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1. Introduction  

Many engineering applications suffer from the ignorance of mechanical parameters. It is 
particularly true when soil model is necessary to assess soil behaviour [Meieret al., 2008]. 
Nevertheless, it is not always efficient to directly assess the values of all the parameters in 
the case of soil mechanics. Considering structural mechanics, [Li et al., 2007] also worked 
to propose an optimal design of a truss pylon respecting the stress constraints of the 
elements but it is not an easy task to solve considering the number and loading of the 
structure. Inverse analysis is an efficient solution to reach these aims. This technique 
becomes more and more popular thanks to the increase of the computing capabilities. 
Computing costs have decreased and allow to handle complex optimization problems 
through meta heuristic methods for example to identify the solution of the problem like 
the mechanical parameters of a behaviour model of a soil [Fontan et al., 2011, Levasseur et 
al., 2008], to define the best section of the beams composing a truss structure or to 
optimize wood-plastic composite mechanical properties designed for decking and taking 
into account the environmental impact during the life cycle of the product [Ndiaye et al., 
2009]. The literature about inverse analysis is very rich and it covers many application 
fields like management or mechanical science as attesting the table number 1 in [Fontan et 
al., 2011] which presents several civil engineering applications (this table is not presented 
there). Most of the authors mentioned in this paper used the concept of inverse analysis to 
identify parameters either in structural mechanics [Li et al., 2007, Fontan 2011] or soil 
mechanics [Meier et al., 2008, Levasseur et al., 2008]. They were just using different 
mechanical models (analytical or numerical) or different algorithms to solve their problem 
(PSO, descent gradient, ant colony, genetic algorithm, etc.). Inverse analysis is based on 
the simple concept of solving an equation to find the n values Xn respecting equation 1, 
with M: the mechanical model corresponding to the real behaviour of the analysis and Ym: 
the m measurement carried out on site.  
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 Ym = M(Xn) (1) 

Solving this problem is mechanically difficult due to (a) the accuracy of the measurements 
Xn which contain observational error, (b) the number of measurement data - it is necessary 
to respect the following relation m > n to identify a single value otherwise, a front of 
solutions will be identified -, (c) the accuracy of the mechanical model M. We consider that 
the accuracy of the model is well known. The nature of the model can be either analytical or 
numerical using the finite element method (FEM) as it will be explained in the following 
sections. One of the main problems during the development of inverse analysis is the 
limitation of use regarding the algorithm in charge of solving these equations. Classical 
algorithms like Descent Gradient, Cholesky, Lower Upper method are efficient for perfect 
data, which is not the case in engineering. Usual algorithms have often a limited efficiency 
because of local minima and observational errors on field data. This justifies the use of meta-
heuristic algorithms that are capable of overcoming the presence of local minimum and to 
converge towards the solution of the problem. In this chapter, we will present two different 
applications based on the inverse analysis using the PSO algorithm. The first application is 
the identification of structural parameters like stiffnesses of a continuous beam laying on 
three elastic supports through the resolution of an objective function. The second work is 
about a resolution of contradictory multi-objective functions. The next section will present 
the principles of the inverse analysis and the PSO. The following section is about the one 
objective function work, including a discussion about the various sources of errors that can 
strongly impact the accuracy of the parameter identification. The last part is about the work 
focused on a multi-objective resolution.  

2. Principle of inverse analysis and particle swarm optimization 

The principle of the direct inverse analysis is to find the most appropriate values Xn to find 
the data Ym through a mechanical model M. This method is not always efficient due to the 
presence of noise on data that can strongly impact the result. Then, an indirect inverse 
analysis is more appropriate. In this case, the objective is to minimize the error between the 
real data Ymreal and predicted data Ympredicted obtained through a mechanical model, cf. 
defined equation 2. Thus, the new objective is to minimize the objective function Fobjective, cf. 
equation 3, finding the appropriate parameters to identify Xn with Ypredicted. In the case of 
multi-objective functions, several functions Fiobjective are minimized simultaneously in order 
to reach an optimal compromise.  

This approach is an indirect inverse analysis where the impact of the metrology, which 
defines Ymreal data, is strongly impacting the accuracy of the identification of parameters. So 
as to solve this difficult NP–complete Problem, meta-heuristic algorithms are very efficient 
[Kennedy, 1995]. The PSO is a powerful algorithm quickly converging to the solution of the 
problem [Kaveh 2009] where local minima are then not such an important problem unlike 
when using a descent gradient algorithm. This advantage is also an inconvenient because of 
the lack of capabilities to correctly explore the n dimensions of research space containing the 
parameters to identify. Another advantage is the small number of parameters to choose 
beforehand so as to run the algorithm, which means that the knowledge of the user is not 
another source of error during the identification process. Besides, several comparison tests 
were carried out between different meta-heuristics and the PSO algorithm was considered 
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as being one of the most efficient in terms of accuracy and time cost computing [Fan 2006, 
Hammouche 2010]. 

 Ympredicted=(M (Xn))m (2) 
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2.1 Particle swarm optimization (PSO) 

Particle swarm optimization (PSO) is a swarm intelligence technique developed by Kennedy 
and Eberhart (1995). This technique, inspired by flocks of birds and shoals of fish, has 
proved to be very efficient in hard optimization problems. The swarm is composed of 
particles, a number of simple entities, randomly placed in the search space of the objective 
function. Each particle can interact with members of the swarm that are its social 
neighbourhood. It can evaluate the fitness at its current location in the search space, it 
knows its best position ever visited and the best position of its social neighbourhood. It 
determines its movement through the search space by combining these information, and 
moving along with the corresponding instantaneous velocity. A particle position is better 
than another one if its objective function is better; (better means smaller than if it is a 
minimization problem and greater than if it is a maximization problem). 

The social neighbourhood of a given particle influences its trajectory in the search space. The 
two most commonly used neighbourhood topologies are the fully connected topology named 
gbest topology and the ring topology named lbest topology [Kennedy and Mendes, 2002]. In the 
fully connected topology the trajectory of each particle is influenced by the best position 
found by any particle of the swarm as well as their own past experience. Usually the ring 
topology neighbourhood comprises exactly two neighbours, every particle is connected to 
its two immediate neighbours, one on each side with toroidal wrapping. With a fully 

connected topology the swarm converges quickly on the problem solution but is vulnerable 
to the attraction of local optima, while, with ring topology, it better explores the search space 
and is less vulnerable to the attraction of local optima. Various neighbourhood topologies 
have been investigated in [Kennedy, 1999; Kennedy and Mendes, 2002; Mendes et al., 2004] 
(fig.1). The main conclusion was that the difference in performance depends on the topology 
implemented for a given objective function, with nothing suggesting that any topology was 
generally better than any other [Poli et al., 2007]. 

