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1. Introduction 

The content of this chapter includes a brief history of gamma radiation, units of radiation 
measurement, ecological importance, tables including the half life of gamma emitting 
nuclides, comparative sensitivity of living organisms to gamma radiation, biological 
magnification of radioactive and nuclear materials, and brief descriptions of case studies of 
Woodwell (1962), Stalter and Kincaid 2009), and nuclear power plant disasters (Three Mile 
Island, USA, 1980, Chernobyl 1986, Japan 2011).  

Gamma radiation is somewhat similar to x-rays in that both pass through living materials 
easily. Also referred to as "photons" they travel at the speed of light. Gamma rays have 
sufficient energy to ionize matter and therefore can damage living cells. The damage 
produced in the cell or tissue is proportional to the number of ionizing paths produced in 
the absorbing material. Isotopes of elements that are emitters are radionuclides important in 
fission products from nuclear testing, nuclear power plant disasters or waste.  

The injurious affect of gamma rays depends on (1) their number (2) their energy and (3) 
their distance from the source of radiation. Radiation intensity decreases exponentially with 
increasing distance. Radiation damage on vascular plant species was demonstrated by 
Woodwell (1962) who subjected a mature pine oak forest at Brookhaven National 
Laboratory to gamma radiation from a cesium 137 source (Figure 1).  

 

Fig. 1. Radiation dose and damage to a pine-oak forest, Brookhaven National Laboratory, 
1961. Zones delineated by vertical lines (Woodwell 1962, Stalter and Kincaid 2009). 
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Gamma rays are external emitters that penetrate biological materials easily and produce 
their insidious effects without being taken internally. Alpha and beta particles are internal 
emitters; their damage to organisms is greatest when taken internally. Odum (1971) 
summarizes this concept best, "the alpha beta gamma series is one of increasing penetration 
but decreasing concentration of ionization and local damage." Alpha and beta radiation, 
unlike gamma radiation, are corpuscular in nature. While alpha particles travel but a few 
centimeters, and can be stopped by a layer of dead skin, they are dangerous because they 
produce a large amount of local ionization which can cause mutations disrupting cell 
processes. Beta particles are high speed electrons. While much smaller than alpha particles, 
they are able to travel up to a couple of centimeters in living tissue, giving up their energy 
over a large path. Beta particles, like alpha particles can damage tissue, and like alpha 
particles, can cause mutations that affect the functioning of cells. 

2. The history of gamma radiation as applied to biological systems 

Most are familiar with the discovery of x-radiation by Roentgen in 1895 and the isolation of 
radium by the Curies in 1898 (Goodspeed and Uber 1939). Researchers soon learned that 
both x-rays and radioactive substances such as radium produced similar effects on 
biological materials. Koernicke (1905) noted that cell division was delayed on x-ray and 
radium treated cells. Both Koernicke (l905) and Gager (1907) described “striking 
chromosomal disruptions” after cells were dosed with x-rays or exposed to radium, a 
gamma emitter. Gamma irradiated cells were also broken or fragmented by radiation 
treatment (Gager 1907, 1908). For additional historical work on radiation and plant 
cytogenetics the reader is directed to a review article by Goodspeed and Uber (1939). Smith 
(1958) compiled a paper on the use of radiation in the production of useful mutations based 
on papers presented in three symposia in the United States from August 1956 to January 
1957. A more recent review article on ionizing radiation damage to plants was prepared by 
Klein and Klein (1971). 

There are numerous studies applying gamma radiation to biological systems. Several 
investigations involving botanicals follow. Nuttall et al (1961) found that yellow sweet 
Spanish onions exposed to 4000 or 8000 rad prevented sprouting in 97% of their 
experimental group suggesting that irradiation might be a viable method of prolonging 
storage life for onions. This study, while intriguing, has not been generally accepted by a 
public concerned with the problems of radiation. A second article by Heeney and 
Rutherford (1964) examined the effects of gamma radiation on the storage life of fresh 
strawberries. A dose of 330,000 rad prevented fungal development of the redcoat strawberry 
variety stored at 40 degrees F for 26 days. The fugal free period was sharply reduced at 
lower radiation doses and/or at higher temperatures. Pritchard et al (1962) studied the effect 
of gamma radiation on the utilization of wheat straw by rumen microorganisms. They 
concluded that, “high levels of gamma radiation were needed to release nutrients trapped in 
wheat straw needed by microbes. However, the levels of gamma irradiation necessary for 
nutrient release were well above what was practical for commercial purposes.”  

