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1. Introduction  

Effective transportation systems lead to the efficient movement of goods and people, which 

significantly contribute to the quality of life in every society. In the heart of every economic 

and social development, there is always a transportation system. Meanwhile, traffic 

congestion has been increasing worldwide because of increased motorization, urbanization, 

population growth, and changes in population density. This threatens the social and 

economic prosperity of communities all over the world. Congestion reduces utilization of 

the transportation infrastructure and increases travel time, air pollution, and fuel 

consumption. Therefore, managing and controlling transportation systems becomes a high 

priority task for every community, as it constitutes a matter of survival and prosperity for 

humanity. 

In the search for meeting the demand for more traffic capacity, it has been realised 

repeatedly that building more roads is no longer a feasible solution due to the high cost 

and/or scarcity of land especially in metropolitan areas. In addition, the length of time that 

it takes to build additional roads and the disruption that this introduces to the rest of the 

traffic network makes the option of building new roads as the worst case scenario. The 

current highway transportation system runs almost open loop whereas traffic lights at 

surface streets are still lacking the intelligence that is necessary to reduce delays and speed 

up traffic flows. The recent advances in electronics, communications, controls, computers, 

and sensors provide an opportunity to develop appropriate transportation management 

policies and strategies in order to effectively utilize the existing infrastructure rather than 

building new road systems. The use of technologies will help provide accurate traffic data, 

implement control actions, and in general reduce the level of uncertainty and randomness 

that exists in today’s transportation networks. The successful implementation of intelligent 

transportation systems will require a good understanding of the dynamics of traffic on a 

local as well as global system level and the effect of associated phenomena and disturbances 

such as shock wave generation and propagation, congestion initiation and so on. In 

addition, the understanding of human interaction within the transportation system is also 

crucial.  

Transportation systems and traffic phenomena constitute highly complex dynamical 

problems where simplified mathematical models are not adequate for their analysis. There 
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is a need for more advanced methods and models in order to analyse the causality, 

coupling, feedback loops, and chaotic behaviour involved in transportation problem 

situations. Traffic modelling can facilitate the effective design and control of today’s 

complex transportation systems. Mathematical models cannot always accurately capture the 

high complexity and dynamicity of traffic systems. For this reason computer simulation 

models are developed and tuned to describe the traffic flow characteristics on a given traffic 

network. Once a computer simulation model is developed and validated using real data, 

different scenarios and new control strategies can be developed and simulated and 

evaluated before proposed for an actual implementation. 

This chapter presents an overview of traffic flow modelling at the microscopic and 

macroscopic levels, a review of current traffic simulation software, as well as several 

methods for managing and controlling the various transportation system modes. In 

particular, section 2, examines the field of traffic flow theory and the concept of macroscopic 

vs. microscopic ways of modelling transportation systems. The derivation of traffic flow 

theory based on the law of conservation of mass, and the relationships between flow speed 

and density are presented in section 3 under the topic of macroscopic models. Section 4 

analyses microscopic car following models and discusses advantages and limitations. 

Section 5 reviews various some of the most sophisticated traffic software modelling tools, all 

in relation to intelligent transportation systems. Finally, a summary of recent intelligent 

transportation systems studies carried out by the authors is provided in section 6 and 

conclusions are drawn in section 7. 

2. Traffic flow modelling 

The study of traffic flow (May, 1990), and in particular vehicular traffic flow, is carried out 

with the aim of understanding and assisting in the prevention and remedy of traffic 

congestion problems. The first attempts to develop a mathematical theory for traffic flow 

date back to the 1930s (Adams, 1937; Greenshields, 1935a), but despite the continuous 

research activity in the area we do not have yet a satisfactory mathematical theory to 

describe real traffic flow conditions. This is because traffic phenomena are complex and 

nonlinear, depending on the interactions of a large number of vehicles. Moreover, vehicles 

do not interact simply by following the laws of physics, but are also influenced by the 

psychological reactions of human drivers. As a result we observe chaotic phenomena such 

as cluster formation and backward propagating shockwaves of vehicle speed/density (Bose 

& Ioannou, 2000) that are difficult if at all possible to be accurately described with 

mathematical models. According to a state of the art report of the Transportation Research 

Board (Gartner, Messer, & Rathi, 2001), mathematical models for traffic flow may be 

classified as: Traffic Stream Characteristics Models, Human Factor Models, Car Following 

Models, Continuum Flow Models, Macroscopic Flow Models, Traffic Impact Models, 

Unsignalized Intersection Models, Signalized Intersection Models and Traffic Simulation 

Models. Below we describe briefly each of the above categories. 

