since the early nineties, ANNs have been successfully used in environmental and 
hydrology-related areas such as rainfall-runoff modeling, stream flow forecasting, 
groundwater modeling, water quality, water management policy, precipitation forecasting, 
and reservoir operations (ASCE, 2000a,b). Also, ANN models have been used for rainfall-
runoff modeling (Tayfur and Singh, 2006), precipitation forecasting and water quality 
modeling (Govindaraju and Ramachandra Rao, 2000). In the water level modeling context, 
Tayfur et al. (2005) presented an ANN model to predict water levels in piezometers placed 
in the body of an earthfill dam in Poland considering upstream and downstream water 
levels of the dam as input data. Neural networks have also been applied with success to 
temporal prediction of groundwater level (Coulibaly et al., 2001). Two researches have been 
carried out for forecasting floods in a karestic media (Beaudeau et al., 2001) and determining 
aquifer outflow influential parameters, and simulating aquifer outflow in a fissured chalky 
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media (Lallahem and Mania, 2003). ANNs have been successfully used for identifying the 
temporal data necessary to calculate groundwater level in only one piezometer (Lallahem et 
al., 2005). ANNs were also employed to solve complex groundwater problems and for 
predicting transient water level in a multilayer groundwater system under variable pumping 
states and climate conditions (Coppola et al., 2003). Coppola et al. (2005) developed an ANN 
model for accurately predicting potentiometric surface elevations in alluvial aquifers. 
Relationships among lake levels, rainfall, evapotranspiration and groundwater levels were 
determined by Dogan et al. (2008) using ANN-based models. Nourani et al. (2008) employed 
ANN approach for time-space modeling of groundwater level in an urbanized basin. 

In spite of reliable ability of the ANNs in temporal and time series predictions, they could 
not find notable application for the spatial modeling of the environmental processes. 
Instead, geostatistics powerful interpolating tools are extremely used for unbiased 
estimation of the spatial variables at a given point. Geostatistics has made rapid advances in 
recent years since it first developed by Matheron (1963). Recently, the term geostatistics has 
been used more generally to describe all applications of statistics in hydrogeology in which 
the attributes is a random field in space. The heterogeneity of the subsurface often is difficult 
to characterize adequately for use in deterministic models; therefore, geostatistical 
techniques often are used to generate estimates of parameters in deterministic mathematical 
models where parameters are random variables in space. For groundwater flow problems, 
attributes such as water levels are sampled at a limited number of sites whereas values at 
un-sampled sites usually are needed for analysis. Geostatistical techniques such as Kriging 
and Cokriging can be applied to estimate the values of attributes at un-sampled sites (Ma et 
al., 1999). For examples, various forms of geostatistical tools have been used to map 
potentiometric surfaces from water level data alone (Delhomme, 1978; Aboufirassi and 
Marino, 1983; Neuman and Jacobsen, 1984). A comprehensive review of the applications of 
geostatistics to hydrogeology can be found in the ASCE Task Committee report (ASCE, 
1990). Also, a few applications of the geostatistics tools in groundwater level predictions can 
be found in the literature (e.g. Ma et al., 1999; Finke et al., 2004; Gundogdu and Guney, 2007; 
Barca and Passarella, 2008; Cay and Uyan, 2009; and Taany et al., 2009). 

Nourani et al., (2010) proposed a hybrid model (ANNG) for spatiotemporal forecasting of 
groundwater level in coastal aquifers. The basic idea of the models combination in the 
forecasting is the use each model’s unique feature to capture different pattern in the data. Both 
theoretical and empirical findings suggest that the combining different methods can be 
efficient way to improve forecasting (Zhang and Dong, 2001). Therefore, the developed hybrid 
model employs the ability of ANN in time series modeling and capability of Kriging in spatial 
estimation in a unique framework and may be considered as a more general groundwater 
level modeling tool. According to the inherent capability of ANNs in temporal forecasting and 
geostatistics tools in spatial estimating, a new modified hybrid ANN-Geostatistic (MANNG) 
black box model is proposed in this text and its potential is evaluated for spatio-temporal 
prediction of groundwater level and salinity in a coastal aquifer located in Iran. 

