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1. Introduction 

Titanium and titanium alloys are widely used in a variety of engineering applications, 

where the combination of mechanical and chemical properties is of crucial importance. 

Aerospace, chemical and automotive industries as well as the medical device manufacturers 

also benefited from the outstanding properties of titanium alloys. The wide spread of its 

uses in biomedical implants is mainly due to their well-established corrosion resistance and 

biocompatibility. However, not all titanium and its alloys can meet all of the clinical 

requirements for biomedical implants. For instance, it is reported that bare titanium-

vanadium alloy has traces of vanadium ion release after long period exposure with body 

fluid (López et al., 2010). Excessive metal ions release into the body fluid and causes toxicity 

problems to the host body. A new group of titanium alloy such as Ti-Nb and Ti-Zr based are 

recently introduced in the market to overcome the toxicity of titanium-vanadium based 

alloy (Gutiérrez et al., 2008). Although, these alloys have a high strength to weight ratio and 

good corrosion resistance and biocompatible, but it suffers from poor tribological properties 

which limits their usefulness to a certain extent especially when they are applied to joint 

movements. Wear debris generated from these articulation joints can induce inflammation 

problem and toxic effect to the human body. In biomedical point of view, post implantation 

is very crucial stage where the interaction between the implanted material surface and the 

biological environment in human body is critically evaluated. Either in the short or long run, 

the toxic effect becomes an issue to host body. Hence, the implant material surface has a 

strong role in the responses to the biological environment. In order to improve the biological 

and tribological properties of implant materials, surface modification is often required 

(Huang et al., 2006, Kumar et al., 2010b). This chapter embarks on the commonly used 

implant biomaterials, followed by general overview on the surface modification techniques 

for treating titanium alloy. The basic principles of oxidation, carburization and ion 

implantation methods and their developments are discussed in the following sections. 
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2. Implant biomaterials 

Biomedical implant is defined as an artificial organ used for restoring the functionality of a 

damaged natural organ or tissue of the body (Liu et al., 2004). In other words it is expected 

to perform the functions of the natural organ or tissue without adverse effect to other body 

parts (Andrew et al., 2004). Fig.1 shows a typical hip and knee joint implants replacement. 

Biomedical engineering is a new discipline where engineering principles and design 

concepts are applied to improve healthcare diagnosis, monitoring and therapy by solving 

medical and biological science related problems. At least three different terminologies that 

always are being referred to biomedical implant materials, i.e. biocompatibility, 

biodegradable and biomaterials. Biocompatibility is defined as the immune rejection or 

inflammatory responses of the surrounding tissue systems to the presence of a foreign object 

in the body. Whereas biodegradable material means the implant material can easily 

decompose in the body. Their presence in the body is temporary and usually they degrade 

as a function of time, temperature or pressure. Biomaterials must possess biocompatibility 

and sometimes biodegradable properties. A typical example of simultaneously possess 

biocompatibility and biodegradable properties is drug delivery capsule where their 

presence to release drugs inside the body over a specific time without causing any toxic 

effect to the surrounding tissues (Hollinger, 2006). There are varieties of biomaterials such as 

metallic, ceramics and polymers that have been used as biomedical devices. Metallic 

biomaterials can be grouped as steels, cobalt and titanium based alloys. Among non-metallic 

polymeric based biomaterials are polyethylene terephthalate, polytetrafluoroethylene, 

ultrahigh molecular weight polyethylene (UHMWPE) and lactide-co-glycolide. While titania 

(TiO2), titanium carbide (TiC), titanium nitride (TiC), bioglass, hydroxyapatite (HA), silicon 

carbide (SiC) are typical examples of ceramic biomaterials. All biomaterials must be free 

from cytotoxicity. Plain steel would corrode easily in the body and become toxic. On the 

 

Fig. 1. Total hip and knee implants replacements (Geetha, 2009)  
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other hand, biomedical grade 316L stainless steel possesses higher biocompatibility 
properties and it can be used as implant as well as for surgical devices. However, due to its 
heavy weight, this group of materials have been gradually replaced by other lighter 
biomaterials such as titanium alloys. Co based alloys is another metallic biomaterials but its 
high elastic modulus compared to bone causes stress shielding effect especially in load 
bearing applications (Kumar et al., 2010b). Stress shielding effect is the reduction of bone 
density due to the removal of normal stress from bone by an implant. Among metallic 
materials, titanium and its alloys are considered as the most convincing materials in medical 
applications nowadays because they exhibit superior corrosion resistance and tissue 
acceptance when compared to stainless steels and Co-based alloys. Table 1 shows the 
various metallic biomaterials used for medical applications.  