Traffic stream characteristics (Hall, 1996) theory involves various mathematical models, 

which have been developed to characterize the relationships among the traffic stream 

variables of speed, flow, and concentration or density. 
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Human factor modeling (Koppa, 1999), deals with salient performance aspects of the human 

element in the context of the human-machine interactive system. These include perception-

reaction time, control movement time, responses to: traffic control devices, movement of 

other vehicles, hazards in the roadway, and how different segments of the population differ 

in performance. Further, human factors theory deals with the kind of control performance 

that underlies steering, braking, and speed control. Human factors theory provides the basis 

for the development of car following models. Car following models (Rothery, 1992), 

examine the manner in which individual vehicles (and their drivers) follow one another. In 

general, they are developed from a stimulus-response relationship, where the response of 

successive drivers in the traffic stream is to accelerate or decelerate in proportion to the 

magnitude of the stimulus. Car following models recognize that traffic is made up of 

discrete particles or driver-vehicle units and it is the interactions between these units that 

determine driver behavior, which affects speed-flow-density patterns. On the other hand, 

continuum models (Kuhne & Michalopoulos, 1997) are concerned more with the overall 

statistical behavior of the traffic stream rather than with the interactions between the 

particles. Following the continuum model paradigm, macroscopic flow models (J. C. 

Williams, 1997), discard the microscopic view of traffic in terms of individual vehicles or 

individual system components (such as links or intersections) and adopt instead a 

macroscopic view of traffic in a network. Macroscopic flow models consider variables such 

as flow rate, speed of flow, density and ignore individual responses of vehicles. Traffic 

impact models (Ardekani, Hauer, & Jamei, 1992) deal with traffic safety, fuel consumption 

and air quality models. Traffic safety models describe the relationship between traffic flow 

and accident frequency. Unsignalized intersection theory (Troutbeck & Brilon, 1997) deals 

with gap acceptance theory and the headway distributions used in gap acceptance 

calculations. Traffic flow at signalized intersections (Rouphail, Tarko, & Li, 1996) deals with 

the statistical theory of traffic flow, in order to provide estimates of delays and queues at 

isolated intersections, including the effect of upstream traffic signals. Traffic simulation 

modeling (Lieberman & Rathi, 1996) deals with the traffic models that are embedded in 

simulation packages and the procedures that are being used for conducting simulation 

experiments.  

Mathematically the problem of modelling vehicle traffic flow can be solved at two main 
observation scales: the microscopic and the macroscopic levels. In the microscopic level, 
every vehicle is considered individually, and therefore for every vehicle we have an 
equation that is usually an ordinary differential equation (ODE). At a macroscopic level, we 
use the analogy of fluid dynamics models, where we have a system of partial differential 
equations, which involves variables such density, speed, and flow rate of traffic stream with 
respect to time and space. 

The microscopic model involves separate units with characteristics such as speed, 
acceleration, and individual driver-vehicle interaction. Microscopic models may be 
classified in different types based on the so-called car-following model approach, as it will 
be discussed in section 4. The car-following modelling approach implies that the driver 
adjusts his or her acceleration according to the conditions of leading vehicles. In these 
models, the vehicle position is treated as a continuous function and each vehicle is governed 
by an ODE that depends on speed and distance of the car in the front. Another type of 
microscopic model involve the use of Cellular Automata or vehicle hopping models which 
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differ from the car-following approach in that they are fully discrete time models. They 
consider the road as a string of cells that are either empty or occupied by one vehicle. One 
such model is the Stochastic Traffic Cellular Automata (Nagel, 1996; Nagel & Schreckenberg, 
1992) model. Further, a more recent approach is currently under heavy research with the use 
of agent based modeling (Naiem, Reda, El-Beltagy, & El-Khodary, 2010). 

Microscopic approaches are generally computationally intense, as each car has an ODE to be 
solved at each time step, and as the number of cars increases, so does the size of the system 
to be solved. Analytical mathematical microscopic models are difficult to evaluate but a 
remedy for this is the use of microscopic computer simulation. In such microscopic traffic 
models, vehicles are treated as discrete driver-vehicle units moving in a computer-simulated 
environment.  

On the other hand, macroscopic models aim at studying traffic flow using a continuum 
approach, where it is assumed that the movement of individual vehicles exhibit many of the 
attributes of fluid motion. As a result, vehicle dynamics are treated as fluid dynamics. This 
idea provides an advantage since detailed interactions are overlooked, and the model's 
characteristics are shifted toward the more important parameters such as flow rate, 
concentration, or traffic density, and average speed, all being functions of one-dimensional 
space and time. This class of models is represented by partial differential equations. 
Modeling vehicular traffic via macroscopic models is achieved using fluid flow theory in a 
continuum responding to local or non-local influences. The mathematical details of such 
models are less than those of the microscopic ones. The drawback of macroscopic modeling 
is the assumption that traffic flow behaves like fluid flow, which is a rather harsh 
approximation of reality. Vehicles tend to interact among themselves and are sensitive to 
local traffic disturbances, phenomena that are not captured by macroscopic models. On the 
other hand, macroscopic models are suitable for studying large-scale problems and are 
computationally less intense especially after approximating the partial differential equation 
with a discrete time finite order equation. 

There exists also a third level of analysis the so called mesoscopic level, which is somewhere 
between the microscopic and the macroscopic levels. In a mesoscopic or kinetic scale, which 

is an intermediate level, we define a function ( , , )f t x v , which expresses the probability of 

having a vehicle at time t  in position x  at velocity v . This function, following methods of 

statistical mechanics, can be computed by solving an integro-differential equation, like the 
Boltzmann Equation (K. Waldeer, 2006; K. T. Waldeer, 2004). 