2. Study area and data 

The data used in this study are from the Shabestar plain (Figure 1) which is located in 

northwest Iran at Azerbaijan province (between 45o 26' and 46o 2' north latitude and 38o 3' 

and 38o 23' east longitude). The plain area is 1300 km2 and its main channel is Daryanchai 
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which discharges to Urmieh Lake. The headwaters of the river are situated in the Misho 

Mountain. Plain elevation is varying between 1278 m to 3135 m above sea level and its 

longest waterway has 15 km length.  

 

Fig. 1. Study area 

The mean daily temperature varies from -19oC in January up to 42oC in July with a yearly 

average of 11oC and the average annual rainfall is about 250 mm. 

Urmieh Lake, located in northwestern Iran, is an oligotrophic lake of thalassohaline origin 
and the20th largest, and the second hyper saline lake in the world with a total surface area 
between 4750 and 6100km2 and a maximum depth of 16 m at an altitude of 1250 m. The lake 
is divided into north and south parts separated by a causeway in which a 1500 m gap 
provides little exchange of water between the two parts. Due to drought and increased 
demands for agricultural water in the lake's basin, the salinity of the lake has risen to more 
than 300g/l during recent years, and large areas of the lake bed have been desiccated. The 
possible causes of rising salinity are likely to be surface flow diversions, groundwater 
extractions and unsuitable climate condition. 

Fluctuation of Urmieh Lake water levels has tremendous environmental impacts, especially 

on the adjoining groundwater resources. About 4.4 million people live in the Urmieh Lake 

basin, whose irrigation economy is strongly dependent on existing surface and groundwater 

resources in the area. Accordingly, human population growth in the lake's basin has 
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seriously increased the need for agricultural and potable water in recent years, all of which 

are supplied from surface and groundwater sources in the area. These issues, together with 

poor weather conditions, have reduced significantly the volume of water entering the lake 

so that, at present, Urmieh Lake has shrunk significantly and large areas of the former lake 

bed have been exposed. According to the interaction between the water depth of the lake 

and groundwater level of the plain, decreasing of the water depth of the lake leads to 

decrease of groundwater level of the plain and also increase the groundwater salinity. In 

this research, it is tried to utilize the ANN and geostatistic concepts in order to investigate 

the effects of the lake's water depth and other hydro-meteorological parameters on the 

groundwater level and salinity via a spatiotemporal modeling.  

The data utilized in this study were collected over 13years (from April 1994 to March 2006) 
with one month time interval. Table 1 shows the statistical analysis of the observed 
groundwater levels of piezometers. 

 

Piez. 
No. 

X(UTM) 
(m) 

Y(UTM)
(m) 

Piezometer
Elevations 

(m) 

Mean 
(m) 

Min. 
(m) 

Max. 
(m) 

Variance 
Standard 
deviation 

(m) 

Skewness 
coefficient 

P1 586050 4238025 1401.48 1390.0 1389.6 1391.1 0.069140 0.262944 1.224652 

P2 562800 4230450 1583.24 1547.8 1540.9 1553.8 8.785094 2.963966 -0.12895 

P3 561450 4217350 1277.70 1333.7 1331.4 1336.8 1.211814 1.100824 0.132759 

P4 562250 4221350 1322.79 1272.0 1268.1 1276.2 3.930377 1.982518 0.026029 

P5 576925 4223350 1309.97 1297.7 1295.4 1303.4 3.523323 1.877052 1.473395 

P6 577600 4222950 1303.96 1302.5 1301.7 1303.6 0.235159 0.484932 0.611962 

P7 584800 4229250 1325.98 1299.1 1298.1 1301.3 0.399340 0.631933 1.321099 

P8 546600 4223900 1301.86 1321.8 1319.5 1323.7 1.302649 1.141337 -0.374780 

P9 551700 4220350 1292.05 1282.2 1279.0 1284.4 3.338116 1.827051 -0.346380 

P10 554550 4220050 1289.02 1284.2 1282.4 1285.8 0.970875 0.985330 0.031911 

P11 555050 4220250 1288.98 1285.9 1283.6 1287.3 0.805980 0.897764 -0.651490 

Table 1. Statistical analysis of observed data in piezometers 

The monthly data collected consist of the following categories:  

1. Observed water levels and salinities of piezometers located within the Shabestar plain 
(P1, P2, P3,…, P11 for training and TP1, TP2, and TP3 for cross-validation purposes ). 
Figure 2 shows positions of the piezometers in the study area. 

