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1. Introduction

Particle swarm optimization inspired with the social behavior in flocks of birds and schools

of fish is an adaptive, stochastic and population-based optimization technique which was

created by Kennedy and Eberhart in 1995 (9; 12). As one of the representatives of

swarm intelligence (20), it has the distinctive characteristics: information exchange, intrinsic

memory, and directional search in contrast to genetic algorithms (GAs) (14) and genetic

programming (GP) (16). Due to ease of understanding and implementation, good expression

and expandability, higher searching ability and solution accuracy, the technique has been

successfully applied to different fields of science, technology, engineering, and applications

for dealing with various large-scale, high-grade nonlinear, and multimodal optimization

problems (22; 23).

Although the mechanism of a plain particle swarm optimizer (the PSO) (13) is simple to

implement with only a few parameters, in general, it can provide better computational results

in contrast to other methods such as machine learning, neural network learning, genetic

algorithms, tabu search, and simulated annealing (1). Nevertheless, like other optimization

methods, an essential issue is how to make the PSO efficiently in dealing with different kinds

of optimization problems. And it is well-known that the systematic selection of the parameter

values in the PSO is one of fundamental manners to the end, and the most important especially

for establishing a policy which determines the PSO with high search performance.

However, in fact how to properly determine the values of parameters in the PSO is a quite

attractive but hard subject especially for a detailed analysis of higher order (7). The cause is

because the search behavior of the PSO has very high indeterminacy. Usually, these parameter

values related to internal stochastic factors need to be adjusted for keeping search efficiency

(5).

As new development and expansion of the technique of meta-optimization1, the above issue

already can be settled by the method of evolutionary particle swarm optimization (EPSO)

(27), which provides a good framework to systematically estimate appropriate values of

1 Meta-optimization, in general, is defined as the process of using an optimization algorithm to
automatically search the best optimizer from all computable optimizers.
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parameters in a particle swarm optimizer corresponding to a given optimization problem

without any prior knowledge. Based on the use of meta-optimization, it could be expected to

not only efficiently obtain an optimal PSO, but also to quantitatively analyze the know-how

on designing it. According to the utility and reality of the method of the EPSO, further

deepening meta-optimization research, i.e. dynamic estimation approach, is an indispensable

and necessary step for efficiently dealing with any complex optimization problems.

To investigate the potential characteristics and effect of the EPSO, here we propose and study

to use two different criteria: a temporally cumulative fitness function of the best particle and

a temporally cumulative fitness function of the entire particle swarm respectively to evaluate

the search performance of the PSO in an estimation process. The goal of the attempt is to

supply the demand for diversification satisfying some different specification to the optimizer.

Needless to say, the search behavior and performance of the PSO closely relies on the

determined values of parameters in the optimizer itself. For revealing the inherent

characteristics of the obtained PSOs, we also propose an indicator to measure the difference in

convergence of the PSOs estimated by respectively implementing each criterion. Due to verify

the effectiveness of the proposed method and different characters of the obtained results,

computer experiments on a suite of multidimensional benchmark problems are carried out.

The rest of the paper is organized as follows. Section 2 introduces the related work on this

study. Section 3 describes basic mechanisms of the PSO and EPSO, two different criteria, and

an indicator in detail. Section 4 shows the obtained results of computer experiments applied

to a suite of multidimensional benchmark problems, and analyzes the respective character

of the estimated PSOs with using each criterion. Finally Section 5 gives the conclusion and

discussion.

2. Related work

Until now, many researchers have paid much attention to the issue, i.e. effectually obtaining

the PSO with high search performance, and proposed a number of advanced algorithms

to deal with it. These endeavors can be basically divided into two approaches: manual

estimation and mechanical estimation shown in Figure 1.

Fig. 1. Family of estimating PSO methods

52 Theory and New Applications of Swarm Intelligence
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The Pursuit of Evolutionary Particle Swarm Optimization 3

Manual estimation is to try many values of parameters to find a proper set of parameter values

in the PSO for dealing with various optimization problems reasonably well (2; 4; 10). Since

its procedure belongs to a trial-and-error search, the computational cost is enormous, and the

estimating accuracy is not enough.

In contrast to the above situation, mechanical estimation is to directly utilize evolutionary

computation for achieving the task. A composite PSO (cPSO) (21) was proposed to estimate

the parameter values of the PSO during optimization. In the cPSO, the differential evolution

(DE) algorithm (24) is used to generate a difference vector of two randomly picked boundary

vectors for parameter selection. In spite of the effect to the estimation, the internal stochastic

factors in the DE have an enormous impact on the estimating process. Therefore, the

recreation to obtain some similar results is difficult. This is the major shortcoming of the

cPSO for certification.