 

Material designation 
Common  
or trade name 

ASTM 
Standard 

ISO 
Standard 

Steel biomaterial : 
Fe-18Cr-14Ni-2.5Mo 
Fe-18Cr-12.5Ni-2.5Mo,Cast 
Fe-21Cr-10Ni-3.5Mn-2.5Mo 
Fe-22Cr-12.5Ni-5Mn-2.5Mo 
Fe-23Mn -21Cr-1Mo-1N 

 
316L Stainless Steel 
316L Stainless Steel 
REX 734 
XM-19 
108 

 
ASTM F 138 
ASTM F 745 
ASTM F 1586 
ASTM F 1314 
F-04.12.35 

 
ISO 5832-1 
- 
ISO 5832-9 
- 
- 

Cobalt base biomaterials: 
Co-28Cr-6Mo Casting alloy 
Co-28Cr-6Mo Wrought alloy#1 
Co-28Cr-6Mo Wrought alloy#2 
Co-28Cr-6Mo Wrought alloy#3 
Co-20Cr-15W-10Ni-1.5Mn 
Co-20Ni-20Cr-5Fe-3.5Mo-3.5W-2Ti
Co-19Cr-7Ni -14Fe-7Mo-1.5W-2Ti 
Co-20Cr-15Ni -15Fe-7Mo-2Mn 
Co-35Ni-20Cr-10Mo 

 
Cast CoCrMo 
Wrought CoCrMo, Alloy 1 
Wrought CoCrMo, Alloy 2 
Wrought CoCrMo,GADS 
L-605 
Syncoben 
Grade 2 “Phynox” 
Grade 1 “Elgiloy” 
35N 

 
ASTM F 75 
ASTM F 1537 
ASTM F 1537 
ASTM F 1537 
ASTM F 90 
ASTM F 563 
ASTM F 1058 
ASTM F 1058 
ASTM F 562 

 
ISO 5832-4 
ISO 5832-12 
ISO 5832-12 
- 
ISO 5832-5 
ISO 5832-8 
ISO 5832-7 
ISO 5832-7 
ISO 5832-6 

Titanium base biomaterials: 
Ti Cp-1 
Ti CP-2 
Ti-3Al-2.5V 
Ti-5Al-2.5Fe 
Ti-6Al-4V 
Ti-6Al-4V ELI 
Ti-6Al-7Nb 
Ti-15Mo 
Ti-12Mo-6Zr-2Fe 
Ti-11.5Mo-6Zr-4.5Sn 
Ti-15Mo-5Zr-3Al 
Ti-13Nb-13Zr 
Ti-35Nb-7Zr-5Ta 
Ti-45Nb  

 
CP-1(ǂ) 
CP-2(ǂ) 
Ti-3Al-2.5W(ǂ/ǃ) 
Tikrutan (ǂ/ǃ) 
Ti 364(ǂ/ǃ) 
Ti 364ELI(ǂ/ǃ) 
Ti 367(ǂ/ǃ) 
Ti-15Mo (Metastable Beta) 
“TMZF” (Metastable Beta) 
“Beta 3” (Metastable Beta) 
Ti-15Mo-5Zr-3Al(Metastable Beta)
Ti-13Nb-13Zr (Metastable Beta) 
“TiOsteum” (Metastable Beta) 
Ti-45Nb (Metastable Beta) 

 
ASTM F 67 
ASTM F 67 
ASTM F 2146 
- 
ASTM F 1472 
ASTM F 136 
ASTM F 1295 
ASTM F 2066 
ASTM F 1813 
- 
- 
ASTM F 1713 
- 
ASTM B 348 

 
ISO 5832-2 
ISO 5832-2 
- 
ISO 5832-10 
ISO 5832-3 
ISO 5832-3 
ISO 5832-11 
- 
- 
- 
ISO 5832-14 
- 
- 
- 

Table 1. Metallic biomaterials for medical and surgical implants (Courtesy from ATI, Allvac, 
USA) 
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3. Overview of surface modification techniques 

Since all biomedical devices subject to extremely high clinical requirements, a thorough 
surface modification process is needed prior to implantation process into the human body. 
The main reasons to carry out various surface modification processes on implant materials 
for biomedical applications can be summarized as follows: 

i. Clean implant material surface from contaminations prior to implantation 
ii. Increase bioactivity, cell growth and tissue attachments after implantation 
iii. Increase hardness of implant to reduce wear rate especially in articulation joint 

applications 
iv. Introduce passive layer to prevent excessive ion release into body environment 
v. Promote antibacterial effect  
vi. Increase fatigue strength of implants 

The proper surface modification techniques keep the excellent bulk attributes of titanium 
alloys, such as good fatigue strength, formability, machinability and relatively low modulus. 
It also improves specific surface properties required by different clinical requirements. Table 
2 summarizes the typical surface modification schemes used to treat titanium and its alloys 
for implant. 