The choice of the appropriate model depends on the level of detail required and the 
computing power available. Because of advancements in computer technology in recent 
years, the trend today is towards utilizing microscopic scale mathematical models, which 
incorporate human factors and car following models as a driver-vehicle behavior unit. 

In the next two sections, macroscopic and microscopic models are examined in more detail. 

2.1 Macroscopic traffic flow models 

Macroscopic flow models (J. Williams, 1996), discard the real view of traffic in terms of 

individual vehicles or individual system components such as links or intersections and 

adopt instead a macroscopic fluid view of traffic in a network. In this section, we will cover 
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the vehicle traffic flow fundamentals for the macroscopic modeling approach. The 

relationship between density, velocity, and flow is also presented. Then we derive the 

equation of conservation of vehicles, which is the main governing equation for scalar 

macroscopic traffic flow models. The macroscopic models for traffic flow, whether they are 

one-equation or a system of equations, are based on the physical principle of conservation. 

When physical quantities remain the same during some process, these quantities are said to 

be conserved. Putting this principle into a mathematical representation, it becomes possible 

to predict the density and velocity patterns at a future time. 

Drawing an analogy between vehicle dynamics and fluid dynamics (Kuhne & 

Michalopoulos, 1997) let us consider a unidirectional continuous road section with two 

counting stations 1,2  at positions 
1

x  and 2x . The spacing between stations is x . In such a 

case, the number of cars in a segment of a highway x  is a physical quantity, and the 

process is to keep it fixed so that the number of cars coming in equals the number of cars 

going out of the segment. 

As it will be shown there is a close interrelationship between three traffic variables that is 

density, velocity and traffic flow. Suppose that in the above scenario, cars are moving with 

constant velocity v , and constant density   such that the distance d  between the cars is 

also constant. Let an observer measure the number of cars N  per unit time t  that pass 

him/her (i.e. the traffic flow q ). 

Let 1N  be the number of cars passing station 1  and 2N  be the number of cars passing 

station 2  and t  the duration of the observer counting time. Let q  be the flow rate i.e. the 

number of cars passing a particular station per unit time, then 

1
1

N
q

t



 and 2
2

N
q

t



 

2 1N N
q

t t
  

 
 or 2 1N N N q t       

For a build-up of cars therefore N  will be negative. Thus 

( )N q t     

Assuming that x is short enough so that vehicle density is uniform, then the increase in 

density during time t is given by 

N

x
 

 


 or N x     

Assuming conservation of vehicles and no sinks or sources exist in the section of the 

roadway, 

q t x      or 0
q

x t

 
 

 
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Finally, assuming continuity of the medium and infinitesimal increments we get the 
conservation or continuity equation  

0
q

x t

 
 

 
 

In order to solve the above equation we assume that ( )v f   and q v  

( ) 0v
x t

 
 

 
 or ( ( )) 0f

x t

  
 

 
 

Differentiating with respect to x , 

( )
( ) 0

f
f

x x t

  
 

  
  

or ( ) 0
df

f
x d x t

  

 

  
  

 

( ( ) ) 0
df

f
d x t

  


 
   

 
 

The above constitutes a first-order partial differential equation, which can be solved by 

the method of characteristics. A complete formulation and solution of the above equation 

has been published (Lighthill & Whitham, 1955). If the initial density and the velocity 

field are known, the above equation can be used to predict future traffic density. This 

leads us to choose the velocity function for the traffic flow model to be dependent on 

density and call it ( )V  . The above equation assumes no generation or dissipation of 

vehicles. Sources and sinks may be added by including a function ( , )g x t  on the RHS of 

the equation. 

Several velocity-density-flow models have been developed through the years and are 
classified as single-regime or multi-regime models. Single-regime models assume a continuous 
relationship between velocity, density, and traffic flow while in multi-regime models the 
relationship is discontinuous depending on the density levels. Some of the most well-known 
single-regime and multi-regime models include the Greenshields model, Greenberg model, 
the Underwood model and Eddie’s model. These are described as follows. 

The Greenshields Model (Greenshields, 1935b) is a simple and widely used model. It is 
assumed that the velocity is a linearly decreasing function of the traffic flow density, and it 
is given by 

(1 )f
jam

v v



   

where fv  is the free flow speed and jam  is the jam density. The above equation represents 

a monotonically decreasing function with respect to density. For zero density the model 

allows free flow speed fv , while for maximum density jam  we have 100% congestion 

where the speed is zero and no car is moving. Real traffic data shows that the speed-density 

relationship is indeed a rather linear negative slope function. 
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Based on the above empirical relationship Greenshields derived the following parabolic 
equation for the flow-speed-density relationship, 

2( )
jam

f

q v v
v


    

Real traffic data reflects somewhat the flow-density relationship for Greenshild's model, 

which follows a parabolic shape and shows that the flow increases to a maximum which 

occurs at some average density  and then it goes back to zero at high values of density. A 

third relationship that can be drawn is the speed flow function, which is again of parabolic 

shape. 