In order to overcome the above mentioned weakness of instability in an estimation process,

Meissner et al. proposed a method of optimized particle swarm optimization (OPSO) as

an extension of the cPSO, which uses the PSO to deal with meta-optimization of the PSO

heuristics (18). Zhang et al. independently proposed a method of evolutionary particle swarm

optimization (EPSO) which uses a real-coded genetic algorithm with elitism strategy (RGA/E)

to accomplish the same task (27). These methods are positive attempts of evolutionary

computation applied for the design of the PSO itself, and give a marked tendency to deal

with meta-optimization of analogous stochastic optimizers heuristics.

By comparing the mechanisms of both the OPSO and EPSO, we see that there are two big

differences in achievement of estimating the PSO. The first one is on the judgment (selection)

way used in evaluating the search performance of the PSO. The former uses an instantaneous

fitness function and the PSO to estimation, and the latter uses a temporally cumulative fitness

function and the RGA/E to estimation. The second one is on the estimating manner used in

dealing with meta-optimization of the PSO heuristics.

Owing to the temporally cumulative fitness being the sum of an instantaneous fitness,

fundamentally, the variation of the obtained parameter values, which comes from the

stochastic influence in a dynamic evaluation process, can be vastly alleviated. According

to this occasion, the use of the adopted criterion could be expected to give rigorous

determination of the parameter values in the PSO, which will guide a particle swarm to

efficiently find good solutions.

To investigate the potential characteristics of the EPSO, a temporally cumulative fitness

function of the best particle and a temporally cumulative fitness function of the entire particle

swarm are used for evaluating the search performance of the PSO to parameter selection. The

former was reported in our previous work (27; 29). The latter is a proposal representing active

behavior of entire particles inspired by majority decision in social choice for the improvement

of the convergence and search efficiency of the entire swarm search (28).

The aim of applying the different criteria in estimating the PSO is to pursue the intrinsic

difference and the inherent characters on designing the PSO with high search performance.

For quantitative analysis to the obtained results, we also propose an indicator for judging the

situation of convergence of the PSO, i.e. the different characteristics between the fitness value

53The Pursuit of Evolutionary Particle Swarm Optimization
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of the best particle and the average of fitness values of the entire swarm over time-step in

search.

3. Basic mechanisms

For the sake of the following description, let the search space be N-dimensional, S ∈ ℜN , the

number of particles in a swarm be P, the position of the ith particle be �x i = (xi
1, xi

2, · · · , xi
N)T ,

and its velocity be �v i = (vi
1, vi

2, · · · , vi
N)T , repectively.

3.1 The PSO

In the beginning of the PSO search, the particle’s position and velocity are generated

randomly, then they are updated by

⎧

⎨

⎩

�x i
k+1 = �x i

k+�v i
k+1

�v i
k+1 = c0�v

i
k+ c1�r1⊗(�p i

k−�x i
k)+ c2�r2⊗(�qk−�x i

k)

where c0 is an inertia coefficient, c1 and c2 are coefficients for individual confidence and swarm

confidence, respectively. �r1 and�r2 ∈ ℜN are two random vectors in which each element is

uniformly distributed over the interval [0, 1], and the symbol ⊗ is an element-wise operator for

vector multiplication. �p i
k(= arg max

j=1,··· ,k
{g(�x i

j )}, where g(·) is the fitness value of the ith particle

at k time-step) is the local best position of the ith particle up to now, and �qk(= arg max
i=1,2,···

{g(�p i
k)}) is the global best position among the whole particle swarm. In the original PSO,

c0 = 1.0 and c1 = c2 = 2.0 are used (12).

To prevent particles spread out to infinity in the PSO search, a boundary value, vmax, is

introduced into the above update rule to limit the biggest velocity of each particle by

⎧

⎨

⎩

v
ij
k+1 = vmax, i f v

ij
k+1 > vmax

v
ij
k+1 = −vmax, i f v

ij
k+1 < −vmax

where v
ij
k+1 is the jth element of the ith particle’s velocity �v i

k+1.