 

Surface modification 
methods 

Modified layer Objective 

Mechanical methods
 Machining 
 Grinding 
 Polishing 
 Blasting 

Rough or smooth surface 
formed by subtraction process

Produce specific surface 
topographies; clean and roughen 

surface; improve 
adhesion in bonding 

Chemical methods
 Chemical treatment

 Acidic 
treatment 

 Alkaline 
treatment 
 

 Hydrogen 
peroxide 
treatment 

 
<10 nm of surface oxide layer 

 
~1 µm of sodium titanate gel 

 
 

~5 nm of dense inner oxide and
porous outer layer 

 
Remove oxide scales and 

contamination 
Improve biocompatibility, 

bioactivity or bone conductivity 
 

Improving biocompatibility, 
bioactivity or bone conductivity 

Sol–gel ~10 µm of thin film, such as 
calcium phosphate, TiO2 and 

silica 

Improve biocompatibility, 
bioactivity or bone conductivity 

Anodic oxidation ~10 nm to 40 µm of TiO2 layer, 
adsorption and incorporation of 

electrolyte anions 

Produce specific surface 
topographies; 

improved corrosion resistance; 
improve 

biocompatibility, bioactivity or 
bone conductivity 
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CVD 
(Chemical Vapour 

Deposition) 

~1 µm of TiN, TiC, TiCN, 
diamond and diamond-like 

carbon thin film 

Improve wear resistance, 
corrosion 

resistance and blood 
compatibility 

Biochemical methods Modification through silanized 
titania, photochemistry, self-

assembled monolayers, protein-
resistance, etc. 

Induce specific cell and tissue 
response 

by means of surface-
immobilized 

peptides, proteins, or growth 
factors 

Physical methods 

 Thermal spray 

 Flame spray 

 HVOF 

 DGUN 

 
~30 to 200 µm of coatings, such 
as 
titanium, HA, calcium silicate, 
Al2O3, ZrO2, TiO2 

 
Improve wear resistance, 
corrosion 
resistance and biological 
properties 

PVD (Physical Vapour 
Deposition) 

 Evaporation 

 Ion plating 

 Sputtering 

 
~1 µm of TiN, TiC, TiCN, 

diamond and diamond-like 
carbon thin film 

 
Improve wear resistance, 

corrosion 
resistance and blood 

compatibility 

Ion implantation and 
deposition 

 Beam-line ion 
implantation 

 PIII 

 
 
~10 nm of surface modified 
layer and/or ~µm of  thin film 

 
 
Modify surface composition; 
improve wear, corrosion 
resistance, and biocompatibility 

Glow discharge plasma 
treatment 

~1 nm to ~100 nm of surface 
modified layer 

Clean, sterilize, oxide, nitride 
surface; remove native oxide layer 

Table 2. Summary of surface modification methods used for titanium and its alloys implants 
(Liu et al., 2004) 

Among the popular surface modification methods are mechanical, chemical, sol-gel, 
oxidation, carburization and ion implantation. The last three methods will be discussed in 
detailed in later sections. Mechanical surface treatments include machining, grinding, and 
blasting. These methods were discussed in depth elsewhere (Lausmaa et al., 2001). The main 
goal of mechanical modification is to obtain particular surface roughness and topographies 
on implant surface. In general, mechanical surface treatments lead to rough structures 
which finally increase the surface area of implant. This condition is considered more 
favourable for the implant because it facilitates biomineralization process to take place 
(Sobieszczyk, 2010a). Surface roughness enhances cell attachment, proliferation and 
differentiation of osteogenic cells and is the key factor for the osseous integration of metallic 
implants. Among the mechanical methods, blasting is the most popular technique for 
achieving desired surface roughness on titanium. The common abrasive particles used as 
the blasting media are silicon carbide (SiC), alumina (Al2O3), biphasic calcium phosphates 
(BCP), hydroxyapatite and ß-Tricalcium phosphate (Citeau et al., 2005). One of the 
disadvantages of blasting is that it may lead to surface contamination and local 
inflammatory reactions of surrounding tissues as a result of dissolution of abrasive particles 
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into the host bone (Gbureck et al., 2003). A range  of surface roughness (Ra = 0.5-1.5 μm) 
shows stronger bone response after the implantation compared to implants with smoother 
or rougher surface (Sobieszczyk, 2010b). This observation was in contrast with the findings 
by Fini et al. (2003), that rougher surface show encouraging results. Their results were 
confirmed in the vivo experiments using titanium implants having roughness of 16.5 – 21.4 
μm inserted in the cortical and trabecular bone of goats. 

Chemical methods include acid treatment, alkali treatment, sol–gel, oxidation, chemical 
vapour deposition (CVD), and biochemical modification. Following discussion is limited to 
the first four chemical methods. Since oxidation method itself is a big field, this technique is 
separately discussed in section 4. 