Following Greenshields steps, Greenberg (Greenberg, 1959) developed a model of speed-

density showing a logarithmic relationship. In Greenberg’s model the speed-density 

function is given by 

ln( )f
jam

v v



   

Another single regime model is the Underwood model (Underwood, 1961), where the 

velocity-density function is represented as follows. 

jam

fv v e






  

(Edie, 1961) proposed a multi-regime model which basically combines Greenberg’s and 

Underwood’s model. Eddie suggested that  

for densities 50   

163.954.9v e




  

and for densities 50   

162.5
28.6ln( )v


  

(Drake, Schofer, & May Jr, 1967) investigated seven speed-density models, including the 

above, through an empirical test in 1967. According to Drake et al the Eddie formulation 

gave the best estimates of the fundamental parameters but its root mean square error (rms) 

was the second lowest. The general conclusion though was that none of the models 

investigated provided a particularly good fit or explanation of the traffic data tested. 

More recently, prominent researchers such as (Payne, 1979), (M. Papageorgiou, Blosseville, 
& Hadj-Salem, 1989) and (Michalopoulos, Yi, & Lyrintzis, 1992) developed macroscopic 
traffic flow simulation models based on a space-time discretization of the conservation 
equation. Even though these models are capable of describing complicated traffic 
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phenomena with considerable accuracy, their main limitations arise in their inability to 
accurately simulate severe traffic congestion situations, where the conservation equation 
does not represent the traffic flow so well. 

On the other hand, it is desirable to use macroscopic models if a good model can be found 
that satisfactorily describes the traffic flow for the particular traffic problem situation. The 
advantage of macroscopic models is their flexibility since detailed interactions are 
overlooked, and the model's characteristics are shifted toward important parameters such as 
flow rate, concentration or traffic density, and average speed. If the transportation/traffic 
problem demands more detail and accuracy such as the case of evaluating the effects of 
closely spaced intersections or bus priority systems on the traffic network then one should 
resort to microscopic models, which are described in the next section. 

2.2 Microscopic driver-vehicle behaviour models 

In this section well known car-following microscopic traffic flow models are presented and 

evaluated on their capability to realistically model traffic flow at the vehicle level.  

In order to derive a one-dimensional simple car following model we first assume that cars 

do not pass each other. Then the idea is that a car in one-dimension can move and accelerate 

forward based on two parameters; the headway distance between the current car and the 

leading car, and their speed difference. Hence, it is called following, since a car from behind 

follows the one in the front. 

Car-following models are based on the assumption that a stimulus response relationship 

exists that describes the control process of a driver-vehicle unit. This concept is expressed 

with the stimulus response equation where response is proportionally analogous to a 

stimulus based on a certain proportionality factor   (Rothery, 1992) . 

As seen later on in this section the various car following models incorporate a variant of the 

following stimulus response equation. 

 
 

( ) ( )
( )

( ) ( )

l f

f

l f

x t x t
x t

x t x t



 



 
  

where fx  is the one-dimensional position of the following vehicle, lx  is the one-

dimensional position of the leading vehicle, and t  is time. The response function here is 

taken as the acceleration of the following vehicle as the driver experiences inertia forces and 

has direct control on acceleration/deceleration through the accelerator and brake pedals. 

The above stimulus-response equation of car-following is a simplified description of a 

complex phenomenon. A generalization of car following in a conventional control theory 

block diagram is shown in figure 1. As seen in figure 1 a more complete representation of 

car following would include a set of equations that are able to model the dynamical 

properties of the vehicle and the roadway characteristics. It would also include the 

psychological and physiological properties of drivers, as well as couplings between vehicles, 

other than the forward nearest neighbours and other driving tasks such as lateral control, 

the state of traffic, and emergency conditions and other factors.  
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Fig. 1. A Generalised Block Diagram of Car Following (adapted from Rothery, 1992). 

The car-following behaviour is basically, a human interactive process where the driver of 
the vehicle attempts to reach a stable situation and maintain it by following a leading 
vehicle, by continuously taking corrective actions like accelerating or decelerating. As it will 
be seen in the next paragraphs car following models may be classified as Stimulus-Response 
models, safety distance or collision avoidance models, psychophysical or action point 
models, and fuzzy logic models. Some of the most widely applied car following models are 
presented below. 

Pipes (Pipes, 1967) proposed a theory of car following behaviour based on what he referred 
to as the ”idealized law of separation”. The law specifies that each vehicle must maintain a 
certain prescribed “following distance” from the preceding vehicle. This distance is the sum 
of a distance proportional to the velocity of the following vehicle and a certain given 
minimum distance of separation when the vehicles are at rest. Such a model implies that the 
actions of the following vehicle are only affected by the relative speed between the leading 
vehicle and the following vehicle. Forbes (Forbes, 1963) modelled car following behaviour 
by assuming that drivers choose to keep a minimum time gap from the rear end of leading 
vehicle. The Forbes model of car following also implies that the actions of the following 
vehicle are only affected by the relative speed between the leading vehicle and the following 
vehicle. 