For attaining global convergence of the PSO, the studies of theoretical analysis were minutely

investigated (3; 5; 6). Clerc proposed a canonical particle swarm optimizer (CPSO) and

analyzed its dynamical behavior. According to Clerc’s constriction method, the parameter

values in the equivalent PSO are set to be c⋆0 = 0.7298 and c⋆1 = c⋆2 = 1.4960. Since the value

of the inertia coefficient c⋆0 is less than 1.0, the CPSO has better convergence compared to the

original PSO. Consequently, it is usually applied for solving many practice problems as the

best parameter values to search (17).

Although the set of the parameter values, (c⋆0 , c⋆1 , c⋆2), is determined by a rigid analysis in

a low-dimensional case, it is hard to declare that these parameter values are whether the

surely best ones or not for efficiently dealing with different kinds of optimization problems,

especially in a high-dimensional case. To distinguish the truth of this fact, correctly obtaining

54 Theory and New Applications of Swarm Intelligence
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the information on the parameter values of the equivalent PSO by evolutionary computation

is expected to make clear.

3.2 The EPSO

In order to certainly deal with meta-optimization of the PSO heuristics, the EPSO is composed

of two loops: an outer loop and an inner loop. Figure 2 illustrates a flowchart of the EPSO

run. The outer loop is a real-coded genetic algorithm with elitism strategy (RGA/E) (26).

The inner loop is the PSO. This is an approach of dynamic estimation. They exchange

the necessary information each other during the whole estimating process. Especially, as

information transmission between the loops in each generation, the RGA/E provides each

parameter set of parameter values,�c j = (c
j
0, c

j
1, c

j
2) (the j-th individual in a population, j ∈ J,

where J is the number of individuals), to the PSO, and the PSO returns the values of the

fitness function, F(c
j
0, c

j
1, c

j
2), corresponding to the given parameter set to the RGA/E. By the

evolutionary computation, the RGA/E simulates the survival of the fittest among individuals

over generations for finding the best parameter values in the PSO.

Fig. 2. A flowchart of the EPSO

As genetic operations in the RGA/E, roulette wheel selection, BLX-α crossover, random

mutation, non-redundant strategy, and elitism strategy are used for efficiently finding an

optimal individual (i.e. an optimal PSO) from the population of parameter values of the PSO.

On being detailed, further refer to (33).

55The Pursuit of Evolutionary Particle Swarm Optimization
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3.3 Two different criteria

To reveal the potential characteristics of the EPSO in estimation, two criteria are applied for

evaluating the search performance of the PSO. The first criterion is a temporally cumulative

fitness function of the best particle, which is defined as

F1(c
j
0, c

j
1, c

j
2)=

K

∑
k=1

g(�qk)
∣

∣

c
j

0 ,c
j

1 ,c
j

2

(1)

where K is the maximum number of iterations in the PSO run. The second criterion is a

temporally cumulative fitness function of the entire particle swarm, which is defined as

F2(c
j
0, c

j
1, c

j
2)=

K

∑
k=1

ḡk

∣

∣

c
j

0 ,c
j

1 ,c
j

2

(2)

where ḡk = ∑
P
i=1 g(�x i

k)/P is the average of fitness values over the entire particle swarm at

time-step k.

As an example, Figure 3 illustrates the relative evaluation between two pairs of the criteria,

{g(�qk), ḡk} and {F1, F2}, during the evolutionary computation. It is clearly observed that the

properties of the instantaneous fitness functions, g(�qk) and ḡk, are quite different. Namely,

while the change of g(�qk) is monotonous increment, the change of ḡk is non-monotonous

increment with violent stochastic vibration. In contrast to this, the criteria, F1 and F2, are all

monotonous increment with a minute vibration.

Fig. 3. Comparison of two pairs of the used fitness functions

Because both F1 and F2 are the sum of instantaneous fitness functions, g(�qk) and ḡk, over

time-step, in theory, their variance is inversely proportional to the interval of summation.

Thus, they could lead to vastly inhibit noise which comes from dynamic evaluation to the

estimation. This property indicates that which of both F1 and F2 is well suitable for evaluating

the search performance of the PSO, regardless of the difference in objects of evaluation

themselves.

56 Theory and New Applications of Swarm Intelligence
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3.4 A convergence indicator

Looking from another viewpoint, the above difference in evaluational form can be considered

as the disparty between the values of the temporally cumulative fitness function of the best

particle and the average of fitness values over the entire particle swarm.

According to the concept of different characteristics, we propose to set the following

convergence time-step, kmax, as a convergence indicator for measurement.

∀k ≥ kmax, g(�qk)− ḡk ≤ τ, (3)

where τ is a positive tolerance coefficient.