Acid treatment is a popular surface treatment method to clean substrate surface by means of 
removing oxide and contamination. A mixed acids solution is frequently used for this 
purpose (Nanci et al., 1998). It is also noted that TiO2 is the dominant oxide layers formed on 
the substrate due to high affinity of titanium to react with O2. These oxides need to be 
removed prior to other surface treatments such as HA coating, thermal oxidation or 
carburization and ion implantation. A recommended standard solution for acid treatment is 
composed of HNO3 and HF (ratio of 10 to 1 by volume) in distilled water. Hydrofluoric acid 
has natural tendency of quickly attack TiO2 in the acid solution and forms soluble titanium 
fluorides and hydrogen. This acid solution also can be used to minimize the formation of 
free hydrogen that prevent surface embrittlement occurs due to inclusion of hydrogen in 
titanium (American Society for Testing and Materials, 1997). A group of researchers 
investigated the decontamination efficiency to the Ti surface using three acids, Na2S2O8, 
H2SO4, and HCl (Takeuchi et al., 2003). They found that HCl was the most effective 
decontamination agent among these three due to the capability to dissolve titanium salts 
easily without weakening Ti surfaces.  

Alkali treatment can be simply defined as simple surface modification by alkali solution 
such as NaOH or KOH to form bioactive porous layer on substrate materials. Later, this 
method followed by thermal treatment to dehydrate and transform amorphous structure 
into porous crystalline. The combined treatment is called Alkali Heat Treatment (AHT). The 
alkali treatment process is started by immersing titanium alloy in a 5–10 M NaOH or KOH 
solution for 24 hr (Kim et al., 1996). After that specimens have to rinse with distilled water 
followed by ultrasonic cleaning. It is then dried in an oven. Finally heat treatment is carried 
out by heating the specimens around 600–800 oC for 1 hr. The heat treatment is performed at 
very low pressure for avoiding oxidation of titanium at high temperature. The porous 
surface formed on treated titanium surface disclosed the formation of sodium titanate 
hydrogel on the titanium substrate. It was observed that after thermal treatment, a large 
quantity of crystalline sodium titanate with rutile and anatase precipitated. Bioactive bone-
like apatite was obtained on the surface after soaking the treated titanium in simulated body 
fluid (SBF) for 4 weeks. They found that bone-like apatite layer which is bioactive can be 
formed on other surfaces such as bioglass, hydroxyapatite and glass–ceramic by using this 
method. It is noted that bioglass, hydroxyapatite and glass–ceramic all are the examples of 
bioactive ceramics. Recently, a group of researchers investigated the effect of substrate 
surface roughness on alkali treated CP-Ti for apatite formation after immerging in SBF 
solution for seven days (Ravelingien et al., 2010). They found that apatite formation 
increased with the moderate surface roughness. However, very smooth surface (< 0.5 µm) 
causes sudden decrease in apatite formation.    
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Sol-gel consists of two terms, sol and gel. A sol can be defined as a colloidial suspension of 

very small solid particles in a continuous liquid. Gel can be defined as a substance that 

contains a continuous solid skeleton enveloping a continuous liquid phase (Brinker, 1990). 

The sol–gel process consists of five main steps: (1) hydrolysis and polycondensation; (2) 

gelation; (3) aging; (4) drying; (5) densification and crystallization (Piveteau et al., 2001). Two 

different techniques usually used to carry out the sol–gel process: (i) spin coating technique 

and (ii) dip coating technique. In spin coating technique the specimens are spun to spread 

the coating solution on the substrate using centrifugal force where in dip coating specimens 

are dipped or submerged in the solution. The sol–gel process is popular for depositing thin 

(<10 µm) ceramic coatings (Liu et al., 2004). In the biomedical area, the sol–gel process is 

considered new field. Sol-gel method capable of producing various types of coatings on 

titanium and titanium alloys for biomedical applications. Examples of these coatings are 

titanium oxide (TiO2), calcium phosphate (CaP), and TiO2–CaP composite.  Sol–gel 

technique also has been applied for some silica-based coatings. It has a great potential to 

replace plasma spray for synthesizing the composite hydroxyapatite/titania coating on the 

titanium substrate with high adhesion and good bioactivity (Kim et al., 2004). It is reported 

that plasma spray method results in chemical inhomogeneity and low crystallinity of HA 

coating on titanium alloys (Wang et al., 2011). In contrast, sol-gel technique produces high 

crystalline HA microstructure and better chemical homogeneity due to ability to mix the 

calcium and phosphorus precursors at molecular-level. They also found that atomic 

diffusion accelerated when increasing the calcining temperature or prolong the calcining 

time. Other advantages of sol-gel method in comparison with other conventional thin layer 

oxidation processes are: i) low densification temperature, ii) better control of the 

homogeneity, chemical composition and  crystalline structure of the thin coating, iii) Cost 

effective and less complicated equipment.  