2. Rainfall in Sharafkhaneh station,  
3. Average discharge of Daryanchai in Daryan station,  
4. Urmieh Lake level,  
5. Temperature in Sharafkhaneh station. 

3. Artificial Neural Network 

ANNs offer an effective approach for handling large amounts of dynamic, non-linear and 

noisy data, especially when the underlying physical relationships are not fully understood. 

This makes them well suited to time series modeling problems of a data-driven nature. In 

general the advantages of an ANNs over other statistical and conceptual models can be 

classified as (Nourani et al., 2008): 
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Fig. 2. Piezometers positions 

1. The application of ANN does not require a prior knowledge of the process because 
ANNs have black-box properties, 

2. ANNs have the inherent property of nonlinearity since neurons activate a nonlinear 
filter called an activation function, 

3. ANNs can have multiple input having different characteristics, which can represent the 
time-space variability, 

4. ANN has been proven to be effective in modeling virtually any nonlinear function to an 
arbitrary degree of accuracy. The main advantage of this approach over traditional 
methods is that it does not require the complex nature of the underlying process under 
consideration to be explicitly.  

ANN is composed of a number of interconnected simple processing elements called neurons 
or nodes with the attractive attribute of information processing characteristics such as 
nonlinearity, parallelism, noise tolerance, and learning and generalization capability. 
Among the applied neural networks, the feed forward neural networks (FFNN) with back-
propagation (BP) algorithm are the most common used methods in solving various 
engineering problems (Nourani et al., 2009). 

FFNN technique consists of layers of parallel processing elements called neurons, with each 
layer being fully connected to the preceding layer by interconnection strengths, or weights. 
Initial estimated weight values are progressively corrected during a training process that 
compares predicted outputs with known outputs. Learning of these ANNs is generally 
accomplished by Back Propagation (BP) algorithm (Hornik et al., 1989). The objective of the 
BP algorithm is to find the optimal weights, which would generate an output vector, as close 
as possible to the target values of the output vector, with the selected accuracy.  

The network is determined by architecture of the network, the magnitude of the weights 
and the processing element's mode of operation. The neuron is a processing element that 
takes a number of inputs, weights them, sums them up, adds a bias and uses the results as 
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the argument for a singular valued function called the transfer function. The transfer 
function results in the neuron's output. At the start of training, the output of each node 
tends to be small. Consequently, the derivatives of the transfer function and changes in the 
connection weights are large with respect to the input. As learning progresses and the 
network reaches a local minimum in error surface, the node outputs approach stable values. 
Consequently the derivatives of the transfer function with respect to input, as well as 
changes in the connection weights, are small. 

The Back Propagation (BP) neural network is the most widely used ANN in hydrologic 
modeling and is also used in this study. A typical BP neural network model is a full-
connected neural network including input layer, hidden layer and output layer.  

Back-propagation (BP) algorithms use input vectors and corresponding target vectors to train 
ANN. The standard BP algorithm is a gradient descent algorithm, in which the network 
weights are changed along the negative of the gradient of the performance function. There are 
a number of variations in the basic BP algorithm that is based on other optimization 
techniques such as conjugate gradient and Newton methods (Hornik et al., 1989). 

For properly trained BP networks, a new input leads to an output similar to the correct 
output. This ANN property enables training of a network on a representatives set of 
input/target pairs and achieves sound forecasting results. A clear systematic document 
about the BP algorithm and the methods for designing the BP model are given by Basheer 
and Hajmeer (2000) and Jiang et al. (2008). Some researchers claim that networks with a 
single hidden layer can approximate any continuous function to a desired accuracy and is 
enough for most forecasting problems (Hornik et al., 1989).  

In this study, at first step by using a three-layer neural network via a sensitivity analysis the 
effective data sets are chosen. All input values are standardized to a specific range 
separately after data division. Input and output variables are normalized by scaling between 
zero and one to eliminate their dimensions and to ensure that all variables receive equal 
attention during training of the models. Finally, the training and testing data sets are 
selected, and the network is trained. 