Baumhover et al (1955) investigated the use of gamma irradiation on male sterilization on 
the control of screw-worm flies in the southern United States while Bushland (l960) 
Cutcomp (l967) and Lawson (1967) discussed this practice as a general way of controlling 
certain insect pests. Gambino and Lindberg (1964) examined the response of the pocket 
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mouse to ionizing radiation. McCormick and Golley (1966) presented data on irradiation of 
natural vegetation in the southeastern United States while Monk (1966) published a similar 
study on the effects of short-term gamma radiation on an old field. Witherspoon (1965, 1969) 
examined radiation damage to a forest surrounding an unshielded fast reactor in l965, and 
followed this study with a report in 1969 on radiosensitivity of forest tree species to acute 
fast neutron radiation. Odum and Pigeon (1970) researched the effect of irradiation and 
ecology of a tropical rain forest in Puerto Rico. 

3. Units of measurement 

Three units, the gigabecquerel (GBq), gray (GY), and roentgen (R) are used to measure 
radiation. The GBq measures the number of gamma rays emitted from a source of radiation 
and is a unit of radioactivity that is defined as 1.37 x 10-12 atomic decays each second. The 
weight of the material comprising a GBq varies. One gram of radium is 37 GBq while 10-7th 
of a gram of newly formed radio-sodium is also 37 GBq since both release 3.7 x 10-10 
disintegrations/second (Odum 1971). In dealing with biological systems, smaller units are 
generally used such as the millicurie microcurie and picocurie which are 10-3, 10-6 and 10-12 
respectively.  

A second measurement of radiation is the GY. The absorbed dose of 1 GY means the 
absorption of 1 joule of radiation energy per kg of tissue. The third, the roentgen is nearly 
the same as the GY, and is used as a unit of measurement for exposure to gamma and x rays. 
Both are units of the total dose of radiation received by an organism. The dose rate is the 
amount of radiation received per unit time.  

4. Ecological importance of radionuclides 

There are different kinds of atoms of each element; these are referred to as isotopes. Some 
isotopes are radioactive, some not. Radioactive isotopes are unstable. These decay into other 
isotopes releasing radiation. Each radioactive isotope, radionuclide, have a specific rate of 
disintegration, its half life.  

Radionuclides fall into well defined groups (Tables 1 and 2). Naturally occurring nuclides 

are included in Table 1 while those from fallout produced by fission or uranium and other 

elements are found in Table 2. Fission isotopes are produced from nuclear explosions which 

have for the most part been eliminated and from “controlled” reactions that produce nuclear 

power. While most of the aforementioned nuclides are not essential for the growth of 

organisms, they may be incorporated in biogeochemical cycles and become concentrated in 

food chains, especially strontium and cesium. Thus Woodwell (1962) used cesium as a 

gamma radiation emitter in his well published study of an irradiated pine oak forest at 

Brookhaven National Laboratory, Long Island, New York. More will be said about this 

research later in this paper.  

5. Sensitivity of organisms to radioactivity 

There is a wide range of sensitivity of organisms to radioactivity. Mammals are most 
sensitive while bacteria are most resistant especially as spores. Moreover there is a wide 
range of tolerance to radiation during the life cycle of an organism. Radiation sickness in 
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humans can be caused by as little as 0.35 Gy while a dose of 6-8 Gy is lethal to nearly 100% 
of individuals (Donnelly et al 2010). A dose of 2 Gy may kill some insect embryos while a 
dose of 100 Gy is necessary to kill all adult individuals (Odum 1971). Dividing cells are 
generally more susceptible to radiation than resting cells. The toxicity of radionuclides 
depends on the absorption, distribution in the body, half-life, elimination half-time, type of 
radiation emitted, and their energy. 

 

Element 
 
Uranium-235(235U) 
Radium-226 (226Ra) 
Potassium-40 (40K) 
Carbon-14  (See  Table 3.) 