4. Oxidation 

Oxidation is a chemical reaction between metal and oxygen. This reaction occurs naturally. 
However, this reaction can be started with exciting the atoms by providing external energy. 
In simple way, an oxidation is defined as a chemical reaction by the interaction of metal 
with oxygen to form an oxide. The oxidation behaviour of a metal depends on various 
factors and the reaction mechanism usually quite complex. The phenomena started with 
adsorption of oxygen molecules from the atmosphere, and then followed by nucleation of 
oxides, formation of a thin oxide layer, finally growth to a thicker scale.  During the growth 
process,  nodule formation and scale spallation may also take place (Khanna, 2004) . The 
total chemical reaction for the formation of oxide (MaOb) by oxidation between metal (M) 
and oxygen gas (O2) the can be written as: 

 aM + (b/2) O2 = MaOb  (1) 

The mechanism of oxidation process is illustrated in Fig. 2. The initial step started by the 
adsorption of gas on the clean metal surface during the metal-oxygen reaction. As the 
reaction proceeds, oxygen may dissolve in the metal forming an oxide on the surface either 
as a film or as oxide nuclei. The gas adsorption and initial oxide formation both are 
functions of various factors: (i) surface orientation, (ii) crystal defects at the surface, (iii) 
surface preparation, and (iv) impurities in both the metal and the gas. The oxides formed on 
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surface separates the metal and the gas and sometimes act as a barrier for further oxide 
formation. This barrier oxide is called protective oxide layer. The oxide can be continuous 
film or porous structure. Oxides can also be liquid or volatile at high temperature. In 
general, the reaction mechanism for a specific metal will be a function of  several factors: 
(i) pre-treatment and surface preparation of the metal, (ii) temperature, (iii) gas 
composition, (iv)  pressure and (v) required time of reaction (Kofstad, 1988). The 
oxidation mechanism can be generalised both at room temperature as well as at high 
temperature. The basic difference between oxidation at room temperature and high 
temperature is the reaction rate. At room temperature reaction rate is very slow where at 
high temperature the rate is accelerated. There are various types of oxidation for surface 
modification of biomedical grade titanium alloy such as (i) Thermal oxidation, (ii) Anodic 
oxidation, (iii) Micro-arc oxidation (MAO). These techniques are discussed separately in 
4.2, 4.3 and 4.4 respectively. 

 

Fig. 2. Scale Formation during high temperature metal oxidation: (a) O2 gas absorption, (b) 
O2 dissolution, (c) Thin oxide film formation, (d) Oxide layer growth, (e) Thick oxide layer  
(Kofstad, 1988) 

4.1 Mechanism of oxidation based on thermodynamic point of view 

In oxidation, the chemical reaction between a metal (M) and the oxygen gas (O2) can be 
written as: 

 M (s) + O2 (g) = MO2 (s) (2) 

In thermodynamic point of view, if oxygen potential in the environment is greater than the 

oxygen partial pressure in equilibrium with the oxide then an oxide will form on the surface 

of that metal. This equilibrium oxygen pressure is determined from the standard free energy 

of formation of the oxide. This equilibrium oxygen pressure is also called the dissociation 

pressure of the oxide in equilibrium with the metal. From equation 2, the standard free 

energy of the oxidation can be written as, 

 ΔGo  =  - RT ln ( ǂMO2 / ǂM . P(O2)) (3) 

(a) 

(c) 

(d) 

(e) 

(b) 
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Where,  

ΔGo  =  Gibbs free energy 
R = Universal gas constant 
T= Absolute temperature 
ǂMO2  and ǂM  =  Activities of the oxide and the metal respectiely  
and ǂM (element activity in alloy)  = ǄM . XM ; 
ǄM  = the activity coefficient of metal in the alloy ; 
XM =  mole fraction of metal in the alloy; 
P(O2) = Partial pressure of the oxygen gas. 
If a value coefficient ǄM is not available, ideal behaviour is assumed and ǄM is assigned the 
value of unity. Assuming element activity of the solid constituents is unit, i.e. the metal and 
oxide, the equation 3 becomes  

 ΔGo = - RT ln P (O2) (4) 

Or, P (O2) = exp (ΔGo / RT)  (5) 

Therefore, equation 5 can be used to determine the partial pressure of oxygen required for 

any metal to form oxide at any temperature from the standard free formation energy. 

Standard free energy for the formation of oxides is a function of temperature. This can be 

obtained from the Ellingham/Richardson diagrams which is mentioned elsewhere (Khanna, 

2004).  

4.2 Thermal oxidation 

Thermal oxidation occurs when metals or alloys are heated in a highly oxidizing 

atmosphere such as air or in the presence of oxygen. It is one of the cost- effective surface 

modification methods to deliberately generate a barrier oxide layer on titanium alloy.  

Thermal oxidation treatment aims for obtaining a ceramic coating, mainly focussed on rutile 

structure.  Particularly, oxidation at temperature above 200 °C promotes the development of 

a crystalline oxide film.  Many researchers reported that the thermally formed oxide layer 

enables increment in hardness, wear resistance and corrosion resistance of titanium and its 

alloy (Borgioli et al., 2005, Kumar et al., 2009). This protective oxide layer also reduce ion 

release inside body fluid and thus helps the body from metal toxicity (López et al., 2010). 