The General Motors Research Laboratories published significant amount of work on the car-
following theory model in a series of papers (Gazis, Herman, & Potts, 1959; Herman, 
Montroll, Potts, & Rothery, 1959). The basic idea used here is that the actions of the 
following vehicle in terms of acceleration or deceleration are a function of a single stimulus 
and the sensitivity of the following vehicle to the stimulus under the prevailing conditions. 
The stimulus is assumed to be the relative speed between leading and the following vehicle. 
Sensitivity to the stimulus is assumed to be affected by the distance headway between the 
leading vehicle and the following vehicle as well as the speed of following vehicle. 

Other approaches such as those by Rockwell et al (Rockwell, Ernest, & Hanken, 1968) 
present a regression based car-following model, which takes into consideration two leading 
vehicles, and Chakroborty and Kikuchi (Kikuchi, Chakroborty, & Engineering, 1992) a 
Fuzzy Inference based car-following model. 

Consolidating the various approaches of car following models it can be concluded that the 
general assumption about the interaction between a leader and follower car is governed by 
the following equation (Rothery, 1992).  
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( , , , , )f l f l f f ia F v v s d d R P  

where fa  is the acceleration (response) of the following vehicle, lv  is the velocity of the 

leading vehicle, fv  is the velocity of the following vehicle, s  is the spacing between follower 

and leader vehicles or separation distance, ld  and fd  are the projected deceleration rates of 

the leader and follower vehicles, respectively, fR  is the reaction time of the driver in the 

following vehicle and iP  are other parameters specific to the car-following model. Based on 

this generalised equation several car following models have been developed through the years 

and are briefly presented below using the above general model notation. 

(Chandler, Herman, & Montroll, 1958) developed a car following model assuming that the 
following vehicle driver responds solely to changes in the speed of the immediate leader 
vehicle. Chandler’s model is given by the following equation. 

1( )f l fa P v v   

(Gazis, Herman, & Rothery, 1961) developed a more complex model adding the position of 

the leading and following vehicles in the equation and thereby introducing the notion of a 

safety distance between the two vehicles. 

1 ( )f l f
l f

P
a v v

d d
 


 

(Edie, 1961) developed a similar response-stimulus model involving velocity and position 

changes as shown below. 

1 2
( )

( )

f
f l f

l f

V
a P V V

d d
 


 

(Herman & Rothery, 1962) apart from velocity and position changes included some other 

parameters in their car following model. 

2

3
1 ( )

( )

P
f

f l fP
l f

V
a P V V

d d
 


 

(Bierley, 1963) in a similar fashion but increasing the number of parameters suggested the 

following model. 

1 2( ) ( )f l f l fa P v v P d d     

(Fox & Lehman, 1967) added another lead vehicle in their car following model by 
considering the changes in speed and position of the vehicle in front of the immediate 
leading vehicle as shown below. 

2 3
1 2 2

( ) ( )
( )

( ) ( )

ll f l f
f f

ll f l f

P v v P v v
a P V

d d d d

 
 

 
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where llv  the speed of the vehicle in front of the immediate leading vehicle and lld  the 

separation distance of vehicle in front of the immediate leading vehicle. 

Bexelius (Bexelius, 1968) also suggested a car following model that takes into account two 

leading vehicles as follows. 

1 2( ) ( )f ll f l fa P v v P v v     

More complex car following models of similar nature were developed by (Wicks, 

Lieberman, Associates, & Division, 1980) where the NETSIM software is based, and by 

(Bullen, 1982) where FRESIM is based. Further, (Gipps, 1981) developed a safety distance or 

behavioural model, which is employed by AIMSUN. (Fritzsche, 1994) and (Wiedemann, 

1974) developed the so called action point or phycho-physical models for Paramics and 

VISSIM respectively. Some more modern approaches to car following models make use of 

fuzzy logic algorithms (Gonzalez-Rojo, Slama, Lopes, & Mora-Camino, 2002; Yikai, Satoh, 

Itakura, Honda, & Satoh, 1993). Interesting is also the employment of the System Dynamics 

modelling principles in car following. More recently, (Mehmood, Saccomanno, & Hellinga, 

2003) introduced the system dynamics method into a successful car following model, which 

takes into consideration the interactions of a following and two leading vehicles. Further, 

other techniques from artificial intelligence are being utilised in an effort to make car 

following models more realistic. 

Even though there were many efforts through the years to develop realistic models of car 

following behaviour there are significant limitations concerning their validity. Limitations 

arise mainly from unrealistic assumptions about the ability of drivers of following vehicles 

to perceive relative or absolute speeds and accelerations of the interacting vehicles. As Boer 

(Boer, 1999) suggests factors such as aging impairment and disability further influence 

driver reactions, which current car following models do not take into consideration. Further, 

unrealistic is the assumption that driver behaviour is influenced only by the immediate 

leading vehicle motion as observed by a number of researchers such as Fox and Lehman, 

and Bexelius. Also the assumption for an empirical relationship fails to explain actual 

behaviour as pointed out by (Van Winsum, 1999) and (Gipps, 1981) . Finally, existing car 

following models are rather idealistic as they assume symmetrical driver responses to traffic 

stimuli, which is clearly unrealistic as revealed by (Chakroborty & Kikuchi, 1999). 

As (Brackstone & McDonald, 1999) conclude in their review on microscopic car following 

models there are potential pitfalls awaiting the unwary in the use of microcopic models. A 

comprehensive review on the weaknesses and potential developments of microscopic 

models is given by (Brackstone & McDonald, 1999).  