If the objective function is n dimensional, the position and velocity of any particle can be 
represented as a vector with n components. Starting with the velocity vector, vp =  (vp,1 , . . .  , 
vp,n ), each component, vp,i, is given by equation (4). For the position vector xp = (xp,1, ... , xp,n), 
each component xp,i is given by equation (5). 

 
v

p ,i
(t 1)   v

p ,i
(t) c

1
r
1
( p

p ,i
(t) x

p,i
(t)) c

2
r

2
(g

p ,i
(t) x

p ,i
(t))

 
(4)

 

www.intechopen.com



 
Theory and New Applications of Swarm Intelligence 

 

90

 
x

p ,i
(t 1)  x

p ,i
(t) v

p ,i
(t 1)

 
(5)

 

where xp,i(t) is the ith component of the position of the particle i and vp,i(t) the ith component 
of its velocity; pp,i is the ith component of the best position ever visited by the ith particle; gp,I 

is the ith component of the best position ever visited by the neighbourhood of the particle; 
is called inertia weight, it is used to control the impact of the previous history of velocity 
on the current one; r1 and r2 are uniformly distributed random numbers between 0 and 1; c1 
and c2 are positive acceleration constants. The formula (4) is used for each dimension of the 
objective function, for each particle and synchronously at time step for all the particles of the 
swarm. 

 
Fig. 1. Illustration of neighbourhood topologies from [Mendes et al., 2004]:  
Fully connected (All), Ring, Four clusters, Pyramid and Square. 

2.2 Discrete binary Particle Swarm Optimization (DPSO) 

Kennedy and Eberhart (1997) have introduced a discrete binary version of PSO (DPSO) that 
operates on binary variables (bit, symbol or string) rather than real numbers. The difference 
between the PSO and DPSO definitions is in the velocity updating rules where the position 
updating rule xp,i(t+1) (7) is based on a logistic function (6). The introduction of DPSO 
extends the use of PSO to optimization of discrete binary functions as well as functions of 
continuous and discrete binary variables at the same time.  
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Where  is an uniformly distributed random number between 0 and 1 

Michaud et al. (2009), to be able to handle the optimization of functions including more than 
two discrete variables, have generalised the discrete binary version of PSO to a discrete n-
ary version of PSO (8). 
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where 1, … k-1 are strictly ordered uniformly distributed random numbers between 0  
and 1 

3. Application to structural problems 

This section presents the results of the work carried out on a continuous beam laying on 
three elastic supports. A numerical code were developed using real data (synthetic data in 
the case of numerical analysis), a FE model of the structure as the mechanical model, and the 
PSO. The flowchart of the code is presented figure 2. As it was explained above, the code 
combined (a) a mechanical model of the structure (numerical or analytical), (b) a field data 
generator and (c) a particle swarm optimisation algorithm (PSO) to iteratively minimize the 
distance between field data and predicted data. This work had been realized on both a 
numerical case and at real scale case. The influence of the metrology had been studied by 
changing either the number of measurement data to identify the three stiffnesses, or the 
level of noise of sensors, or the localization of the sensors on the beam. The developed code 
using the PSO succeeds to estimate the stiffnesses with accuracy according the different 
sources of errors taking into account during the experiences. More synthetic experiences 
were carried out to identify the different sources of errors by using this code that can impact 
the accuracy of the identification process as:  

 error from the accuracy of location sensors,  
 error from the sensors placements,  
 error from the optimization algorithm used during the identification process, 
 the sensitivity of the unknown parameters to the field data. 

Both numerical and real experiences were carried out to validate the methodology and to 
highlight the influence of the input data (here displacements data) on the quality of 
identification. A general numerical frame was developed, combining different tools and 
methods (inverse analysis, FEM, PSO). The efficiency in terms of CPU time of the PSO to 
converge towards the solution of the problem allows the integration of a FE model of the 
structure without any problem. A second part of this work focussed on the different sources 
of error that may alter the accuracy of the parameters identification process. It is shown on 
two structures, a continuous beam bearing on three elastic supports, cf. fig. 3, and a half 
frame structure, cf. fig. 4, that four points strongly impact the parameter identification. 
Several experiences were carried out, considering different metrology set, i.e. by modifying 
either the number of sensors, or their accuracy or their location on the structure. Several 
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recommendations are mentioned to help engineers to prepare as best as possible their 
metrology set in order to do an identification of parameters using the inverse analyse 
concept with the PSO. 

 
Fig. 2. Flowchart of code based on the concept of the inverse analysis. 

3.1 Framework and objectives of both synthetic and real experiences 

Concerning numerical experience, the following work relies on either numerical model 
using the finite element (FE) software Castem©, or analytical model. This means that “field 
data” are also fully synthetic. In order to reproduce what happens on field data with real 
sensors, introducing some noise disturbs the original “true” values that are first generated, 
using a controlled random process. The result is then synthetic “noised” data at each 
location where a sensor can be located. It is from these “noised” data that the inversion 
process is carried out. The main advantage of the synthetic simulation is that, the “true” 
values being also known, it is always possible to quantify the quality of the estimation (i.e. 
distance between “true” and estimated values), making possible detailed analysis of errors 
sources. Using exact data uexact obtained from the mechanical model and a random 
coefficient ┚ generates the synthetic field data, uinsitu, cf. Equation10. This coefficient models 
the magnitude of the error of measurement, which depends on the accuracy of the sensors. 
It is assumed to be normally distributed with a zero mean, and a given standard error ε (the 
various values of ε are: 0% or 1% or 3% or 5%), cf. Equation9 that simulates sensors of 
different quality. Those errors should cover all the sources of errors and uncertainties 
concerning the measurement process either due to the device, or to the other causes 
(environmental conditions, electronic noise, etc.). The errors arising on different sensors are 
assumed to be uncorrelated. As soon as ε exist, it is impossible for Fobj to converge towards 
zero [Fontan et al., 2011]. 
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 uinsitu = uexact * (1+ ┚) (9) 

 ┚ = (0, ε) (10) 

The real experience was carried out on a quite similar structure with the numerical model of 
the beam bearing a three elastic support. The main difference is due to the integration of 
several components so as to model the effect of the soil structure interaction. These 
structures are described section 3.1.1. 