Half-Life                                Radiations Emitted 
 
7 x 108       yrs.                      Alpha3              Gamma0 

1620         yrs.                      Alpha3              Gamma0 

1.3 x 109   yrs.                       Beta2                 Gamma2 

Table 1. Naturally occurring gamma emitting isotopes which contribute to background 
radiation (Odum 1971). 

 

Element 
 
The cesium group 
   Cesium-137 (137Cs) and 
      daughter barium-137 (137Ba) 
   Cesium-134 (134Cs) 
 
The cerium group 
   Cerium-144 (144Ce) and 
      daughter praseodymium-144 
(137Pr) 
   Cerium-141 (141Ce) 
 
The ruthenium group 
   Ruthenium-106 (106Ru) and 
      daughter rhodium-106 (106Rh) 
   Ruthenium-103 (103Ru) 
   Zirconium-95 (95Zr) and daughter 
      niobium-95(95Nb) 
   Barium-140 (140Ba) and daughter 
      lanthanium-140(140La) 
   Neodymium-147 (147Nd) and 
daughter promethium-147(147Pm) 
   Yttrium-91 (91Y) 
   Plutonium-239 (239Pu) 
   Iodine-131 (131I) 
   Uranium-235 (235U) 
 

Half-Life                          Radiations Emitted 
 
33 yrs.                           Beta2                 Gamma 
2.6  min                         Beta                  Gamma1 
2.3  yrs.                         Beta1                 Gamma2 
 
 
285 days                       Beta1                 Gamma0 
17 min.                         Beta2                 Gamma2 
33 days                         Beta1                 Gamma1 
 
 
1 yr.                              Beta2                  
30 sec.                          Beta3                 Gamma2 
40 days                         Beta1                 Gamma1 
65 days                         Beta1                 Gamma1 
35 days                         Beta0                 Gamma1 
12.8 days                      Beta1                 Gamma1 
40 hrs                           Beta2                 Gamma2 
11.3 days                      Beta1                 Gamma1 
2.6 yrs.                          Beta1                 Gamma 
61 days                         Beta2                 Gamma1 
2.4 x 104 yrs.                Alpha3               Gamma1 
8 days                           Beta1                 Gamma1 
7 x 108   yrs.                Alpha3                Gamma0 
 
 

Table 2. Elements important in fission products entering the environment through fallout or 
waste disposal.  
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Sparrow (1962), Sparrow and Evans (1961), Sparrow and Woodwell (1962), and Sparrow et 
al (1963) have demonstrated that sensitivity of ionizing radiation is directly proportional to 
the size of the cell nucleus or chromosome volume. The larger the chromosome volume the 
more sensitive the material is to radiation. There are also differences in radiation tolerance 
between wild and laboratory rodent populations. Gambino and Lindberg (1964) and Golley 
et al (1965) have reported that the lethal dose for 50% of some wild rodent populations is 
roughly twice that of laboratory white mice or white rats, likely due to the reduced variation 
in the latter.  

Radioactivity has been successfully used to sterilize certain male insect pests. Sterile males 

are introduced to natural populations in large numbers which mate with females. A female 

mates only once, and once mated with a sterile male produces no young. Introducing 

radiated sterile male screw-worm flies in areas where they occur successfully reduced the 

number of screw-worm flies, a major pest in the southern United States. For those seeking 

more general information on this topic see Baumhover et al (1955) Bushland (1960), 

Cutcomp (1967), Knipling ( 1960,1964, 1965, 1967) and Lawson (1967). 

6. Radiation effects on ecosystems 

Since the early 1960’s there have been numerous studies on the effect of gamma radiation on 

ecosystems. These studies were fueled by the arms race between the Soviet Union and the 

United States (Stalter and Kincaid 2009). After lengthy negotiations between the two powers 

the SALT (Strategic Arms Limitation Treaty) was signed in 1971 and extended in 1977. With 

the signing of the treaty, less funding for irradiation studies was available (Stalter and 

Kincaid 2009). Thus most studies cited in this paper are those conducted prior to the SALT 

agreement of 1971. The gamma source that has been used has been either cesium 137 or 

cobalt 60. These include the studies of Woodwell (1962, 1965a) at Brookhaven National 

Laboratory, Long Island, New York, a tropical rain forest , Puerto Rico (Odum and Pigeon 

1970) and the desert of Nevada (French 1965). Additional studies have been conducted in 

the fields and forests of Georgia (Odum and Kuenzler 1963) (Platt 1965), and Oak Ridge, 

Tennessee (Witherspoon 1965, 1969). Much additional work involving a portable gamma 

source on plant communities has been conducted at the Savanna River Ecology Laboratory, 

Aiken, South Carolina (McCormick and Platt 1962, McCormick and Golly 1966, Monk 1966, 

McCormick 1969). 