The Levenberg-Marquardt (LM) method is a modification of the classic Newton algorithm 
for finding an optimum solution to a minimization problem. Levenberg-Marquardt has 
large computational and memory requirement and thus it can only be used in small 
networks (Maier and Dandy, 1998). It is faster and less easily trapped in local minima than 
other optimization algorithms (Coulibaly et al., 2001a, b, c; Toth et al., 2000). 

In this study, among the many training methods, the Levenberg- Marquuardt training 
algorithm was selected, considering its fast convergence ability (Sahoo et al., 2005). Also a 
Tangent Sigmoid transfer function was used for hidden layer and a linear transfer function 
for the output layer according to Qu et al. (2004). The numbers of hidden layer nodes and 
training epochs are determined using trial and error in the test scenarios.  

4. Geostatistics 

Since detailed information about geostatistics and geostatistical techniques such as Kriging 
and Cokriging can be found in the scientific literature (e.g., Isaaks and Srivastava, 1989), 
only a brief description of this methods which is employed in this research is provided. 

www.intechopen.com



 
Water Resources Management and Modeling 

 

294 

Kriging technique is a spatial interpolation estimator Z(x0) used to find the best linear 

unbiased estimator of a second-order stationary random field with an unknown constant 

mean:  

    0
1

n

i i
i

Z x Z x


  (1) 

Where Z (x0) is Kriging estimate at location x0; Z(xi) is sampled value at xi; λi is weighting 

factor for Z(xi); and i = 1, … , n in which n denotes to the numbers of samples. The 

estimation error can be written as:  

          0 0 0 0
1

.
n

i i
i

R x Z x Z x Z x Z x


     (2) 

Where Z(x0) is unknown true value at x0; and R(x0) is estimation error. For an unbiased 

estimator, the mean of the estimates must be equal to the true mean, therefore (Ma et al., 

1999): 

   0 0E R x   (3) 

Where E is expected value and then: 

 
1

1
n

i
i




  (4) 

The best linear unbiased estimator must have minimum variance of estimation error. The 

minimization of the estimation error variance under the constraint of unbiasedness leads to 

a set of simultaneous linear algebraic equations for the weighting factors as follows (Ma et 

al., 1999): 

        
2

0 0
1 1

n n

i i i i
i i

E Z x Z x Var Z x Z x 
 

               
   (5) 

Where Var, is the abbreviation of variance function. The weighting factors λi can be 

determined by solving a nonlinear optimization problem involving the minimization of the 

foregoing function subject to the constraint in (4) by using the Lagrange multiplier µ as: 

      0
1 1

, 2 1
n n

i i i i
i i

L Var Z x Z x    
 

   
     

   
   (6) 

The necessary conditions for optimal λi and µ values involve setting the first derivative of 

Equation (6) to zero; therefore, the system of simultaneous linear algebraic equations for λ 

and µ can be expressed in matrix form as (Ma et al., 1999): 
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      (7) 

The Variogram γ can be derived from sampled data as follows: 

The presence of a spatial structure where observations close to each other are more alike 

than those that are far apart (spatial autocorrelation) is a prerequisite to the application of 

geostatistics. The experimental Variogram measures the average degree of dissimilarity 

between un-sampled values and a nearby data value and thus can depict autocorrelation at 

various distances. The value of the experimental Variogram for a separation distance of h 

(referred to as the lag) is half the average squared difference between the value at z(xi) and 

the value at z(xi+h) as (Ma et al., 1999): 

  
    2

1

2

n

i i
i

Z x Z x h

h
n

 

        


 (8) 

Where n is the number of data pairs within a given class of distance and direction. If the 

values of z(xi) and z(xi+h) are auto correlated the results of Equation (8) will be small, relative 

to an uncorrelated pair of points. From analysis of the experimented Variogram, a suitable 

model (e.g., spherical, exponential) is then fitted, usually by weighted least squares and the 

parameters (e.g., range, nugget and sill) are then used in the Kriging procedure (Isaaks and 

Srivastava, 1989). 