It is clear that the shorter the convergence time-step is, the faster the convergence of particles

is. Since most particles quickly converge on an optimal solution or a near-optimal solution, the

convergence indicator, kmax, shows the conversion of difference of the different characteristics

from increasing to decreasing, which representing a change of process, and indirectly records

the index of diversity of the swarm over time-step in search.

4. Computer experiments

To facilitate comparison and analysis of the potential characteristics of the EPSO, the following

suite of multidimensional benchmark problems (25) is used in the next experiments.

Sphere function:

fSp(�x) =
N

∑
d=1

x2
d

Griewank function:

fGr(�x) =
1

4000

N

∑
d=1

x2
d −

N

∏
d=1

cos
( xd√

d

)

+ 1

Rastrigin function:

fRa(�x) =
N

∑
d=1

(

x2
d − 10 cos(2π xd) + 10

)

Rosenbrock function:

fRo(�x) =
N−1

∑
d=1

100
(

xd+1 − x2
d

)2
+

(

1 − xd

)2

The following fitness function in the search space, S ∈ (−5.12, 5.12)N , is defined by

g
ω
(�x) =

1

fω(�x) + 1
(4)

57The Pursuit of Evolutionary Particle Swarm Optimization
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where the subscript, ω, stands for one of the followings: Sp (Sphere), Gr (Griewank), Ra

(Rastrigin), and Ro (Rosenbrock). Since the value of each function, fω(�x), at the optimal solution

is zero, the largest fitness value, gω(�x), is 1 for all given benchmark problems.

Figure 4 illustrates the distribution of each fitness function in two-dimensional space. It is

clearly shown that the properties of each problem, i.e. the Sphere problem is an unimodal

with axes-symmetry, the Rosenbrock problem is an unimodal with axes-asymmetry, and the

Griewank and Rastrigin problems are multimodal with different distribution density and

axes-symmetry.

Fig. 4. Fitness functions corresponding to the given benchmark problems in two-dimensional
space. (a) The Sphere problem, (b) The Griewank problem, (c) The Rastrigin problem, (d) The
Rosenbrock problem.

4.1 Experimental condition

Table 1 gives the major parameters used in the EPSO run for parameter selection in the next

experiments. As initial condition of the EPSO, positions of particles are set in random, and the

corresponding velocities are set to zero.

Note that the constant, vmax, is used to arbitrarily limit the maximum velocity of each particle

in search. Both non-redundant search and roulette wheel selection in genetic operations have

not parameter to set. The smaller number of individuals, particles and iterations is chosen in

order to acquire the balance between estimating accuracy and computing speed. As for the

estimating accuracy, it can be guaranteed by repetitively taking average of the results.

On regarding the parameter setting for the genetic operations in the RGA/E, concretely,

some experimental results reveal that bigger probability works better in generating superior

58 Theory and New Applications of Swarm Intelligence
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Parameters Value

the number of individuals, J 10

the number of generations, G 20

the number of elite individuals, sn 2

probability of BLX-2.0 crossover, pc 0.5

probability of mutation, pm 0.5

the number of particles, P 10

the number of iterations, K 400

the maximum velocity, vmax 5.12

Table 1. Major parameters in the EPSO run

individuals (33). This is the reason why the probability of crossover and mutation is set to 0.5

for efficient parameter selection.

4.2 Experimental results (1)

Computer experiments on estimating the PSO are carried out for each five-dimensional

benchmark problem. It is to be noted that the appropriate values of parameters in the PSO are

estimated under the condition, i.e. each parameter value is non-negative.

Based on the distribution of the resulting parameter values, ĉ0, ĉ1, and ĉ2, within the

top-twenty optimizers taken from the all obtained PSOs, they are divided into four groups,

namely, a-type: ĉ0 = 0, ĉ1 = 0, ĉ2 > 0; b-type: ĉ0 = 0, ĉ1 > 0, ĉ2 > 0; c-type: ĉ0 > 0,

ĉ1 = 0, ĉ2 > 0; and d-type: ĉ0 > 0, ĉ1 > 0, ĉ2 > 0. Doing this way is to adequately

improve the accuracy of parameter selection, because each type of the obtained PSOs has

stronger probability which solves the given benchmark problems regardless of the frequencies

corresponding to them within the top-twenty optimizers.

Table 2 gives the resulting values of parameters in each type of the obtained PSOs, criterion

values and frequencies. According to the statistical results, the following features and

judgments are obtained.