 Stalter and Kincaid (2009) investigated community development following gamma 
radiation at a pine-oak forest, Brookhaven National Laboratory, Long Island, New York. The 
objective of this study was to compare vascular plant community change at five vegetation 
zones the site of Woodwell’s (1962) gamma irradiated forest (Figure 1). The zones were: the 
dead zone where all vegetation was killed; a gramminoid Carex pensylvanica zone; an 
ericaceous zone; an oak dominated zone; and a control, the original oak pine forest. 
Radiation greater than 63,000 roentgens killed all vegetation. Carex dominated the zone 
receiving 27,000 to 63,000 roentgens, ericaceous shrubs, Vaccinium spp. and Gaylussacia 
baccata were dominant at the zone receiving 11,000 to 27,000 roentgens while oaks survived 
at the zone receiving 3600 to 11,000 roentgens. Upon completion of the Woodwell study in 
the 1970’s, pitch pine (Pinus rigida) has invaded the total kill zone as bare mineral soil favors 
pine regeneration (Stalter and Kincaid 2009). Carex remained the dominant taxon in the 

www.intechopen.com



 

Gamma Radiation 

 

48

original Carex zone demonstrating again that different plant species vary in their tolerance 
of radiation.  

Herbaceous plant communities may be more resistant to radiation than mature forests 
because many early successional species have small nuclei (Sparrow and Evans 1961) and 
also because herbaceous taxa like Carex pensylvanica have more below ground plant material 
which is shielded from gamma radiation. Sparrow (1962), Sparrow and Evans (1961), and 
Sparrow et al (1963) present detailed information on the relationship between nuclear 
volumes, chromosome numbers and relative radiosensitivity. 

7. Biological magnification of radioactive material 

Radioactive material may become concentrated or “biologically magnified" during food 
chain transfer. Numerous biology and ecology text books include information on how living 
organisms take up nutrients pesticides and radioactive material and concentrate them. 
Because this concept is well known, we direct the reader to several early studies involving 
the concentration of radioactive material (See the work of Foster and Rostenbach, 1954; 
Hanson and Kornberg 1956; Davis and Foster 1958). Ophel (1963) reported a concentration 
of strontium 90 in perch flesh as 5x that of lake water while that in perch bone was 3000x! 
Additional information on radioecological concentration can be found in Auberg and 
Crossley (1958), Auberg and Hungate (1967) and Polikarpov (1966).  

8. Radioactive fallout 

Radioactive particles that fall to the earth after above ground nuclear tests and nuclear 

power plant accidents are called radioactive fallout. Radioactive particles mix with the dust 

in the atmosphere and eventually fall to earth often thousands of miles from the initial 

explosion.  

There are two types of nuclear weapons, the fission bomb and fusion bomb or 

thermonuclear weapon. In thermonuclear devices, deuterium fuses to form a heavier 

element with the release of energy and neutrons. A fission bomb is needed to trigger the 

fusion reaction. The thermonuclear weapon produces more neutrons which induce 

radioactivity in the environment than a fission device per unit of energy released. Roughly 

ten percent of the energy of a nuclear weapon is in residual radiation which may become 

dispersed in the atmosphere (Glasstone 1957). The amount of fallout produced depends on 

the type of weapon, size of the weapon and also on the amount of naturally occurring 

material that is mixed with the radioactive material released in the explosion. Fallout 

patterns and intensity depend upon the direction of the wind, speed and direction of the jet 

stream, presence and amount of precipitation. 

Atomic explosions carry radioactive material high in the atmosphere where the radioactive 
material becomes fused with silica dust and other material present in the vicinity of the 
explosion. These particles are largely insoluble. The fallout particles may adhere to 
vegetation where they enter food chains at the primary consumer level. Fallout from 
Chernobyl in 1986 was deposited in Lappland (Sweden) where caribou consumed 
contaminated vegetation. Shifting winds also carried Chernobyl radiation particles to 
northern Italy where rabbit growers fed their rabbits vegetation contaminated with 
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radioactive fallout from Chernobyl. Ultimately the rabbits were destroyed because of the 
high concentration of radioactive material in their flesh.  