The “co-regionalization” (expressed as correlation) between two variables, i.e. the variable 

of interest, groundwater salinity in this case and another easily obtained and inexpensive 

variable, can be exploited to advantage for estimation purposes by the Cokriging technique. 

In this sense, the advantages of Cokriging are realized through reductions in costs or 

sampling effort. The cross semivariogram is used to quantify cross-spatial auto-covariance 

between the original variable and the covariate. The cross-semivariance is computed 

through the equation:  

 γuv(h) = E[{Zu(x) – Zu(x+h)}{Zv(x) – Zv(x+h)}] (9) 

Where γuv(h) is cross-semivariance between u and v variable, Zu(x) is primary variable and 

Zv(x) is secondary variable. 

5. Proposed conjugated model and results 

By combining the artificial neural network capability in modeling complicated and non-

linear systems and geostatistical ability in linear estimation with low estimation error, a new 

hybrid model (MANNG) of spatiotemporal groundwater level and salinity forecasting in 

coastal aquifers has been proposed in this paper which uses both of mentioned models in 

unique framework. Figure 3 shows the proposed model scheme. 
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Fig. 3. Diagram of new modified proposed hybrid model (MANNG) 

The proposed model contains two separated stages. At the first stage, an ANN is trained for all 

of the piezometers (P1, P2, …, and P11) for time series modeling of the water level. The model 

predicts the preceding month ground water level of the piezometers based on quantity of 

present month rainfall in study area (Rt-1), Urmieh Lake water surface level at that month 

(LELt-1) and groundwater levels in present, first and twelfth previous months (ELt-1, ELt-2,ELt-

12) in order to handle the seasonality of the process as well as the auto regressive 

characteristics. A sensitivity analysis was employed in order to select the mentioned input 

parameters from the all available data, as it will be discussed in the next section.  

At the second stage, the predicted values of water levels at different piezometers are 
imposed to a calibrated geostatistics model in order to estimate groundwater level and 
salinity at any desired point in the plain. Finally, as a cross-validation process the proposed 
spatio-temporal model is evaluated by the data of piezometers TP1,TP2, and TP3 which are 
not contributed in the calibration step of the model. The details and results of the stages are 
presented in the following sections.  

5.1 Temporal forecasting stage 

In order to ensure good generalization ability by an ANN model, some empirical 
relationships between the number of training samples and the number of connection 
weights have been suggested in the literature. However, network geometry is generally 
highly problem dependent and these guidelines do not ensure optimal network geometry, 
where optimality is defined as the smallest network that adequately captures the 
relationships in the training data (principle of parsimony). In addition, there is quite a high 
variability in the number of input and hidden nodes suggested by the various rules. While 
research is being conducted in this direction by the scientists working in ANNs, it may be 
noted that traditionally, optimal network geometries have been found by trial and error 
(Maier and Dandy, 2000). Consequently, in the current application the number of hidden 
neurons in the network, which is responsible for capturing the dynamic and complex 
relationship between various input and output variables, was identified by several trials. 
Also, this trial and error procedure with domain knowledge was explored for general 
guidance in the number of inputs selected.  

www.intechopen.com



Quantity and Quality Modeling of Groundwater 
by Conjugation of ANN and Co-Kriging Approaches 

 

297 

The trial and error procedure started initially with two hidden neurons, and the number of 
hidden neurons was increased up to fifty with a step size of one in each trial. For each set of 
input and hidden neurons, the network was trained in batch mode to minimize the mean 
square error at the output layer. In order to check any over-fitting during training, a 
validation was performed by keeping track of the efficiency of the fitted model. The training 
was stopped when there was no significant improvement in the efficiency. The 
parsimonious structure that resulted in minimum root mean squared error (Equation 10), 
and maximum efficiency coefficient (Equation 11) during training as well as testing was 
selected as the final form of the ANN model for all piezometers.  

The variables are scaled to a limit between zero and one as the activation function warrants. 
The total available data were divided into two sets, calibration and validation sets. In the 
training step the models were trained using data of ten years (1994-2003) and then validated 
on the rest of the data (2004-2006).  