3.1.1 Presentation of the studied structures 

The first numerical example is that of a continuous beam bearing on three elastic supports, 
cf. fig. 3 and named STR1. It models a wooden beam bearing on three elastic supports, with 
two equal spans Li = 1.35 m which has also been the support of a “physical experience” in 
the same research program, not detailed here [Hasançebi et al., 2009 and Li et al., 2009]. The 
section is a square 7.50 x 7.50 cm². The beam is assumed to be homogenous and the Young’s 
modulus is equal to 10 GPa. A 50 daN/m load is uniformly distributed all along the beam. 
The parameters that must be identified from the measurements are the stiffnesses of the 
three elastic bearings (modelled as Winkler springs), whose true values (known in this 
synthetic model) are respectively: k1 = 28726 daN/m, k2 = 9575 daN/m, k3 = 2209 daN/m. 
The true values of the support stiffnesses result in a large settlement on the third bearing 
(bearing 1 is the stiffer and bearing 3 is the softer). Ten measurements of displacement were 
extracted to generate the synthetic field data. The abscissas of those ten displacements are 
given Table 1. Four metrology sets, called CMi are given at Table 1. Those metrology sets are 
created to stress either the number of sensors, or their localisation on the beam for a same 
number. This first example will be used in order to study the influence of the number, 
accuracy or localisation of the sensors on the accuracy of the parameters identification. 

The second numerical structure is a half frame, cf. fig. 4., named STR2. The column is 
embedded at its foot whereas the beam is articulated. The beam is 4.00m long and the 
column is 5.00 m high (H). The section of the beam is an IPE270, (inertia Ibeam= 5790 cm4) and 
the column is a HEA340 (inertia Icolumn= 27700 cm4). The beam and the column are made of 
standard steel (Young modulus E = 210 GPa). A distributed load q = 500 daN/m, is 
vertically applied on the beam whereas a horizontal concentrated load (Flat = equals 1000 
daN) which is applied on the column at its two thirds. The parameters to identify are the 
flexural stiffnesses of the beam EIbeam and of the column EIcolumn. The metrology set is made 
of six displacements sensors. Three sensors are evenly distributed on the beam and the 
others on the column, cf. fig. 4. The analytical relationships giving the displacements for 
each sensor have been explicated as functions of E, Ibeam, Icolumn, q, Flat, L and H using the 
beam theory. 

Concerning the real experience, cf. fig. 5, a continuous wooden beam of 3.00 m long is 
bearing on three different supports (Pinus pinaster, square section 7.50x7.50 cm2, Young’s 
modulus equals 10 GPa). This structure is named STR3. The distance between supports is 
1.35 m. Each support is made of a transverse beam, or Secondary Beam, SB. Varying the 
span of the SB comes to vary the support stiffness. Each SB lies on a wooden plate, which 
relies on its four sides on a fully rigid concrete support. This physical model reproduces the 
main patterns of a bridge deck (the continuous beam) bearing on foundations (the beams 
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SB) lying on a deformable soil mass (here modelled by the wooden plate). This three-
component system has some complexity, typical of the soil–structure interaction: 

q

x

y

L2L1

k1 k2 k3

E1 E2E 

 
Fig. 3. Continuous beams bearing on three elastics supports with a distributed load, ki and Ei 
are the unknown parameters. 

 
 Abscissa (m) of the used sensors function to the metrology set 

Metrology 
set 

x1 = 
0.00 

x2 = 
0.45 

x3 = 
0.65 

x4 = 
0.90 

x5 = 
1.30 

x6 = 
1.35 

x7 = 
1.40 

x8 = 
1.80 

x9 = 
2.25 

x10 = 
2.70 

CM1 o o o o o o o o o o 
CM2  o   o      
CM3 o    o     o 
CM4  o o o       

 Abscissa of a sensor positioned at the abscissa of an elastic support 
o Used sensor for a metrology set 

Table 1. Positions of sensors used during the identification process function to the  
metrology set. 

 

L

H

q

Flat

xF = 2/3H

E,Ibeam

E,Icolumn

Displacement sensor

H/3

H/2

2H/3

L/3
L/2 2L/3

 
Fig. 4. Half truss structure with its loads; EIbeam and EIcolumn are the unknown parameters. 
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Fig. 5. Experimental device reproducing the soil–structure interaction for a two-span 
continuous beam. 

a. the supports of the SB can move, because of the loading and the flexibility of the plate 
support, 

b. because the supports of the primary beam are not rigid, the value of the external load 
transferred to each of these three supports depends on their stiffness (i.e. of their 
displacement. 

3.1.2 Presentation of the objectives to reach by experience 

Two kinds of numerical structures and one real structure have been studied to reach several 
objectives and to highlight several points: firstly, the feasibility of the identification process 
using the PSO as an efficient tool and, secondly to clearly identify the sources of errors 
which occur during an identification process.  

The real experiment, applied on STR3, focused on the identification of mechanical 
parameters and studied the impact of the localisation of used sensors. Indeed, the goal of the 
numerical experiments was to study the influence of: 

- the noise induced by the meta-heuristic algorithm applied on STR1, 
- the noise measurement applied on STR1, 
- the impact of the interaction of the parameters to identify applied on STR2. 

For each numerical experiment, the identification process is repeated 20 times. Those 
simulations are using 20 sets of noise data as it is explained in the following section. The 
average of the identified parameters (20 values per parameter per experiment), their 
standard deviation and their coefficient of variation (CV) are calculated. The ending 
conditions of the identification process are either (a) the maximum number of iterations is 
fixed at 35, it has been shown in [Fontan et al., 2011] that increasing the number of iterations 
is not efficient in terms of gain about the Fobjec in this case, or (b) the threshold of the Fobjec is 
fixed at 10-5. As soon as the Fobjec value is below this threshold, the identification process 
automatically stops. 
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3.2 Results of the identification process: real experience 

The real experimental tests use three different support sets so that the length of the SB are 
the following according the three configurations studied:  

- configuration 1 : lSB1 = 0.50m, lSB2 = 0.50m and lSB3 = 0.50m, 
- configuration 2 : lSB1 = 0.30m, lSB2 = 0.90m and lSB3 = 1.30m, 
- configuration 3 : lSB1 = 0.20m, lSB2 = 0.50m and lSB3 = 1.30m, 

A 3D finite element model, 3DFEM, presents the global experience fig. 6. This 3DFEM helps 
to estimate the equivalent stiffnesses of the elastic support of the main beam considering the 
association of the stiffnesses of the SB and the plate as a Winkler spring of which stiffness by 
support is unknown. The fig. 7 gives the displacements measured during the experimental 
tests for each support set (illustrated by the points), whereas the displacements obtained 
with 3DFEM for each support set is illustrated by the continuous curve. The good 
correlation between measurements and simulations confirms the good quality of the 3DFEM 
model and justifies both a priory estimation of the equivalent stiffness by support and the 
limits of the space research using for the PSO.  