There are differences in the kind of radionuclides that enter terrestrial and marine food 
chains. Soluble fission products, strontium 90 and cesium 137, are generally found in the 
highest amounts in land plants and animals. In marine systems fallout that forms strong 
complexes with organic matter such as cobalt 60, iron 59, zinc 65, and manganese 54 are 
most likely to be concentrated in marine organisms. In addition, those found in colloidal 
form such as cesium 134 and zirconium 95 are also found in high concentration in marine 
organisms. Cesium 134 is mostly from the fission products of a power reactor whereas 
cesium 137 can be formed during atomic power plant accidents or as a product of nuclear 
bomb explosions.  

There are additional considerations/problems associated with concentrating radioactive 

material entering food chains as the concentration of radioactivity is also a function of 

nutrient richness, and the exchange and storage capacity of soils. Nutrient poor soils and 

thin soils such as those found on granite outcrops act as a nutrient trap providing more 

radionuclides to the vegetation. For example, sheep grazing on hill pastures in England 

accumulated 20x as much strontium 90 in their bones than sheep pastured in deep valleys 

where calcium content of the soil was higher and the grasses taller (Bryant et al 1957). For 

additional radiological work on tracers in food chains and trophic levels see Odum and 

Golley (1963), Odum and Kuenzler (1963), de la Cruz (1963), Ball and Hooper (1963), Foster 

(l958), and Foster and Davis (1956). 

9. Nuclear power plant accidents 

Brief descriptions of three power plant accidents in the United States the Soviet Union and 

Japan follow. The first nuclear power plant accident occurred at 4 am on March 28, 1979, 

near Harrisburg, Pennsylvania, USA, the state’s capital. A malfunction in the cooling system 

resulted in a portion of the core to melt in the Number 2 reactor. The approximately 2 

million people who lived near the plant had an average dose of 0.14 Gy (Rogovin 1980). 

Although some radioactive gas was released from the plant on the 29th and 30th of March 

there was, “not enough to cause any radiation dose above background levels in the 

neighborhood of the accident “(http://www.world-nuclear.org/info/info/info/inf36.html). 

Fortunately, there were no reported injuries or health issues emanating from the Three Mile 

Island accident. 

A more serious nuclear accident occurred at the Chernobyl power plant located 80 miles 

north of the city of Chernobyl in the Ukraine, one of the original Soviet Republics. A 

“routine” shut down and test that began on the 25th of April, 1986, led to this disaster. At 

one in the morning, 26 April, the reactor’s power source dropped and when the backup 

safety system failed, the reactor, Reactor Four, exploded. Shortly after the initial explosion at 

Chernobyl, the Swedish government reported high levels of radiation at their Forsmark 

nuclear power plant at Stockholm. When additional European nuclear power plants also 

experienced higher than normal levels of radiation, they contacted the USSR for an 

explanation. Although initially denying the nuclear disaster, on the 28th of April the USSR 

acknowledged that one of their reactors had been compromised.  
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Group A. Naturally occurring isotopes which contribute to background radiation. 
 
NUCLIDE    HALF-LIFE RADIATIONS EMITTED 
 
Uranium-235 (235U)   7 x 108 yrs.  Alpha3 Gamma0 

Radium-226 (226Ra)   1620 yrs.   Alpha3 Gamma0 
Potassium-40 (40K)             1.3 x 109 yrs.  Beta2 Gamma2 
Carbon-14 (14C)    5568 yrs.   Beta0  
0 Very low energy, less than 0.2 Mev; 1 relatively low energy, 0.2-1 Mev; 2 high energy, 1-3 
Mev; 3 very high energy, over 3 Mev. 
Group B. Gamma emitting nuclides of elements which are essential constituents of organisms. 
Modified from Odum (1971). 
NUCLIDE    HALF-LIFE RADIATIONS EMITTED 
 