The Root Mean Squared Error (RMSE) and coefficient of efficiency (CE) were used in order 
to assess the effectiveness of each model and its ability to make precise predictions. The 
RMSE calculated by 
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Where iy  and ˆ
iy  are the observed and predicted data respectively and N  is the number of 

observations. RMSE indicates the discrepancy between the observed and calculated values. 

The lowest the RMSE, the more accurate the prediction is. Nash and Sutcliffe (1970) 

proposed the non-dimensional coefficient of efficiency (CE) criterion on the basis of 

standardization of the residual variance with initial variance, which provides a measure for 

the proportion of the variance explained by the model. It can be used to compare the relative 

performances of the models which are developed by different methods. It is estimated as 

(Nash and Sutcliffe, 1970). 
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Where iy  is the average of observed values and the CE represents the initial uncertainty 
explained by the model. The CE is varying between -∞, 1 and the best fit between observed 
and calculated values would have CE=1. The quality of the fit statistics is measured by 
RMSE and CE between the computed and observed data. The sensitivity analysis showed 
that present month rainfall, lake water surface level at that month and groundwater levels in 
first, second and twelfth previous months are the most dominant parameters in forecasting 
the groundwater level in the most of piezometers and these parameters were considered as 
the input neurons for ANNs (Nourani et al.,2010).  

The results of temporal modeling of groundwater levels in piezometers P1,P2,…,P11 ,as the 
first stage of the hybrid modeling have been briefly shown in table 2. 
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Piezometer 
UTM 

Networks 
Parameters 

Calibration Validation 

x y Structure Epoch CE RMSE(m) CE RMSE(m) 

P1 586050 4238025 (5,6 ,1) 40 0.85 0.08 0.78 0.11 

P2 562800 4230450 (5, 6,1) 40 0.95 0.07 0.89 0.10 

P3 561450 4217350 (5,6 ,1) 40 0.95 0.06 0.88 0.09 

P4 562250 4221350 (5,6,1) 40 0.96 0.07 0.86 0.10 

P5 576925 4223350 (5,6,1) 40 0.89 0.05 0.83 0.11 

P6 577600 4222950 (5, 6,1) 40 0.90 0.05 0.83 0.10 

P7 584800 4229250 (5,6 ,1) 40 0.88 0.06 0.81 0.09 

P8 546600 4223900 (5,6,1) 40 0.96 0.02 0.88 0.04 

P9 551700 4220350 (5,6 ,1) 40 0.96 0.03 0.89 0.05 

P10 554550 4220050 (5,6 ,1) 40 0.95 0.04 0.92 0.06 

P11 555050 4220250 (5,6 ,1) 40 0.97 0.03 0.89 0.06 

Table 2. ANN results for temporal forecasting stage 

5.2 Spatial estimation stage 

Groundwater has become one of the important sources of water for meeting the 

requirements of various sectors in the world in the last few decades. It plays a vital role in 

countries economic, development and in ensuring them food security. The rapid pace of 

agriculture development, industrialization and urbanization has resulted in the over 

exploitation and contamination of groundwater resources in the world, resulting in various 

adverse environmental impacts and threatening its long-term sustainability. 

Salinity is the saltiness or dissolved salt contents of a water body. Salt content is an 

important factor in water use. Salinity can be technically defined as the total mass in grams 

of all the dissolved substances per kilogram of water (TDS). Different substances dissolve in 

water giving it taste and odor. 

Salinity always exists in groundwater but in variable amounts (100<TDS<50000 mg/lit). It is 

mostly influenced by aquifer material, solubility of minerals, duration of contact and factors 

such as the permeability of soil, drainage facilities, quantity of rainfall and above all, the 

climate of the area. 

The salinity of groundwater in coastal areas may be due to air borne salts originating from 

air water interface over the sea and also due to over pumping of fresh water which overlays 

saline water in coastal aquifer system. 

Unlike Ordinary Kriging dealing with the primary variable alone, Cokriging utilized not 

only the primary variable (e.g,, salinity) but also cross-correlated secondary variables (e.g., 

groundwater level). Cokriging is thus a linear interpolator of both primary and secondary 

data values. If only a limited number of observations are available for the primary variable 

in concern, knowledge of secondary variables that are correlated with the primary variable 
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can be used to reduce the estimation error and to improve the estimation. The estimation error 

is thereby reduced since more information is being used for the estimation of the primary 

parameter; a twofold reduction in error of estimation would be typical. Improvement of 

Cokriging over Ordinary Kriging with the primary variable alone is greatest when the primary 

variable is under sampled, as we often encounter in salinity sampling.  