During thermal oxidation process, titanium can easily reacts with air due to its affinity to 

oxygen. Three types of oxides structure can be produced through this method, which are 

rutile, brookite or anatase structures. Among the three, rutile structure is more preferable for 

several reasons. Rutile structure is more inert to bacterial attack (Bloyce et al., 1998), has high 

hardness and low friction coefficient that can reduce wear as compared to the other two 

structures (Krishna et al., 2005).  

Many researchers investigate thermal oxidation method to solve ion release issues through 

increasing the corrosion resistance of titanium alloy.  A group of researchers studied the 

chemical composition of oxide layer produced by thermal oxidation on vanadium free TiNb 

and TiZr based alloys (López et al., 2001). Their aim was to reduce ion release as well as 

improving corrosion resistance for better biocompatibility. They reported that Ti, Al and Zr 

based oxide dominate the surface where small amount of Nb based oxide formed. They also 
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explored further to study the chemical composition of the deeper oxide layer surface and 

found that rutile structure dominates in oxide layer of TiZr based alloy (López et al., 2002). 

Another group of workers investigated the oxide structure to develop thicker oxide layer for 

improving the corrosion resistance as well as biocompatibility (Morant et al., 2003). They 

found that oxide layer was compact and uniform with the granular structure in TiNb based 

alloy and longitudinal groove structure in TiZr based alloy. It was investigated the 

corrosion- wear responses by increasing hardness through thermal oxidation of CP-Ti and 

Ti-6Al-4V (Dearnley et al., 2004). They found that corrosion-wear resistance improved by 

oxidation where surface of oxidized Ti-6Al-4V is harder than CP-Ti.   

Some investigators study the effect of oxidation time on surface roughness of oxide layer 
through this method to improve surface structure for better corrosion resistance (Gutiérrez 
et al., 2006). It is noted that higher surface roughness will provide better cell adhesion. They 
observed that surface roughness increases with the increase of oxidation time.  A group of 
researchers investigated in depth chemical composition of oxide layer to understand the 
diffusion of elements in the substrate during oxidation (Gutiérrez et al., 2008). Their 
motivation was to produce thick oxide layer for reducing ion release as well as corrosion 
protection. They observed that TiZr based alloy showed thicker oxide layer than TiNb based 
alloy but less homogenous. Another group of researchers studied extensively to optimize 
the oxidation temperature and time (Kumar et al., 2010b). Their objectives were to produce 
well adherence oxide layer with rutile structure for improving corrosion resistance and 
biocompatibility. They observed that best corrosion resistance achieved by oxidation at 650 
oC for 24 hr and the hardness increased threefold at 650 oC for 48 hr compare to bare metal. 

Excessive wear rate is another issue that limit the usage of titanium alloy in various 
articulation applications. To address the wear resistance issue, another group of researchers 
investigated the effect of oxidation and temperature on hardness of the oxide layer formed 
through thermal oxidation on CP-Ti (Yan et al., 2004). They found that thickness of the oxide 
layer increases with increasing temperature or time and hardness also increases accordingly. 
Another team of researchers studied the effect of temperature on adhesion and hardness of 
the oxide layer through thermal oxidation (Rastkar et al., 2005). Their aim was to improve 
sliding wear resistance by providing hard surface on TiAl based alloy. They observed that 
higher temperature oxide layer is non-adherent where lower temperature produced 
adherent oxide layer and also hardness increases with the oxidation temperature increment. 
Other group of workers also investigated the effect of oxidation time on oxide layer 
produced through this method (Guleryuz et al., 2005). They wanted to evaluate the dry 
sliding wear performance on Ti-6Al-4V by providing hard surface. They observed that 
hardness and surface roughness increases with the increase of oxidation time and these hard 
oxide layers show significant improvement in dry sliding wear resistance.  Another team of 
researchers investigated the effect of oxidation time and temperature to developed well 
adherent rutile based oxide surface in order to improve wear resistance (Biswas et al., 2009). 
It is also noted that rutile structure provides higher hardness compared to anatase structure. 
They observed that hardness is proportional to oxidation time as well as temperature. 
However, higher temperature shows significant increase of hardness compared to higher 
oxidation time.  