Research on the existing models of driver behaviour has been restricted to modelling 

driver behaviour under car-following situations. Little work was found, on models of 

driver behaviour under various other driving situations. It can be said that most research 

so far has been concentrated on modelling driver behaviour in situations, where only 

longitudinal interactions affect the driver. Situations where, either lateral interactions 

alone or lateral as well as longitudinal interactions affect driver’s behaviour received 

much less attention. 
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3. Microscopic traffic modelling software tools 

Microscopic simulation is a term used in traffic modelling and is typified by software 

packages such as VISSIM (Fellendorf & Vortisch, 2001; Gomes, May, & Horowitz, 2004; 

Park, Won, & Yun, 2006; PTV, 2005), CORSIM (Lin, 1998; Prevedouros & Wang, 1999; 

Zhang, McHale, & Zhang, 2003), and PARAMICS (Gardes, 2006; Jacob & Abdulhai, 2006; 

Ozbay, Bartin, Mudigonda, & Board, 2006). Traffic simulation microscopic models 

simulate the behaviour of individual vehicles within a predefined road network and are 

used to predict the likely impact of changes in traffic patterns resulting from proposed 

commercial developments or road schemes. They are aiming to facilitate transportation 

consultants, municipalities, government transportation authorities and public 

transportation companies. The traffic flow models used are discrete, stochastic, time step 

based microscopic models, with driver-vehicle units as single entities.  

Traffic simulation software modelers combine in a single package multiple traffic flow 

mathematical models and therefore make it possible to combine the current knowledge on 

traffic theory when analyzing a traffic congestion problem. A screenshot of the VISSIM 

graphical user interface is provided in figure 2. The microscopic model depicted in the 

figure was developed in order to analyze traffic and evaluate the impact of various bus 

priority scenarios for a traffic network in Nicosia, Cyprus (G. Papageorgiou, 2006; G. 

Papageorgiou, Damianou, Pitsillides, Aphames, & Ioannou, 2006).  

 

 

Fig. 2. VISSIM Graphical User Interface depicting part of the microscopic model of Strovolos 
Ave. in Nicosia, Cyprus. 
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In today’s traffic simulation software, data such as network definition of roads and tracks, 

technical vehicle and behavioural driver specifications, car volumes and paths can be 

inserted in graphical user interface mode. Values for acceleration, maximum speed and 

desired speed distributions can be configured by the user to reflect local traffic conditions. 

Various vehicles types can also be defined. Further, traffic control strategies and 

algorithms may be defined as well as interfaces may be built with well-known urban 

traffic controllers. CORSIM, PARAMICS, VISSIM, and AIMSUN were calibrated and 

validated in a number of traffic studies worldwide. Below we present some of their main 

features. 

CORSIM which stands for Corridor microscopic simulation is developed by Federal 

Highway Administration of United States. It has evolved from two separate traffic 

simulation programs NETSIM and FRESIM. NETSIM models arterials with signalised and 

unsignalised intersections, while FRESIM models uninterrupted freeways and urban 

highways. 

In the case of VISSIM the microscopic model consists of a psycho-physical car following 

model for longitudinal vehicle movement and a rule-based lane changing algorithm for 

lateral movements. The model is based on an urban and a freeway model which were 

developed by Wiedemann from the University of Karlsruhe. VISSIM is especially well 

known for its signal control module, which uses a vehicle actuated programming language 

can model almost any traffic control logic. Further, VISSIM scores high on its ability to 

model public transportation systems.  

AIMSUN was developed by TSS in order to simulate urban and interurban traffic networks. 

It is based on the car-following model of Gibbs . AIMSUN is therefore based on a collision 

avoidance car-following model. Traffic can be modelled via input flows and turning 

movements, origin destination matrices, and route choice models. 

PARAMICS, which stands for Parallel Microscopic Simulation, comprises of various 

modules which include a modeller, a processor, an analyser, a monitor, a converter and an 

estimator. PARAMICS is well known for its visualization graphics and for its ability to 

model quite a diverse range of traffic scenarios. 

A comprehensive review of simulation models of traffic flow was conducted by the 

Institute for Transport Studies at the University of Leeds as part of the SMARTEST Project 

which is a collaborative project to develop micro-simulation tools to help solve road 

traffic management problems. The study compared the capabilities of more than 50 

simulation packages. The results are available on the internet at http://www.its. 

leeds.ac.uk/ projects/smartest. Other significant reviews of traffic simulation software 

include the work of (Bloomberg & Dale, 2000) who compared Corsim and Vissim as well 

as the work of (Boxill, Yu, Training, Research, & Center, 2000) who compared the 

capabilities of Corsim, Aimsun and Paramics. It can be concluded from the various 

reviews that software modelers that have comparative capabilities include VISSIM, 

AIMSUN, and PARAMICS. 