In this study we apply the common geostatistical method of Cokriging to estimate 

groundwater salinity in the study area. 

The Variogram measures dissimilarity, or increasing variance between points (decreasing 

correlation) as a function of distance. In addition to helping us assess how values at different 

location vary over distance, the Variogram provide a way to study the influence of other 

factors which may affect whether the spatial correlation varies only with distance (the 

isotropic case) or with direction and distance (the anisotropic case).Variogram map provides 

a visual picture of semivariance in every compass direction. If there is anisotropy, this 

allows one to easily find the appropriate principal axis for defining the anisotropic 

Variogram model. In this map, the surface (z-axis) is semivariance, and the x and y axes are 

separation distances in E-W and N-S directions, respectively. The center of the map 

corresponds to the origin of the Variogram γ(h)=0 for every direction.  

At stage two of the current modeling which deals with spatial prediction of groundwater 

level, estimated groundwater level of following month at the location of each piezometer 

was firstly corrected via bedrock elevation at the same location because of termination of 

existing trend (see Figure 4). Afterward, the Variogram map of the study area was plotted 

using the temporally averaged values of the groundwater levels at different piezometers. 

Figure 5 shows that, the isotropic spatial modeling of the groundwater levels could be taken 

in use.  

 

Fig. 4. Bedrock elevations in study area (units in meters) 
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(a) 

 
(b) 

 
(c)  

Fig. 5. Variogram maps : (a) Primary variogram (TDS); (b) Covariate variogram (EL) and (c) 
Cross variogram (TDS and EL) 
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Thereafter, a suitable Variogram model was determined by fitting some well-known 

Variogram models (i.e., spherical, exponential, Gaussian) to the experimental Variogram 

using weighted least squares method (Myers, 1982). 

The geostatistical model having the least error was selected by comparing the observed 

water-table and salinity values with the values estimated by Variogram models. (Gundogdu 

and Guney,2007). 

According to table 3 the best fitted models were Spherical, Gaussian and Spherical models 

for first, second and co-variables respectively, and their parameters (i.e., range, nugget and 

sill) were then used in the CoKriging procedure. 

The results of the modeling have been presented in Figure 6.  

 

RSS Variogram for TDS 
Variogram for 

Elevation 
Cross Variogram 

Gaussian model 9.22E-03 5.09E-03 5.98E-03 

Exponential model 8.32E-03 9.20E-03 7.80E-03 

Spherical model 7.41E-03 6.41E-03 5.93E-03 

Table 3. Results of the different Variogram models 

Based on the mentioned Variogram models spatial ground water level and salinity 

estimation of the area has been carried out using CoKriging method. The calibrated 

CoKriging method was then verified via a cross validation technique. Cross validation is a 

process for checking the compatibility between a set of data, the spatial model and 

neighborhood design. In cross validation, each point in the spatial model is individually 

removed from the model, and then its value is estimated by a covariance model. In this way, 

it is possible to complete estimated versus actual values. Figure 7 shows the results of cross 

validation procedure as a scatter plot, which denotes to the reliability of the proposed 

geostatistical modeling.  

At this moment both stages of the hybrid model have been completed and the model can be 

used for spatio-temporal modeling of groundwater level within the Shabestar plain. 

Finally, the proposed new modified hybrid model was validated using the verification data 

set (2004-2006, 3 years) of piezometers TP1, TP2, and TP3 which have not been utilized 

neither for training the ANNs nor for the calibration of the geostatistices model. For this 

purpose, the forecasted values of the water level time series at different piezometers (P1, 

P2,…, and P11) via the trained ANNs models for the verification data set (2003 to 2006) were 

imposed to the calibrated geostatistical model in order to estimate the water level and 

salinity of piezometers TP1,TP2, and TP3, time step by time step. 