 
Fig. 6. FE model of the physical model with the main beam bearing on SB and the  
wood plate. 

Then, it was possible to constrain the research domain for the equivalent stiffnesses ki 

between 0 and 2 MN/m. The physical model is used with the distributed load and for the 
three configuration of support sets defined above. The vertical displacements are measured 
on all sensors. Thus the IdP software is used, where the PSO is combined to a 2DFEM 
mechanical model presented fig. 8. So as to analyse the influence of the number and location 
of sensors, the efficiency of the identification process is compared by considering three 
possible sensor sets: 

- Set A: three sensors (n°1, n°5 and n°9, cf. Table 2), located on the three supports, 
- Set B: ten sensors (n°1 to n°10, cf. Table 2) regularly spaced all along the beam, 
- Set C: three sensors (n°3, n°5 and n°7, cf. Table 2), concentrated in the left span. 

The value of the objective function at convergence (well above 10-12) is due to the 
measurement noise. The stiffnesses presented in Tables 3–5 are identified by the software for 
the three respective sensor sets (A, B and C). For each support set, each Table compares, for 
the three supports sets, identified values with ‘‘reference values’’ obtained with the 3DFEM 
(Av. means average and s.d. means standard deviation). The identification process (PSO 
combined with the mechanical model) was repeated ten times for each case (support set x 
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sensor set), keeping the same input data (measurements). Since the PSO has some random 
dimension, the values obtained as a final solution differ from one simulation to another. 

The tables provide the average value and the standard deviation calculated from these 10 
simulations. Let us consider first the results obtained for sensor set B (using data from all 10 
sensors for inversion). All simulations converge towards similar values, leading to a small 
standard deviation. In addition, the identified values are close to the ‘‘reference values’’, 
which confirms the ability of the process to correctly identify the unknown parameters. The 
small difference between reference and identified values is not a problem when one reminds 
that the former cannot be considered as the ‘‘true’’ solution (it is only a good indicator of the 
range of the true solution). These results confirm the efficiency of the identification process. 
When comparing the results of Table 4 with those of Table 5, it can be seen that the sensor 
sets A and B lead to almost the same results. This shows that using three well-located 
sensors can be sufficient. It is not the case for Set C, which shows some limits for identifying 
the stiffnesses on external supports 1 and 3. This confirms, on a practical application, that 
the location of sensors has a high influence on the quality of the identification. 

 
 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 

Abscissa (m) 0.015 0.15 0.60 0.91 1.05 1.58 1.94 2.40 2.90 3.00 

Table 2. Abscissa of the sensors used during the real experience. 

 
Fig. 7. Experimental displacements measured and obtained by 3D-FEM for the different 
support sets. 

 
Fig. 8. Localisation of the sensors used in both numerical and physical models. 
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Identified stiffness’ 3D FEM 

k1 (MN/m) k2 (MN/m) k3 (MN/m) k1 
(MN/m) 

k2 
(MN/m) 

k3 
(MN/m) Av. s.d. Av. s.d. Av. s.d. 

Support 
set 1 

2.586 0.08 0.372 0.02 0.792 0.02 0.652 0.405 0.600 

Support 
set 2 

1.874 0.09 0.346 0.01 0.162 0.01 1.521 0.366 0.214 

Support 
set 3 

1.799 0.08 0.429 0.04 0.073 0.01 1.455 0.419 0.092 

Table 3. Identified equivalent stiffnesses using sensors from set C. 

 

 
Identified stiffness’ 3D FEM 

k1 (MN/m) k2 (MN/m) k3 (MN/m) k1 
(MN/m) 

k2 
(MN/m) 

k3 
(MN/m) Av. s.d. Av. s.d. Av. s.d. 

Support 
set 1 

0.726 0.05 0.401 0.02 0.681 0.02 0.652 0.405 0.600 

Support 
set 2 

1.549 0.06 0.371 0.01 0.251 0.03 1.521 0.366 0.214 

Support 
set 3 

1.372 0.06 0.449 0.03 0.089 0.00 1.455 0.419 0.092 

Table 4. Identified equivalent stiffnesses using sensors from set A. 

 

 
Identified stiffness’ 3D FEM 

k1 (MN/m) k2 (MN/m) k3 (MN/m) k1 
(MN/m) 

k2 
(MN/m) 

k3 
(MN/m) Av. s.d. Av. s.d. Av. s.d. 

Support 
set 1 

0.689 0.00 0.398 0.00 0.721 0.00 0.652 0.405 0.600 

Support 
set 2 

1.602 0.00 0.381 0.00 0.198 0.00 1.521 0.366 0.214 

Support 
set 3 

1.333 0.04 0.433 0.02 0.089 0.02 1.455 0.419 0.092 

Table 5. Identified equivalent stiffnesses using sensors from set B. 

3.3 Sources of errors impacting the accuracy of the identification process:  
Synthetic experience 

Concerning synthetic experience, the following works relies on either numerical using the 
finite element (FE) software Castem©, or analytical model. 

3.3.1 Error from the meta-heuristic algorithm 

Twenty identification processes were carried out without any noise applied on field data 
(i.e. considering perfect measurements). These tests were applied on structure 1 or STR1 
using the CM1 metrology set, cf. Table 1. This case corresponds to a perfect case with a high 
number of sensors, evenly distributed and no measurement error. The convergence curve of 
the best particle of the swarm is presented Figure 9 for one simulation. The three elastic 
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stiffnesses were correctly identified but the identified parameters show slight variations for 
each of the 20 simulations. The results are presented in Table 6. 

Results of the identification 
Reference Average Standard Dev. C.V. 

k1 (daN/m) 28726.2 28725.67 31.92 1.11E-03 
k2 (daN/m) 9575.2 9574.64 2.68 2.80E-04 
k3 (daN/m) 2209.7 2209.67 5.41 2.45E-03 

Table 6. Statistical analysis of the identified parameters using exact field data, structure 1, 
metrology set CM1. 

 
Fig. 9. Convergence curve of Fobjec during an IdP process using exact field data. 

The average value of each unknown parameter is very close to the reference but the 
standard deviation in not zero, which means that all solutions are not identical, even in this 
perfect case. Some scatter due to the meta-heuristic algorithm affects the identification 
process. However this scatter remains small. In real cases, it will be overshadowed by other 
error sources that will be studied now. 