1. The estimated PSOs are non-unique, and the parameter values in each optimizer are quite

different from that in the original PSO or equivalent PSO.

2. The values of inertia coefficient, ĉ0, and the coefficient for individual confidence, ĉ1, could

be zero, but the value of coefficient for swarm confidence, ĉ2, is always non-zero, which

plays an essential role in finding a solution to any given problem.

3. For the PSO in d-type cases, an overlapping phenomenon in each parameter value appears

with the corresponding standard deviation (SD) in many cases. The variation of the

respective SD indicates the adaptable range to each parameter value and the difficulty

to obtain appropriate parameter value for handling the given problem.

4. For Rastrigin problem, both of ĉ1 and ĉ2 drastically exceed 1 in the criterion F1 case.

This suggests that the search behavior of the PSO is required to be more randomization

extensively for enhancing the search performance to find an optimal solution or

near-optimal solutions in search space. For the Griewank and Rosenbrock problems, ĉ1

59The Pursuit of Evolutionary Particle Swarm Optimization
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Cumulative Parameter
Problem Dim. fitness PSO ĉ0 ĉ1 ĉ2

Freq.

395.3±0.7 a-type 0 0 2.4961±0.2468 20%

– b-type – – – –
F1 394.6±0.8 c-type 0.1975±0.0187 0 2.4665±0.3573 45%

394.1±0.5 d-type 0.6770±0.2326 1.1293±0.0939 0.9375±0.6567 35%
Sphere 5 392.5±0.8 a-type 0 0 2.2990±0.1614 15%

393.0±1.4 b-type 0 0.2397±0.1007 2.2867±0.1602 15%
F2 – c-type – – – –

392.2±0.5 d-type 0.4656±0.1514 0.9807±0.6100 1.3073±0.5850 70%

– a-type – – – –

– b-type – – – –
F1 396.8±0.0 c-type 0.1707±0.0000 0 0.6224±0.0000 5%

396.6±0.6 d-type 0.5101±0.2669 2.0868±0.4260 1.0258±0.6117 95%
Griewank 5 – a-type – – – –

394.7±0.0 b-type 0 3.3247±0.0000 0.6994±0.0000 5%
F2 – c-type – – – –

394.8±0.8 d-type 0.4821±0.1911 1.2448±0.5229 1.6101±0.6596 95%

– a-type – – – –

– b-type – – – –
F1 396.0±0.0 c-type 1.0578±0.0000 0 82.171±0.0000 5%

395.7±0.5 d-type 1.3459±0.5439 10.286±3.5227 24.929±21.857 95%
Rastrigin 5 230.0±20.9 a-type 0 0 3.8991±0.0681 100%

– b-type – – – –
F2 – c-type – – – –

– d-type – – – –

– a-type – – – –

– b-type – – – –
F1 298.4±3.7 c-type 0.6804±0.0000 0 2.1825±0.0000 10%

317.1±18.8 d-type 0.9022±0.0689 1.3097±0.5619 0.7614±0.1689 90%
Rosenbrock 5 – a-type – – – –

295.5±9.0 b-type 0 4.0370±0.5740 1.9494±0.1237 20%
F2 312.4±26.7 c-type 0.8033±0.0000 0 0.5165±0.0000 20%

310.5±36.3 d-type 0.7042±0.0492 0.7120±0.3631 1.5028±0.6779 60%

Table 2. Estimated appropriate values of parameters in the PSO, cumulative fitness values,
and frequencies in the top-twenty optimizers. The PSO in a-type: ĉ0 = 0, ĉ1 = 0, ĉ2 > 0; The
PSO in b-type: ĉ0 = 0, ĉ1 > 0, ĉ2 > 0; The PSO in c-type: ĉ0 > 0, ĉ1 = 0, ĉ2 > 0; in d-type:
ĉ0 > 0, ĉ1 > 0, ĉ2 > 0. The symbol “-” signifies no result corresponding to contain type of the
PSO.

drastically exceeds 1 under the condition of ĉ0 = 0. This suggests that there is a choice to

adapt the spacial condition in using the criterion F2 case for improving search performance

of the PSO.

60 Theory and New Applications of Swarm Intelligence
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5. The average of the fitness values, F1, is larger than that of F2 except for the Rosenbrock

problem. And the frequencies corresponding to the PSO in d-type are higher than other

types for a majority given problems.

It is understood that the estimated PSOs related to each given benchmark problem are

obtained by implementing the EPSO without any prior knowledge. The signification of the

existence of the four types of the obtained PSOs reflects the possibility of problem-solving.