In a more recent comparative study of microscopic car following behavior, (Panwai & Dia, 
2005) evaluate AIMSUN, VISSIM and PARAMICS. They concluded that the accuracy of a 
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traffic simulation system depends highly on the quality of its traffic flow model at its core, 
which consists of car following and lane changing models. In the study the car-following 
behaviour for each simulator was compared to field data obtained from instrumented 
vehicles travelling on an urban road in Germany. The Error Metric on distance (Manstetten, 
Krautter, & Schwab, 1997) performance indicator gave substantially better values for 
AIMSUN than those of VISSIM and PARAMICS. Further, the Root Mean Square Error 
(RMSE) was substantially less for VISSIM and AIMSUN than the RMSE for PARAMICS. In 
another paper presented at the 9th TRB Conference on the Application of Transportation 
Planning Methods Choa et al. (Choa, Milam, & Stanek, 2004) concluded that although 
CORSIM provides the shortest traffic network setup time , PARAMICS and VISSIM 
generated simulation results that better matched field observed conditions and traffic 
engineering principles. 

The reason microscopic simulation models are used over other software packages and 

methods like the Highway Capacity Manual (HCM) is that microscopic simulations allow 

us to evaluate the effects that different traffic elements have on each other. Being able to 

evaluate the effects of closely spaced intersections and interchanges on the traffic network 

or the effects of a bottleneck condition on the surrounding system, can only be achieved 

by microscopic traffic simulation models. Also, as metropolitan traffic conditions 

experience congestion over 3 to 4 hour periods, microscopic traffic simulation programs 

allow us to evaluate the build-up to congested conditions and the recovery of the system 

at the end of the period. The peak period of congestion is complex and evaluating 

solutions under these conditions can only be accomplished using microscopic simulation 

tools. 

In the following section, an approach to modelling and simulation of intelligent 

transportation systems (ITS) is proposed and implemented for a particular case study in 

Nicosia , Cyprus. The approach utilizes the VISSIM microscopic simulation modeler. 

4. ITS studies using microscopic simulation 

As described in the previous sections traffic phenomena constitute a dynamical problem 

situation, which makes traffic modeling and simulation a very complex, iterative and 

tedious process. In order to increase chances for developing a realistic simulation model the 

following methodology is developed, which is based on the suggestions of (Lieberman & 

Rathi, 1996) and (Dowling, 2007). This is applied for the modeling of Archangelou Avenue 

traffic network in Nicosia, Cyprus as described below. 

The study area is depicted in figure 3, which shows Archangelou Avenue with its nearby 

traffic network. Archangelou Avenue is the main road connecting the Rural Nicosia 

District to the centre of Nicosia, where the main business center is located. Nicosia, the 

capital of Cyprus, has a population of around 350,000 people. Archangelou Ave., which is 

one of the three main arterial roads exhibits very high traffic flows as compared with the 

other regions of metropolitan Nicosia. Further, Archangelou Avenue serves as the 

connector between Nicosia and a large and heavily populated area of urban and rural 

communities. 
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Fig. 3. The Archangelou Avenue Case Study Area with the nearby Traffic Network. 

The aim of the study titled “Intelligent Transportation Systems in Archangelou Avenue 

(BUSSIM)“ was to develop and test BRT strategies via scenario analysis in a computer 

simulated environment. Scenarios that were evaluated include a number of configurations 

regarding the introduction of dedicated bus lanes as well as bus advance signal areas as well 

as High Occupancy Vehicle (HOV) lanes. The scenario analysis was carried out via 

computer experiments using a microscopic simulation model of Archangelou Avenue urban 

traffic network. The case study presented in this chapter is part of the BUSSIM research 

project (George Papageorgiou, Maimaris, Ioannou, Pitsillides, & Afamis, 2010) which was 

funded by the Cyprus Research Promotion Foundation and Transim Transportation 

Research Ltd.  

As shown in figure 4, the first step of the proposed approach is to identify and define the 

problem. In our case the symptoms of the problem which are attributed to traffic congestion 

manifest themselves as increasing travel times for all transport modes. The main causes to 

the problem of traffic congestion in Nicosia consist of an increasing number of vehicles and 

a decreasing use of the bus transportation system. Adding more capacity to the road 

infrastructure will only make things worse, as a reinforcing feedback loop is created where 

further use of private vehicles is encouraged and use of the public transport is discouraged. 

Therefore, the long term solution to the problem is to balance or even to turn around the 

situation by encouraging the use of the public transport mode. 

Study Area 
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Fig. 4. The Proposed Traffic Modeling and Simulation Method (in paper by Papageorgiou et 
al presented at 12th IFAC Symposium on Transportation Systems, September 2009). 

The question then becomes how to attract people in using the bus transportation system. 

The answer to this was given by the citizens of Cyprus in a recent survey where they 

expressed their wish for higher quality, faster public bus transport system. This is what was 

investigated in the BUSSIM project, concentrating on providing a faster and better quality 

level of service for bus passengers. The objective therefore in the modeling and simulation 

method was to examine various scenarios such as dedicated bus lanes and Bus Rapid 

Transit Systems that would provide a better level of service for the bus transportation 

system. Meanwhile there was a need to anticipate and assess any side effects of plausible 

solutions to the rest of the transportation system. 