3.3.2 Sensors with measurement noise 

In this section, the three elastic stiffnesses are identified on structure 1, STR1, using the 
metrology set CM1. The objective is to show how noisy data impact the accuracy of the 
predicted parameters. Several values of ε(1%, 3% and 5%) were used to noise the field data. 
20 identification processes with a different noise for each identification were carried out. The 
results are given in Table 7. The average, standard deviation and coefficient of variation C.V. 
illustrate the impact of noise on the accuracy of the processes. The larger the ε coefficient is, 
the wider the scatter appears to be coherent. It can be also noticed that a random noise from 
a normal distribution with a zero mean, and a varying standard error ε = 5% does not 
impact so much the prediction of the identified parameters: the error on the average of 20 
simulations is about 1% and the C.V. is between 1 and 7% for this metrology set made of 10 
sensors evenly distributed. The loss of accuracy is linear with the standard deviation of the 
random error, cf. table 7 and figure10. The accuracy of the predicted parameters is linearly 
correlated with the accuracy of the sensors.  
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 Results of the identification 

 
Noise ε Reference Average 

Error on 
average 

(%)
Standard Dev. C.V. 

k1 (daN/m) 1% 28726.2 28769.23 0.15 379.97 1.32E-02 
k2 (daN/m) 1% 9575.2 9604.43 0.31 78.43 8.17E-03 
k3 (daN/m) 1% 2209.7 2206.21 -0.16 26.6 1.21E-02 

k1 (daN/m) 3% 28726.2 28960.58 0.82 972.11 3.36E-02 
k2 (daN/m) 3% 9575.2 9599.53 0.25 174.73 1.82E-02 
k3 (daN/m) 3% 2209.7 2204.8 -0.22 87.36 3.96E-02 

k1 (daN/m) 5% 28726.2 28593.17 -0.46 1421.14 4.97E-02 
k2 (daN/m) 5% 9575.2 9618.48 0.45 366.62 3.81E-02 
k3 (daN/m) 5% 2209.7 2226.67 0.77 143.67 6.45E-02 

Table 7. Statistical analysis of the identified parameters using noised field data, structure 1, 
metrology set CM1. 

3.3.3 Dependence between unknown parameters 

The studied structure is here the structure 2, STR2, i.e. the half truss structure presented at 
section 3.1.1. Let us assume that one must identify the Young Modulus E, the inertia of the 
column Icolumn and the inertia of the beam, Ibeam. Four different levels of noise on field data 
(ε = 0% (perfect data), then ε = 1%, 3% and 5%) are considered and simulations are 
repeated 20 times. The results are presented in Figures 11and 12and Table 8.The first result 
is that one obtains a front of solutions, since it is not possible to uncouple the weight of E 
from that of inertia: for the same product EIi, there exists an infinite number of acceptable 
pairs {E, Ii = (EIi)/E = k/E} satisfying the same criteria. In order to estimate the sensitivity of 
the identified parameters to the field data, the sensibility of the displacement to stiffnesses 
was calculated. EIcolumn or EIbeam are varied in the [-50%; +50%] range and the displacement 
is calculated on 3 points of the beam, and on three points of the column, cf. fig. 4. Only 
displacements perpendicular to the main axis of the element are calculated. 
 

Exact field data Noisy field data with ε = 1% 

 
Average
(MN.m²)

Standard 
Dev. 

(MN.m²) 
C.V. 

  
Average
(MNm²)

Standard 
Dev. 

(MN.m²) 
C.V. 

EIbeam 12.16 0.01 5.87E-04 EIbeam 12.18 0.1 7.85E-03 
EIcolumn 58.15 0.1 1.76E-03 EIcolumn 59.34 4.81 8.11E-02 

Noisy field data with ε = 3% Noisy field data with ε = 5% 

 
Average
(MN.m²)

Standard 
Dev. 

(MN.m²) 
C.V. 

  
Average
(MN.m²)

Standard 
Dev. 

(MN.m²) 
C.V. 

EIbeam 12.25 0.21 1.75E-02 EIbeam 12.11 0.29 2.38E-02 
EIcolumn 61.96 8.4 1.36E-01 EIcolumn 57.53 8.27 1.44E-01 

Table 8. Statistical analysis of the identified parameters using noised field data, structure 3. 
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The results confirm that only some field data are sensitive to the stiffness variations. The 
stiffness variation of the column inertia (reversely beam) has only a negligible influence on 
beam (reversely column) displacements. Thus, during the identification process, the 
magnitude of the errors on sensors localized on the beam will not impact the column 
because a lack of sensibility, and reversely. A more detailed analysis Table 9 shows that 
sensitivity of column displacement to column parameters is slightly larger than the same for 
the beam. The sensitivity has been calculated as the ratio between the variation of the 
displacements at the studied point with the variation of the stiffness. Those results show 
that the displacements of the column are more sensitive to a variation of the stiffness of the 
column that for the beam and explain why the scatter of the identified stiffnesses 
EIcolumnfig.12 is more important that the scatter of the identified stiffnesses EIbeam. Indeed,  

 
Fig. 10. Illustration of the noise on field data and the dispersion of identified parameters  
ki, Structure 1, CM1. 

 
Fig. 11. Ibeam and Icolumn identified for varying magnitude of noise on field data, applied on 
the half truss structure 
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when field data on the column are noised, the inertia of the column to identified have to be 
badly identified from the reference value regards the magnitude of the noise. That result 
focuses how chosen of both the nature and the localisation of the field data regards the 
parameters to identified is important on the accuracy of the identification process. 

 
Fig. 12. Inertia and Young Modulus identified, structure 2, noised with ε = 3%. 

 

ucolumn1 ucolumn2 ucolumn3 ubeam1 ubeam2 ubeam3 
Variation of the stiffness EIcolumn -2,09 -2,09 -2,09 -0,04 -0,03 -0,02 
Variation of the stiffness EIbeam 0,21 0,24 0,31 -1,80 -1,87 -1,90 

Table 9. Sensitivity of the displacement on several points of the structure to the variation of 
the stiffnesses. 

4. Application to eco conception 

Taking into account environmental impact criteria in the preliminary eco-design of semi-
products or of full functional units is becoming more and more an issue for industry. It 
implies going through a life cycle analysis (LCA) that is now the international standard to 
evaluate such impacts. It is in fact the only way to compare the environmental impact of 
different products that fulfil the same function; and this, from the production of raw 
materials to the final destination. The fact that it is necessary to know the life cycle of a 
product makes it difficult to use the LCA during the preliminary eco-design stage. One way 
to tackle the problem would be to focus on one of the stages of the life cycle of the product 
and to consider it as independent from the other stages.  