4.3 Performance analysis

For inspecting the results of the EPSO using two different criteria, we measure the search

ability of each estimated PSO by the average of parameter values in Table 2, and show the

obtained fitness values with 20 trials in Figure 5.

It is observed from Figure 5 that the search ability of the PSO estimated by using the criterion

F1 is superior to that by using the criterion F2 except for the Sphere and Griewank problems.

Therefore, the obtained results declare that the criterion F1 is suitable for generating the PSO

with higher adaptability in search compared with the criterion F2. The cause is obvious, i.e.

all of particles rapidly move in close to the global best position, �qk, found by themselves up

to now. About the fact, it can be confirmed by the following experiments. However, such

improvement of the search performance of the entire particle swarm, in general, restricts

active behavior of each particle, and will lose more chances for finding an optimal solution

or near-optimal solutions.

For investigating the different characteristics, we measure the convergence time-step for each

estimated PSO in d-type with the highest search ability in Figure 6. According to the different

characteristics, for instance, the disparity between two criteria, i.e. g(�qk) − ḡk, maximum

tolerance, τmax, and the convergence time-step, kmax, is shown in Figure 6.

In comparison with the difference between two criteria in the optimization, Table 3 gives the

convergence time-step, kmax, of the original PSO, and the estimated PSO under the condition

of the maximum tolerance, τmax(= max
k=1···K

(

g(�qk)− ḡk

)

), corresponding to each given problem.

Convergence time-step, kmax

Problem Original PSO EPSO (F1) EPSO (F2)

Sphere 236.1±95.63 8.100±2.268 7.200±2.375

Griewank 249.4±108.0 4.350±2.814 4.150±2.224

Rastrigin 363.4±92.40 224.2±152.3 99.15±52.83

Rosenbrock 397.4±2.370 34.15±7.862 25.72±8.672

Table 3. The convergence time-step for the original PSO and the estimated PSO.

Based on the results on the search performance (SP) and the convergence time-step (CT) in

Table 3, the dominant relationship on their different characteristics is indicated as follows.

SP: EPSO(F1) ≻ EPSO(F2) ≻ Original PSO

CT: EPSO(F2) ≻ EPSO(F1) ≻ Original PSO

61The Pursuit of Evolutionary Particle Swarm Optimization
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Fig. 5. The search ability of each estimated PSO

Fig. 6. The disparity in criterion, g(�qk)− ḡk.

In comparison with both SP and CT, it is considered that the criterion F1 well manages the

trade-off between exploitation and exploration than that the criterion F2 does. And the search

performance of the original PSO is the lowest. These results indicate that these parameters,

c0 = 1.0 and c1 = c2 = 2.0, cannot manage the trade-off between exploration and exploitation

in its heuristics well, so the original PSO is unreasonable for efficiently solving different

optimization problems to conclude.

Table 4 gives the results of implementing the EPSO, the original PSO, the original CPSO,

OPSO, and RGA/E. We can see that the search performance of the PSOs optimized by the

62 Theory and New Applications of Swarm Intelligence
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EPSO using the criterion F1 is superior to that by the original PSO, the original CPSO, OPSO,

and RGA/E for the given benchmark problems except the Sphere problem.

Problem Dim. Original PSO Original CPSO EPSO(F1) EPSO(F2) OPSO RGA/E

Sphere 5 0.9997±0.0004 1.0000±0.0000 1.0000±0.0000 0.9830±0.0399 1.0000±0.000 0.9990±0.0005

Griewank 5 0.9522±0.0507 0.8688±0.0916 0.9829±0.0129 0.9826±0.0311 0.9448±0.0439 0.9452±0.0784

Rastrigin 5 0.1828±0.1154 0.6092±0.2701 1.0000±0.0000 0.6231±0.3588 0.2652±0.1185 0.9616±0.0239

Rosenbrock 5 0.4231±0.2208 0.6206±0.2583 0.7764±0.2723 0.5809±0.2240 0.3926±0.1976 0.3898±0.2273

Table 4. The obtained results of the EPSO, the original PSO, the original CPSO, OPSO, and
RGA/E (the mean and the standard deviation of fitness values in each optimizer). The
values in bold signify the best results for each problem.

Specially, the fact of what the search performance by the estimated PSO is superior to that by

the original CPSO demonstrates the effectiveness of the proposed criteria, which emphasizes

the importance of executing the EPSO to parameter selection.