Cobalt-60 (60Co)    5.27 yrs.  Beta1 Gamma2 
Copper-64 (64Cu)    12.8 hrs.  Beta1 Gamma2 
Iodine-131 (131I)    8 days  Beta1 Gamma 
Iron-59 (59Fe)    45 days  Beta1 Gamma2 
Manganese-54 (54Mn)   300 days  Beta2 Gamma2 
Potassium-42 (42K)   12.4 hrs.  Beta3 Gamma2 
Sosium-22 (22Na)    2.6 yrs.  Beta1 Gamma2 
Sodium-24 (24Na)    15.1 hrs.  Beta2 Gamma2 
Zinc-65 (65Zn)    250 days  Beta1 Gamma2 
Also barium-140 (140Ba), bromine-82 (82Br), molybdenum-99 (99Mo) and other trace 
elements. 
Group C. Nuclides important in fission products entering the environment through fallout 
or waste disposal. 
NUCLIDE    HALF-LIFE RADIATIONS EMITTED 
The strontium group 
 Strontium-90 (90Sr) and   28 yrs. Beta1 
  daughter yttrium-90 (90Y)  2.5 days Beta2 
 Strontium-89 (89Sr)   53 days Beta2 
The cesium group 
 Cesium-137 (137Cs) and   33 yrs. Beta2 Gamma 
  daughter barium-137 (137Ba) 2.6 min. Beta Gamma1 
 Cesium-134 (134Cs)   2.3 yrs. Beta1 Gamma2 
The cerium group 
 Cerium-144 (144Ce) and   285 days Beta1 Gamma0 
  daughter praseodymium-144 (144Pr)  17 min. Beta2 Gamma2 
 Cerium-141 (141Ce) 33 days Beta1 Gamma1 
The ruthenium group
 Ruthenium-106 (106Ru) and 1 yr. Beta0

  daughter rhodium-106 (106Rh) 30 sec. Beta3 Gamma2 
 Ruthenium-103 (103Ru) 40 days Beta1 Gamma1 
 Zirconium-95 (95Zr) and daughter 65 days Beta1 Gamma1 
  niobium-95 (95Nb) 35 days Beta0 Gamma1 
 Barium-140 (140Ba) and daughter  12.8 days Beta1 Gamma1 
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  lanthanum-140 (140La)  40 hrs. Beta2 Gamma2 
 Neodymium-147 (147Nd) and  11.3 days Beta1 Gamma1 
  daughter promethium-147 (147Pm) 2.6 yrs. Beta1 Gamma 
 Yttrium-91 (91Y)    61 days Beta2 Gamma 
 Plutonium-239 (239Pu)   2.4 x 104 yrs. Alpha3 Gamma1 
 Iodine-131 (see Group B) 
 Uranium (see Group A) 

Table 3. Radionuclides of Ecological Importance 

Scientists estimate that the radiation from the Chernobyl accident was 100x that of the two 
atom bombs dropped on Hiroshima and Nagasaki. It is estimated that the total 
atomospheric release was 5200 PBq (petabecquerel, 1015 Bq). The immediate death toll was 
31 individuals though many more may die from the long term effects of radiation. The 
Soviets battled blazes at the Chernobyl power plant for two weeks. Those battling the fires 
were heroes in this author’s eyes because they knew they were exposing themselves to 
dangerous levels of radiation. Ultimately the Soviet authorities encased the Chernobyl 
reactor in concrete. A second more stable sarcophagus is currently being constructed over 
the original; its scheduled completion date is 2013. 

There may have been additional unreported nuclear power plant accidents in the Soviet 
Union. Radioactive monitoring stations in Europe have picked up higher levels of radiation 
at various times which may have been the result of other Soviet nuclear power plant 
accidents.  

The third and most recent nuclear power plant crisis occurred at the Fukushima Daiichi 
power plant in Japan. The cause of this disaster was a severe earthquake and tsunami on the 
11th of March, 2011. The earth quake, which registered approximately 9 on the Richter Scale, 
was the event that set this tragedy in motion. The earthquake and resulting tsunami 
damaged the power plant compromising the cooling systems to the reactors causing the fuel 
rods to overheat. This disaster was rated greater than that at Three Mile Island. As of June 
2011, the Fukushima disaster has released approximately one tenth the total amount of 
radiation as was released at Chernobyl. Unfortunately, the damaged Japanese reactor 
continues to spew forth radiation so the ultimate amount of radiation released from the 
plant cannot be determined with certainty.  
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