The design process will be different if we are trying to: i) improve the environmental 
characteristics of a product while disturbing as little as possible its production process, ii) 
optimize the environmental impact of a product defined by end-use performances without 
restricting oneself to a particular process. The first case, frequent with manufacturers, being 
guided by the manufacturing process, can make it impossible to meet both the technical and 
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the environmental requirements in a given manufacturing scheme. The second approach, 
which is more prospective and open, is guided by the end-use properties that are required, 
and therefore can be tackled either in seeking an environmental optimum in a search space 
that is constrained by functional specifications or through a multi-objective optimization. 

The second approach is closer to conventional preliminary design. However, as multi-
objective optimization does not provide a single solution, but a set of possible solutions 
satisfying the design criteria among which the designer will be able to choose according to 
additional constraints, both approaches will be considered as preliminary (eco) design. 

The example that is presented here concerns the preliminary design of an outdoor decking 
taking into account its environmental profile (first approach). The initial choice was of a 
wood-plastic composite, this choice allowing the use of industrial by-products in a 
constrained search space. The optimum of the required properties will be obtained by multi-
objective optimization. 

4.1 A multi-objective optimization problem 

Design by multi-objective optimization implies simultaneous optimization of various 
contradictory objectives like it is illustrated below. 

If we take a simple example consisting in minimizing simultaneously the two following 
functions: f1(x) = x1  and  f2(x) = x2/ax1, the improvement of the first objective, f1(x), comes 
with a degradation of the second objective f2(x)). This contradiction expresses the fact that 
there does not exist an optimal solution regarding the two objectives, there are only optimal 
compromises.  

With this example we see that for a minimal f1 and thus x1 the lowest possible, we need the 
lowest possible x2 to minimize f2. In addition, the absolute minimum f2 is obtained with x1 
the highest possible and x2 the lowest possible. It is the taking into account of this 
contradiction between minimization of f1 and minimization of f2 that introduces the notion 
of compromise whether one favours f1 or f2. We see that from a purely algebraic point of 
view x1 cannot be null (division by zero). This observation introduces the fact that there is 
often a certain amount of constraints that must be met by the objective functions and/or 
their variables. These are also called parameters, optimization variables or design variables. 
The constraints that are specifications of the problem limit the search spaces of the 
parameters and/or the determining, for example, bottom or top values. A general multi-
objective optimization problem includes a set of k objective functions of n decision variables 
(parameters) constrained by a set of m constraint functions. It can be defined as below: 

Optimize 

f  f
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x), f

2
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x),, f
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 is the vector of decision variables,  

fi :n  for i  1,,k  are the objective functions and  

gi ,h j :n  for i  1,,m and j  1,, p  are the constraint functions of the problem 
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A compromise will be said optimal if every improvement of an objective induces 
degradation of another objective. A compromise whose objectives can be improved is not 
optimal. It is said to be dominated by at least another compromise, which is the one 
obtained after improvement of its objective functions. The optimal compromises are located 
on a front, named Pareto front (fig.13). The Pareto Dominance can be defined as below: 

u  (u

1
,,u

n
)  is said to dominate 


v  (v

1
,,v

n
)  (denoted ) if and only if 

i 1,,k ,u
i
 v
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A solution is Pareto optimal if and only if it is not dominated by any other solution [Van 
Veldhuizen et al., 2000; Reyes-Sierra et al., 2006 ; Zitzler et al., 2000]. A Pareto optimal 

solution, a vector of decision variables 

x  (x1, x2 ,, xn )n

, can be defined as below 
[Castéra et al., 2010]: 
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x n :q  1,, k , fq ( 
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The presence of a Pareto front, thus a set of optimal non-equivalent solutions, allows the 
choice of an optimal solution with regard to economical of functional criteria, which are 
external to the solved problem of multi-objective optimization.  

f2 

f1 





 
Fig. 13. The Pareto front is constituted by the plain dots, the objective functions f1 and f2 at 
point ┚ can still be improved to reach point ┙; therefore point ┚ is dominated by at least  
point ┙. 

We will illustrate the multi-objective particle swarm optimization for the design of a wood-
plastic composite decking with three objectives [Michaud et al, 2009]. In this example, the 
optimization focuses on the creep, swelling, and exhaustion of abiotic resources functions. 
The design variables are mainly characteristics of raw materials such as timber particle sizes 
and chemical or thermal timber changes.  

5. The wood-plastic composite preliminary eco-design problem 

The wood-plastic composites (WPC) initially developed in North America for recycling 
materials – plastics and papers – they also enable a significant reduction of the plastic 
coming from the petrochemical industry. There is thus in their development both a definite 
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economic advantage and a potential environmental interest. Nevertheless when decking is 
used outdoor, these products exhibit a certain amount of weakness points and 
contradictions: in order to allow a homogeneous extrusion and to prevent the material from 
becoming too fragile, a minimal quantity of thermoplastic (about 30 percent in the case of a 
PEHD/wood composite) is necessary. In addition, chemical additives are included in the 
formula in order to improve compatibility between the two components; one being polar 
and the other apolar. 

The WPC preliminary eco-design requires first that the designer solves a multi-objective 
optimization problem. Usually one of the three strategies below is used: 

- optimization of one objective with constraints from the others, which leads to a single 
solution;  

- optimization of a weighted function including the different objectives, which leads to a 
single solution; 

- Pareto optimization, which leads to a set of optimal compromises between the 
objectives that is well distributed in the space of solutions.  

The population based search approaches- genetic algorithm (GA), ant colony (AC), particle 
swarm optimization (PSO), etc…- are well adapted to the Pareto optimization with more or 
less efficiency. The PSO technique, like other evolutionary techniques, finds optima in 
complex optimization problems. Like GA, the system is initialized with a population and 
searches for optima by updating generations. However, unlike GA, PSO has no evolution 
operators such as crossover and mutation. PSO while traversing the search space is focused 
on the optimum, whereas GA explores the search space and then takes more time to find the 
optimum. In the WPC preliminary eco-design the main objective is to find the relevant 
optima to be able to choice an optimum with regard to economical of functional criteria; 
knowing that completely different composite formulations lead to equivalent composites in 
reference to the objective functions. Multi-objective PSO technique is specially and fully 
suitable for this problem. 