4.4 Experimental results (2)

For further identifying the effectiveness of the EPSO, the following experiments are carried

out for each benchmark problem in ten- and twenty-dimensional cases.

According to the better search performance corresponding to each type of the PSO in Section

4.3, Table 5 shows the obtained results of the PSO in d-type, their criterion values and

frequencies. To demonstrate the search performance of these PSO in Table 5, Table 6 gives

the obtained results for the EPSO using two different criteria, the original PSO, the original

CPSO, OPSO, and RGA/E. Similar to the results of five-dimensional case in Table 4, it is

confirmed that the search performance of the PSO optimized by the EPSO using the criterion

F1 is superior to that by the criterion F2, and is also superior to that by the original PSO, the

original CPSO, OPSO, and RGA/E for the given benchmark problems except for the Rastrigin

problem.

Comparison with the values of parameters of the estimated PSO in different dimensional cases

for the Rastrigin problem, we observe that the values of the estimated PSO, ĉ0, are less than

1.0 in ten- and twenty-dimensional cases. Just as which the inertia coefficient is less than

1.0, so that the PSO cannot explore over a wide search space due to the origins of premature

convergence and stagnation.

However, why the ideal results in five-dimensional case cannot be reappeared for dealing

with same problem in ten- and twenty-dimensional cases, the causes may be associated with

the experimental condition such as the number of generations G = 20, and iterations K = 400

of the EPSO run. Since they are too little, appropriate values of parameters in the PSO cannot

be found without enough possibility in a bigger search space.

To testify the truth of the supposition, we tried to use the PSO in d-type by the criterion F1
in Table 2 as a proxy for solving the ten- and twenty-dimensional Rastrigin problems. Under

such circumstances, the resulting search performance of the EPSO with the criterion F1 are
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Cumulative Parameter
Problem Dim. fitness PSO ĉ0 ĉ1 ĉ2

Freq.

F1 380.8±1.9 d-type 0.8022±0.0224 1.6485±0.4327 0.7468±0.1453 100%
Sphere 10 F2 375.9±2.6 d-type 0.7654±0.0468 1.3853±0.5210 0.8777±0.0439 95%

F1 389.9±1.4 d-type 0.7620±0.0016 1.5490±0.7157 0.7587±0.2100 95%
Griewank 10 F2 386.4±1.4 d-type 0.7318±0.1111 1.3844±0.3688 1.2278±0.3945 100%

F1 59.79±14.8 d-type 0.5534±0.1462 2.1410±0.5915 2.0062±1.0027 25%
Rastrigin 10 F2 32.61±5.8 d-type 0.3596±0.1740 3.3035±1.6040 1.2856±1.4118 55%

F1 155.1±45.2 d-type 0.7050±0.2830 1.6254±0.8717 1.9030±0.5038 90%
Rosenbrock 10 F2 122.0±59.9 d-type 1.0159±0.0279 1.6045±0.4152 0.4983±0.1048 100%

F1 326.4±7.1 d-type 0.9091±0.0425 2.2427±0.1360 0.4249±0.0675 100%
Sphere 20 F2 320.1±9.6 d-type 0.8860±0.0000 1.9482±0.1912 0.6693±0.1157 100%

F1 374.8±2.1 d-type 0.9717±0.0093 1.7877±0.2686 0.6989±0.1442 100%
Griewank 20 F2 370.3±3.0 d-type 0.9738±0.0000 1.6542±0.3106 0.7064±0.0330 70%

F1 10.33±1.0 d-type 0.9776±0.0198 1.3934±0.2050 0.2179±0.0561 70%
Rastrigin 20 F2 8.48±1.4 d-type 0.8920±0.0000 1.7465±0.4156 0.4155±0.2469 100%

F1 10.49±1.7 d-type 0.9237±0.0000 1.9173±0.2636 0.8158±0.1274 100%
Rosenbrock 20 F2 10.93±2.3 d-type 0.8680±0.1128 0.9377±0.6782 1.0402±0.2969 100%

Table 5. Estimated appropriate values of parameters in the PSO, criterion values and
frequencies in the top-twenty optimizers. The PSO in d-type: ĉ0 > 0, ĉ1 > 0, ĉ2 > 0.

below.
{

0.7048 ± 0.4536 in ten − dimensional case

0.1160 ± 0.3024 in twenty − dimensional case

We can see that the average of fitness values in each case is not only better than the old one in

Table 6, but also is better than that of the RGA/E. Therefore, it is demonstrated that the above

supposition is correct and the generality of the estimated result of the EPSO.