An appropriate articulating implant should possess the modulus of elasticity close to the 
bone. Otherwise, this could lead to stress shielding effect which is a loss of bone density. A 
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team of researchers made an effort to address the stress shielding issue of TiNb and TiZr 
based implant alloys (Munuera et al., 2007). They studied the surface structural properties 
by evaluating the nanoscale elastic properties of oxide layers at various oxidation times. 
They found that most cases the Young moduli of the oxide layer are lower than 65 GPA and 
in some cases it is almost near to bone i.e. 20 GPA. In other study, the nanomechanical 
properties of oxide scale (hardness and Young modulus) was also investigated (Cáceres et 
al., 2008). They noticed that TiZr based alloy shows increment in hardness and Young 
modulus after thermal oxidation. However, TiNb shows reduction in hardness and Young 
modulus at prolonged oxidation duration which is near to bone. Several researchers also 
investigated the effective oxidation parameters to produce rutile structure through thermal 
oxidation. As mentioned earlier, rutile structure is more preferable compared to other 
structures due to better resistant to bacterial attack and also having higher hardness. A 
group of researchers carried out thermal oxidation process on Ti–6Al–7Nb, Ti–13Nb–13Zr, 
and Ti–15Zr–4Nb at 750 °C for 24 hours (López et al., 2003). They reported that TiNbZr 
based alloys present a thicker scale with rutile structure. Other group of researchers studied 
the effect of producing rutile structure on AISI 316L coated with titanium (Krishna et al., 
2005). They found that the presence of rutile structure improves the hardness and corrosion 
resistance. Another group of workers  investigated the effect of thermal oxidation 
temperature on the Commercial Pure Titanium (CP-Ti) (Kumar et al., 2010a). They reported 
that rutile structure can be obtained at 800 oC after continuous heating for 24 hours. Another 
group of researchers carried out experiments to investigate the effects of different pickling 
times as well as temperature on the adhesion strength of oxide layer formed on the Ti-6Al-
4V after oxidation process (S. Izman et al., 2011a). It was revealed that the thickness of oxide 
layer increases with pickling time but the adhesion strengths become lower. It was also 
found that the adhesion strength of oxide layer formed on Ti substrate surface increases 
with the increase of temperature while the thickness of the oxide layer decreased within 40 
oC pickling temperature. Izman et al  took an attempt to evaluate the effect of thermal 
oxidation temperature on surface morphology and structure of the Ti13Nb13Zr biomedical 
material (S. Izman et al., 2011c). It is noted that all thermally oxidized samples exhibit the 
presence of oxides without spallation regardless of the thermal oxidation temperatures. 
Surface morphology of oxidized substrates changes from smooth to nodular particles-like 
shape when the oxidation temperature increases from low to high. Rutile structure 
dominants the surface area when the substrate is thermally oxidized at 850 °C. In summary, 
thermal oxidation is a simple and low cost method to produce protective oxide layer with 
rutile structure on titanium alloys. Studies show that the Young modulus of rutile structure 
is near to that of the bone (less than 65 GPa) and has antibacterial effect, better corrosion and 
wear resistance. Despite these encouraging properties, limited works have been reported on 
the adhesion strength of oxide layer formed on the titanium substrate. 

4.3 Anodic oxidation 

Anodic oxidation is an electrochemical reaction which is a combined phenomenon of 

diffusion between oxygen and metal ion. In this technique, the metal ion is driven by an 

electric field. This phenomenon leads to oxide layer formation on the surface of anode (Liu 

et al., 2004). Anodic oxidation can be used for producing different types of protective oxide 

layer on different metals. Common electrolytes used in the process are various diluted acids 

such as H2SO4, H3PO4, acetic acid, etc. The main advantage of anodic oxidation compared to 
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other oxidation methods is their ability to form bioactive oxide film on surface of titanium 

and its alloy. Anodic oxidation increases thickness of the oxide layer for reducing ion release 

as well as improving corrosion protection. By varying the anodic oxidation parameters, such 

as current, process temperature, electrolyte composition, and anode potential, the oxide film 

properties i.e. chemical or structural can be changed. 

Principal reactions cause oxidations at the anode are as follows: 
At the Ti/Ti oxide interfaces: 
Ti ↔ Ti2+ + 2e- 

At the Ti oxide/electrolyte interfaces: 
2H2O ↔ 2O2- + 4H+ (oxygen ions react with Ti to form oxide) , 
2H2O ↔ O2 (gas) + 4H+ + 4e- (O2 gas evolves or stick at anode surface). 
At both interfaces: 
Ti2+ + 2O2- ↔ TiO2 + 2e- 