The results of the modeling have been presented and compared with the previous model 

results (ANNG) in Figure 8 which demonstrates the capability of the new proposed time-

space hybrid model (MANNG).  

www.intechopen.com



 
Water Resources Management and Modeling 

 

302 

Gussian Model
0.0003+0.09[1-exp(-h/9500)^2)]

r^2=0.86

0 4000 8000 12000 16000 20000

Distance (m)

0

0.025

0.05

0.075

0.1

0.125

V
a

ri
o

g
ra

m

 

Spherical model
8.989E-8+0.076[1.5(h/9763)-0.5((h/9763)^3)]

r^2=0.90

0 2000 4000 6000 8000 10000

Distance (m)

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

V
a

ri
o

g
ra

m

 

Exponential Model
1.229E-7+0.115[1-exp(-h/9432)]

r^2=0.95

0 1900 3800 5700 7600 9500

Distance (m)

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

V
a

ri
o

g
ra

m

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

 

Fig. 6a. Variogram models for TDS. 
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Gaussian Model 
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Fig. 6b. Variogram models for groundwater level. 
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Gaussian Model
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Fig. 6c. Variogram models for Cross. 
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(a) 

 
 

 

(b) 

 

Fig. 7. Cross validation results: (a) for Groundwater level and (b) for TDS. 
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(a) 
[R2=0.75 for ANNG & R2=0.83 for MANNG] 

 
 

 
 

(b) 
[R2=0.78 for ANNG & R2=0.84 for MANNG] 
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(c) 
[R2=0.87 for ANNG & R2=0.91 for MANNG] 

Fig. 8. Results of spatiotemporal modeling for piezometers; a) TP1, b) TP2 and c) TP3. 

According to the obtained results it can be clearly seen that the model is more capable to 

estimate the groundwater levels and salinity where are close to the lake. Since the water 

depth of lake is considered as a input variable to the ANNs, the proposed model could 

simulate the groundwater level of the near region to the lake were accurate than the far 

points.  

7. Concluding remarks 

There are many hydrological variables that can be viewed as spatiotemporal phenomena. 

For example, monthly rainfalls or piezometric readings exhibit random aspects both with 

respect to time and space. The estimation of such variables at un-sampled spatial locations 

or un-sampled times requires the adequate techniques into space-time domain. In this 

study, according to inherent capability of artificial neural networks in temporal forecasting 

and geostatistics in spatial estimating, the potential of the proposed hybrid empirical model 

(MANNG) was evaluated for the purpose of spatio-temporal prediction of groundwater 

levels and salinity in a coastal aquifer in Iran. 

Monthly groundwater levels data from eleven piezometer (P1, P2,… P11), rainfall and lake 

water surface elevations in the 13 years are the inputs of multilayer feedforward neural 

network. CoKriging was applied to the outputs from ANN model to estimate groundwater 

levels and salinity in un-sampled locations such as coordinates of three selected piezometers 

(TP1, TP2, and TP3). 

This modeling framework is applied for the Shabestar plain which is located in northwest 

Iran at Azerbaijan province. The major results of the study are summarized as follows: 
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 The results of the research reported in the paper shows high efficiency of three-layer 
back propagation artificial neural network (BPANN) with Levenberg-Marquardt (LM) 
training algorithm for groundwater elevation prediction in the case study for coastal 
aquifer. 

 Because of spatial structure between groundwater levels and salinity in adjacent points 
of this coastal aquifer, application of CoKriging with isotropic adequate Variogram 
geostatistical models have been led to appropriate results. 

 In general, the results of the case study are satisfactory and demonstrate that the 
proposed hybrid model (MANNG) is a promising spatio-temporal prediction tool for 
groundwater modeling and may be also employed to fill the temporally and/or 
spatially missed data. 

 According to Fig 8, application of the new modified hybrid model (MANNG) respect to 
previous model (ANNG) presented by Nourani et al. (2010), was led to exact results. In 
the other word, the results of cross validation procedure of the new model were 3 
percent better than the old model. Generally, the proposed modified hybrid empirical 
model (MANNG) was used for the purpose of spatio-temporal prediction of 
groundwater levels and salinity in a coastal aquifer in Iran, efficiently. 
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