Based on the stated model objectives, a microscopic simulation model of Archangelou 

Avenue was developed. Like any other traffic network, Archangelou Avenue consisted of 

many traffic parameters that needed to be taken into account. These included traffic control 

signals, priority rules, routing decisions, and pedestrian crossings, signalized and un-

signalized intersections and so on. A helicopter view of the simulation model of 

Archangelou Avenue is depicted in figure 5 (see also figure 3). Figure 5 shows the proposed 

layout of Archangelou Ave, which is a five-lane road more than 4 kilometers long, as well as 

the main roads that intersect Archangelou Avenue. Figure 5 also shows potential areas for 

introducing dedicated bus lanes.  
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Fig. 5. The Traffic Simulation Model Showing The Proposed Road Design for Dedicated Bus 
Lane (DBL) and Bus Advance Areas (BA). 

The model incorporated a significant amount of various traffic data that may be classified in 

terms of static data and dynamic data. Static data represents the roadway infrastructure. It 

includes links, which are directional roadway segments with a specified number of lanes, 

with start and end points as well as optional intermediate points. Further, static data 

includes connectors between links, which are used to model turnings, lane drops and lane 

gains, locations and length of transit stops, position of signal heads/stop lines including a 

reference to the associated signal group, and positions and length of detectors. Dynamic 

data was also specified for the traffic simulation experiments. It included traffic volumes 

with vehicle mix for all links entering the network, locations of route decision points with 

routes, that is the link sequences to be followed, differentiated by time and vehicle 

classification, priority rules, right-of-way to model un-signalized intersections, permissive 

turns at signalized junctions and yellow boxes or keep-clear-areas, locations of stop signs, 

public transport routing, departure times and dwell times. 

Having introduced the necessary traffic parameters in the model, the iterative process 

begun, which consisted of model development calibration and validation of the model.  

Figure 6 shows the real Vs simulated traffic flows of the various vehicle movement 

directions of a central intersection of Archangelou Avenue, in particular that of 

Archangelou-Odyssea Elyti. As seen in the bar chart, traffic flows of real measurements 

obtained and those of simulated results, are quite comparable. In particular the error ranges 

from only 1% to 5%, a fact that contributes to building confidence for the model. Further, the 

simulation model demonstrated the queues that are encountered in reality during the 

morning peak hours. 

DBL 1 

DBL 2

DBL 3

DBL 4

BA 1

BA 2

BA 3

BA 4 
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Fig. 6. Model Validation: Simulated Vs Measured flows at Archangelou-Odyssea Elyti 

junction. 

With a validated model in our hands, next comes the preparation of BRT scenarios, their 

evaluation and the analysis of the results. After consultations with the transportation 

planning section of the Ministry of Communications Works we came up with several 

plausible scenarios. In summary, the various scenarios involve the use of dedicated bus 

lanes and High Occupancy Vehicle lanes by means of Intelligent Transportation Systems.  

Even though the modelling process and especially the calibration of the microscopic model 

was time consuming, results from the simulation experiments gave us significant information 

on a variety of measures of effectiveness (MoE). In particular, we have managed to compute 

travel times, queue lengths, delays, average speeds, lane changes and other MoEs for the 

various scenarios under investigation. On the basis of the various MoEs comparison was 

carried out between the various scenarios using hypothesis testing with a 95% confidence 

interval (results submitted for publication). Such valuable information is obviously essential 

for the implementation of any Intelligent Transportation Systems project. 

5. Conclusion 

Modelling and simulation methods are essential elements in the design, operation and 

control of Intelligent Transportation Systems (ITS). Congestion problems in cities worldwide 

have drawn a high level of interest for better management and control of transportation 

systems. Of major importance are ITS systems that include advanced traffic management 

and control techniques. Such techniques include real-time traffic control measures and real-

time traveller information and guidance systems whose purpose is to assist travellers in 

making departure time, mode and route choice decisions. Transportation research is 

heading towards developing models and simulators for use in the planning, design and 

operations and control of such intelligent transportation systems. 
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This chapter presented an overview of the most important developments in traffic flow 
theory, and examines modelling of traffic flow at two fundamental levels: the macroscopic 
level, where traffic is regarded as a fluid, and the microscopic level, where traffic is 
represented by individual driver-vehicle units. Concerning these two levels of analysis, 
without discarding the usefulness of macroscopic models it may be concluded that as a 
result of advancements in computer technology, and the need for more detailed and 
accurate traffic models there is a trend nowadays for microscopic traffic models where the 
ultimate goal is to capture the driver-vehicle unit interactions under a variety of driving 
conditions in a computer simulated environment.  

Further, this chapter provided an insight analysis to the world's most sophisticated traffic 
simulation modeller software, VISSIM, AIMSUN, CORSIM and PARAMICS, where their 
capabilities and limitations are discussed. Also, an approach to modeling and simulation of 
intelligent transportation systems is proposed and implemented. The proposed approach 
goes through various stages, which include problem identification, model objectives, model 
development, model calibration, model validation, scenario preparation, simulation 
experiments and simulated results evaluation. The proposed approach is applied in the case 
of developing a microscopic traffic simulation model for the urban traffic network of 
Archangelou Avenue, Nicosia, Cyprus in order to examine alternative bus transport mode 
enhancements by means of Intelligent Transportation Systems.  
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