5.1 The wood-plastic composite preliminary eco-design modelling 

The modelling of WPC for decking application preliminary eco-design has required a 
multidisciplinary team (physicists and computer scientists). The modelling process 
consisted in: generating knowledge by some experiments, collecting knowledge generated 
and those from the literature and building up the influence graphs of relationships between 
the problem variables (fig.14). The three objectives considered in the preliminary eco-design 
of wood-plastic composite (creep, swelling and exhaustion of fossil resources functions) 
have been identified as critical weak points of the product [Michaud et al., 2009]. From an 
environmental point of view, exhaustion of fossil resources is, with the greenhouse effect, 
the weak point of this material. We will recall their definition in order to highlight the 
algorithmic nature of these functions. 

The creep function (def) 

The creep function, def(tref ), is an empirical non linear power function that has been fitted to 
bending experimental results. The magnitude of creep deformation is related to the elastic 
compliance 1/E. The kinetics of creep deformation is related to the viscosity of the 
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composite, . The fiber size distribution parameter kGRAN used in equation (13) is a discrete 
variable that can take three different values between 0.3 (random) and 1 (unidirectional)  

 
Fig. 14. The influence graph of relationships between the decision variables and the 
objectives. 

with an intermediate value calculated at 0.69 (partially oriented) – see Michaud et al, op.cit., 
whereas the other variables used in the equations (12), (13) and (14) are continuous. In fact 
the def function (equation 12), in its developed formula has an algorithm form due to the 
conditions on the discrete kGRAN. 

 
def (tref ) 

A
 0

MOR
   tref

Ne
0

MOR









E  
(12)

 

Where A and N are fitted parameters of the creep function model, σ0 is applied stress, σMOR is 
modulus of rupture of the composite material, tref is the time to reach a limit state deflection, 
E is the modulus of elasticity and ν is the apparent viscosity of the composite at room 
temperature. E and ν are calculated through a simple mixture law, as shown in equations 
(13) and (14). These equations reveal the main optimization variables, i.e. material 
properties, volume fractions and fibre orientation. 

 
E  m (bioEbio  (1bio  add )Em ) addEadd  (kGRAN ).(1 m  add )E f  (13) 

 
  m (biobio  (1bio )m ) addadd  (1 m  add ) f  (14) 
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see table 10 for the meaning of other variables. 

 
xj Description Main relations 

x1 = λf Fiber ratio in composite formulation 0 x1  1 and x1= x1 (x4 +x5 +x6) 
x2 = λadd Additives ratio in composite formulation 0 x2  1 

x3 = λm Matrix ratio in composite formulation 
0 x3  1, x3= 1-x1 -x2 and  
  x3= x3 (x7 +x8 +x9) 

x4 =┙f Fiber ratio in Fiber component 0 x4  1 and x4 + x5 + x6 = 1 
x5 = ┙frec Recycled Fiber ratio in Fiber component 0 x5  1  

x6 = ┙reinf 
Other reinforcement ratio in Fiber 
component 

0 x6  1  

x7 = ┙m Thermoplastic ratio in matrix component 0 x7  1 and x7 + x8 + x9 = 1 
x8 = ┙bio Biopolymer ratio in matrix component 0 x8  1 
x9 = ┙trec Recycled thermoplastic ratio in matrix  0 x9  1 
x10 = gran Fiber size distribution factor  discrete variable x10= {1, 2, 3} 
x11 = kt Fiber treatment factor discrete variable x11= {0, 1, 2, 3} 
x12 Viscoelastic properties of constituents  E, n 

Table 10. Variables X = {x1, x2, …, x12} related to the composite formulation. 

Water swelling function (SW) 

The swelling function due to water absorption, SW, is defined by equation (15). It expresses 
the fact that the swelling of the composite is the sum of the swelling deformations of all 
hygroscopic components present in the composite and accessible to water, e.g. wood, 
biopolymers…. The part representing the swelling of the fibres vanishes when the fibres are 
not accessible to water (below a given percolation threshold . In addition the swelling 
capacity of wood fibres can be changed by thermal or chemical wood modification, which is 
expressed in equation (15) by the discrete variable kt that can take three different values 
(low, medium or high effect). The SW function is also an algorithm: there are conditions on 
the discrete variables (kt, m and ω) and on the threshold variable λ0. 

 

SW  (1 frec
(1 k fr ))kt (1 e

m. f
1

) f SW f biomSWm   if   f biom  0

     bio m SWm   otherwise  
(15) 

where 

0 is the percolation threshold; kfr is the user defined coefficient for influence of recycled 
fiber onto swelling; kt is the user defined coefficient for influence of treatment onto swelling; 
m, , SWf and SWm are swelling function parameters. 

See table 10 for the meaning of other variables. 

Exhaustion of fossil resources function (efr) 

The exhaustion of fossil resources function, efr, is defined as an addition of two factors 
(equation 16): one for fibres used and one for the non-renewable part of the polymer if the 
polymer is a blend. 
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 efr  a1. f  a2 .(1bio )(1  f )  (16) 

where the coefficient a1 represents the impact of fiber processing and treatment on the 
exhaustion of fossil resources, and the coefficient a2 reflects the impact of non renewable 
thermoplastic and additives production and processing. Other factors have an impact on efr, 
such as consumption of non-renewable energy during composite assembly, production of 
additives... For simplification they have not been considered. Normally a2 is expected to be 
higher than a1. The balance between the two coefficients influences the environmental 
optimization. 

See table 10 for the meaning of other variables. 

5.2 Application of the MOPSO algorithm 

In the design of wood-plastic composite (WPC), the creep and swelling functions are 
conflicting: the swelling of the composite growth when the creep decreases with the rate of 
fibers (wood). The MOPSO deals with such conflicting objectives; even if the representation 
of each objective is an algorithm and thus with a high number of functions. In our WPC 
preliminary design we have three objective functions with two of them represented each by 
an algorithm utilizing several variables.  

Dealing with continuous and discrete variables 

The equations (5) and (8) are used as position updating rule of respectively real and discrete 
variables. The equation (4) is used as velocity updating rule for all variables. During the 
optimization process, the real variables converge to their optima according to the objective 
functions, whereas each discrete variable randomly traverses its space of definition and 
consequently its best solution is identified. Due to the discrete variables, the solution space 
of the multi-objective optimization problem is discontinuous (fig. 15) 

efr 

def (mm) 

SW (%) 

 
Fig. 15. Solution space of the multi-objective (def, SW and efr) optimization problem 
determined from a MOPSO of 1000 generations of 30 particles. 
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Multi-objective optimization 

In this work we have applied the MOPSO method described in [Alvarez-Benitez et al., 2005]. 
In this method only the fully connected topology is used to calculate the position of each 
particle for each objective function and then the Pareto dominance test is applied to each 
particle regarding the particle's positions stored in the extended memory. If the position of a 
particle dominates some particle's positions in the extended memory, the position of the 
particle is stored in the extend memory and the ones dominated are discarded from the 
extended memory. We used, as end condition of the optimization process, a given maximum 
number of iterations. Of course the swarm is randomly initialized and the number of its 
particles is given. The Pareto front is constituted by the particle's positions in the extended 

memory at the end of the optimization process. 