Problem Dim. Original PSO Original CPSO EPSO (F1) EPSO (F2) OPSO RGA/E

10 0.8481±0.0995 0.9518±0.2153 0.9985±0.0048 0.9599±0.1465 0.9980±0.0077 0.9957±0.0028
Sphere 20 0.0912±0.0662 0.2529±0.3654 0.9791±0.0512 0.9328±0.2132 0.6939±0.3131 0.9207±0.0290

10 0.7290±0.1506 0.7025±0.1475 0.9547±0.0621 0.9282±0.1138 0.8236±0.1835 0.9136±0.1415
Griewank 20 0.6752±0.1333 0.6593±0.1653 0.9174±0.1657 0.9028±0.1565 0.8073±0.1742 0.8816±0.1471

10 0.0600±0.0346 0.0336±0.0156 0.6319±0.0370 0.0936±0.0783 0.0321±0.0255 0.6693±0.2061
Rastrigin 20 0.0084±0.0019 0.0065±0.0010 0.0162±0.0075 0.0148±0.0046 0.0147±0.0033 0.0844±0.0292

10 0.0928±0.0423 0.0899±0.0763 0.1467±0.1694 0.1388±0.0811 0.0825±0.0719 0.1243±0.0650
Rosenbrock 20 0.0012±0.0019 0.0070±0.0103 0.0293±0.0217 0.0193±0.0186 0.0084±0.0108 0.0108±0.0082

Table 6. The obtained results of the EPSO, the original PSO, the original CPSO, and RGA/E
(the mean and the standard deviation of fitness values in each method). The values in bold
signify the best results for each problem.
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5. Conclusion and discussion

We presented the method of evolutionary particle swarm optimization which provides a good

framework to effectually estimate appropriate values of parameters in the PSO corresponding

to a given optimization problem. Two different criteria, i.e. a temporally cumulative fitness

function of the best particle and a temporally cumulative fitness function of the whole particle

swarm, are adopted to use for evaluating the search performance of the PSO without any prior

knowledge.

According to the synthetic results of both the search performance and convergence time-step,

it is confirmed that the criterion F1 has higher adaptability in search than that by the criterion

F2. On the other hand, these experimental results also clearly indicated that the PSO with

higher adaptability is available when we have a passionate concern for the behavior of the

best particle in evaluation, and the PSO with faster convergence is available when we have a

passionate concern for the behavior of the entire swarm in evaluation.

As well as we observed, specially the results of the PSO estimated by the criterion F2 having

higher convergence easily tend to be trapped in local minima. This phenomenon suggests

that estimating the PSO alone is not enough, and that a valid effective method for alleviating

premature convergence and stagnation is of necessity. We also tested how to obtain the PSO

with high search performance in a high-dimensional case by using the knowledge obtained in

low-dimensional case, and showed the effectiveness of the use of this way.

It is left for further study to investigate the relation between search ability and faster

convergence. By obtaining the Pareto front of 2-objective optimization (8; 23), the know-how

on designing the PSO can be generally interpreted not only at model selection level but also

at multi-objective level.

Nevertheless, it is necessary to argue a method reduced name EPSO (19) as a supplementary

explanation. The method was created by Miranda et al. in 2002 for improving the search

performance of th PSO. Although the concepts of evolutionary computation such as selection

and mutation are used to the PSO search process and the effect of adaptation could be

obtained, its mechanism is similar to the cPSO (21) and is completely different from the EPSO

described in Section 3.2.

Generally, the following three manners can be used for improving the search performance of

the PSO. (1) Optimizing the PSO, i.e. rationally managing the trade-off between exploitation

and exploration by adopting appropriate values of parameters in the PSO; (2) Enforcing the

intelligence of the PSO search, i.e. practicing intellectual action in optimization; (3) Unifying

the mentioned (1) and (2) manners for acquiring more efficiency to search. Needless to say, the

third manner in particular is successful among them. This is because the search capability of

the PSO can be easily improved by the combination of capacity and intellectuality. In recent

years, a number of studies and investigations regarding the third manner are focused, and

being accepted flourishingly (11; 15; 30–32).

Accordingly, it is also left for further study to still handle the above hard problems with

powerful hybrid techniques such as blending a local search and the PSO search for further

increasing search ability, and introducing the mechanism of diversive curiosity into the PSO
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for raising the search performance of a single particle swarm or even multiple particle swarms

with hybrid and intelligent search (34) to exploration.
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