The efficiency of the optimization is hardly influenced by the constant parameters ω, c1 and 
c2 in the equation (4). Such parameters have to be experimentally adapted to each 
optimization problem. For our problem the parameters ω, c1 and c2 have been respectively 
settled to 0.63, 1.45 and 1.45 (fig. 16). 

efr 

def (mm) 

SW (%) 

 
Fig. 16. The Pareto front of the multi-objective (def, SW and efr) optimization problem 
determined from a MOPSO of 1000 generations of 30 particles. 

6. Results and discussion 

Stability of the Pareto front  

The Pareto front is stable regarding the swarm size and the number of generations of 
particles (number of iterations used as end-condition of the optimization process) [Ndiaye 
et al. 2009]. For a given swarm size, the number of particles in the Pareto front increases 
with the increasing number of generation of particles according to an affine law, but the 
shape of the front remains the same (fig. 17a); and for a given number of generation of 
particles, the number of particles in the Pareto front increases with the increase of the 
swarm size (fig. 17b).The size of the Pareto front can be rather large and therefore the 
swarm size and the number of iterations should be fitted in order to obtain a reasonable 
front size. 
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Fig. 17. Stability of the Pareto front: a) constant number of particles,  
b) constant number of iterations [Ndiaye et al., 2009]. 

Analysis of MOPSO solutions on composite formulations 

Two solutions very close in the Pareto front can refer to two completely or slightly different 
composite formulations. Table 11 illustrates two kinds of differences: 

 The values of decision variables of the solutions (a) and (b) are completely different: 
the solution (a) contains a low rate of plastic (36%) without biopolymer, randomly 
oriented short fibers with 9% of recycled ones and a high treatment level; the solution 
(b) contains a high plastic content (59%) with 39% of biopolymer thermoplastic, 
randomly oriented short fibers with 2% of recycled ones and a high treatment level. 
These two solutions are rather equivalent regarding the objective functions values: for 
(a) 1mm/3%/4.67 for creep/swelling/efr and 1.9mm/3%/4.10  for (b).  

 The values of decision variables of the solutions (c) and (d) are slightly different: the 
solution (c) contains a slightly high rate of plastic (46%) with 44% of biopolymer, 
unidirectionally oriented short fibers without recycled ones and a high treatment level; 
the solution (d) contains a high plastic content (57%) with 48% of biopolymer 
thermoplastic, unidirectionally oriented short fibers without recycled ones and a high 
treatment level. These two solutions are rather equivalent regarding the objective 
functions values: for (a) 1mm/3%/3.68 for creep/swelling/efr  and 1.4mm/3%/3.67  
for (d).  

These results show a significant gap for raw materials content and underline the power of 
such optimization process offering new possibilities of preliminary design.  

 

Solution 
λm

(%) 
┙bio

(%) 
GRAN 

┙frec 
(%) 

kt 
Creep 
(mm) 

Swelling 
(%) 

efr  

a 33 0 2 9 2 1.0 3 4.67  
b 59 39 2 2 2 1.9 3 4.10  
c 46 44 3 0 2 1.0 3 3.68  
d 57 48 3 0 2 1.4 3 3.67  

Table 11. Examples of solutions in the Pareto front. 
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A large number of solutions 

The number of MOPSO solutions on composite formulations depends on the ratios between 
the components and their desired precision. The number of solutions grows in function with 
the precision of ratios between the components using a logarithm-like law. It starts at 1500 
solutions for a precision of 2 (the lowest possible precision) to more than 5000 for a precision 
greater than 5 (fig.18). The matrix ratio in composite formulation generates a peak of 
solutions around 75% for any precision of ratio. This large number of solutions makes them 
difficult to handle. One solution is to take into account, in the system process, the user of the 
system so he could fix the precision of ratios, and for each ratio, its desired range; the latter 
being included in the domain of validity of the variable representative of the ratio. For 
example if you want to formulate a wood-plastic composite with a matrix ratio lying 
between 30% and 40% without biopolymer, it is sufficient to restrict the range of the variable 
representative of the matrix ratio (m) between 0.3 and 0.4 and the one representative of the 
biopolymer ratio in matrix component (bio) between 0.0 and 0.0. In this case the number of 
solutions in the Pareto front fall down to 20. 
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Fig. 18. The influence of the precision of ratios in composite formulation on the number of 
solutions in the Pareto front. 

7. Conclusion 

This chapter described two examples of the civil engineering field in which PSO has been 
used. The first case is a structural problem when the second is a material problem. In both 
cases, the advantage of PSO have been highlighted: 

- The PSO algorithm is blind to the real physics, and can be easily adapted to a wide 
variety of engineering problem. The main issue is the definition of a relevant objective 
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function, which describes the goal to reach (mimic the physical field measurement at 
best in the first case, minimize a multi-objective function in the second one). 

- The PSO can be used either for mono-objective or for multi-objective problems. The 
quick convergence of the PSO to the solution of the problem and its capabilities to be 
blind to local minimum shows that this algorithm is particularly appropriate for solving 
such kind hard optimisation problems. 

- Thanks to its simplicity of use, the PSO can be combined with more sophisticated 
computations (like for instance finite element computations, which are used, as a “slave 
code”, in the direct model). 

- Moe practically, significant results have been obtained in the engineering field: 
- the first case has shown the impact of the relations between parameters to identify on 

the accuracy of the identification using the PSO. These examples focused on the several 
points to take into account (a) metrology set (i.e. number and locations), and (b) either 
the sensitivity of the field data on the parameters to identify or the independence 
between parameters to identify.  

- the second case has shown the easiness of handling the multi-objective particle swarm 
optimization (MOPSO) method and its interest in preliminary eco-design. The method 
provides a set of "interesting" solutions among which the designer will be able to refine 
the design process, introducing for instance processes, availability of raw materials and 
economic viability. There is no restriction on the number of objectives, provided their 
expressions and interactions can be clearly defined. We have used a MOPSO algorithm 
based on an extended memory technique to calculate a stable Pareto front for three 
objective functions: creep, swelling and exhaustion of fossil resources in the context of 
the environmental optimization of the wood-plastic composite. The creep and swelling 
functions are in fact algorithms using in the same time continuous and discrete 
variables. A flexible and multiplatform (Unix, Windows and Mac osx) computer 
program has been developed. 
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