In anodic oxidation, a linear correlation exists between the oxide film thickness and applied 
voltage. If the final oxide thickness is d and the applied voltage is U, then the relationship is 
d = ǂU.  ǂ is a constant and its typical range is 1.5–3 nmV-1. Ishizawa and Ogino et al. is the 
pioneer in developing Ca and P contained oxide layer through anodizing titanium in ǃ-
glycerophosphate sodium and calcium acetate contained electrolyte (Ishizawa and Ogino, 
1995). They further proceeded exploring and able to transform it into hydroxyapatite by 
applying hydrothermal treatment. The results showed that the electrolyte possessed some 
impurities (e.g. sodium). These impurities decreased oxide layer’s strength. A group of 
researchers reported that desirable cellular behaviour such as cell growth, cell attachment, 
etc. can be obtained from the thin HA layer on the surface of CP-Ti  which was produced by 
anodization and subsequently followed by hydrothermal treatment (Takebe et al., 2000). It is 
observed that cellular attachment and spreading are affected by this thin HA layer on the 
CP-Ti surface. It is also revealed a thin HA layer on titanium surface shows more 
osteoconductive behaviour to cell attachment as compared to bare CP-Ti. Other group of 
workers investigated new electrolytes consists of calcium glycerophosphate and calcium 
acetate for producing anodic oxide films that consist of Ca and P  on titanium implants (Zhu 
et al., 2001). The anodic oxide film of titanium obtained using this method is highly 
crystalline with porous structure and rich in Ca and P. The recommended optimum 
conditions are: (i) 350 V as final voltage, (ii) 70 A m-2 as current density, and (iii) 
concentrations of the calcium glycerophosphate (0.02M) and calcium acetate (0.15 M). Ca 
and P ratio near to 1.67 was achieved using this recommended condition. Positive biological 
response also observed from the properties of that anodic oxide layer surface. Yang et al. 
reported that using anodic oxidation in H2SO4 solution united with consequent heat 
treatment is an efficient method for obtaining titanium alloy with bioactive surface (Yang et 
al., 2004). They also observed that the porous structure Titania of anatase and/or rutile 
phase covered on the surface after anodic oxidation. It was interesting to observe that 
apatite can be formed on titanium alloy by anodic oxidation in simulated body fluid. The 
initial time for apatite formation was inversely proportional to the quantity of rutile or 
anatase phase (Liu et al., 2004). Apatite cannot be formed without spark discharge on the 
surface although anatase was produced on anodically oxidized titanium. Hence, a 
combination of anodic oxidation with heat treatment is required for the apatite formation on 
titanium in SBF without spark discharge treatment. Heat treatment induces apatite 
formation in SBF since the amount of anatase and/or rutile increases by the heat treatment. 

www.intechopen.com



Surface Modification Techniques for Biomedical Grade of  
Titanium Alloys: Oxidation, Carburization and Ion Implantation Processes 

 

213 

This also indicates that prior to the formation of apatite on the surfaces, a titanium oxide 
with three-dimensional micro-porous structure may be essential. It is also noted that 
surfaces can be bioactive by containing Ca and/or P which leads to osteoinduction of new 
bones. Wojciech (2011) investigated the effective anodic voltage for producing better 
corrosion resistance bioactive oxide layer containing Ca and P on TiZr based alloy through 
anodic oxidation method. He found that lower anodic voltage produced highest corrosion 
resistance. However, higher anodic voltage provides bioactive oxide layer rich in Ca and P 
on TiZr based alloy which also increase the corrosion resistance.  In summary, anodic 
oxidation is a simple and effective method of surface modification for providing better 
bioactive surface of titanium alloys which also homogenous and highly crystalline. 
However, bioactive apatite formation on titanium alloy through this method required post-
treatment such as hydrothermal heat treatment. The oxide film produced by anodic 
oxidation method shows various properties such as better biocompatibility, corrosion 
resistance, osteoconductive, etc. These properties rely on the microstructure and 
composition of the materials as well as anodic oxidation parameters, such as current, 
temperature, anode potential and electrolyte composition.   

4.4 Micro-arc oxidation (MAO) 

Another name of micro-arc oxidation is anodic spark oxidation or plasma electrolytic 
oxidation (PEO). Micro arc oxidation is an electrochemical surface modification process for 
producing oxide coatings on metals such as Al, Ti, Mg, Ta, W, Zn, and Zr and their alloys 
(Liu et al., 2010). According to Yerokhin et al. (1999), MAO  can be defined as a complex 
plasma-enhanced physico-chemical process which involved micro-arc discharge, diffusion 
and plasma chemical reactions. Basically, it is a new type of anodic oxidation technique, but 
the difference between MAO and the conventional anodic oxidation is it employs higher 
potentials to discharges and the resulting plasma modifies the structure of oxide layer. This 
process can be used to grow crystalline oxide coating with thickness range from ten to 
hundreds µm.  The coating thickness depends on process parameters such as current 
density, process time, electrolyte temperature, applied voltage, electrolyte composition, 
alloy composition (Dunleavy et al., 2009). A large number of short-lived sparks (micro arc 
discharges) produced in MAO process is a result of localized electrical breakdown of the 
growing coating. These discharges play the key role in the coating growth mechanism as 
they deposit ‘craters’ on the free surface of the growing coating. In MAO process, the anode 
is immersed in electrolyte which is an aqueous solution. The anode is made from valve 
metals. Valve metals usually refer to Ti, Al, Mg, Ta, W, Zn, and Zr due to their usage as a 
cathode to emit electron in electronic valve. They are also known as ‘thermionic valve’ 
materials in early days. However, disputes on the right definition of these terms have been 
remained among researchers since Al is not a suitable material for high temperature 
resistance to emit electron. In MAO, an unequal alternating voltage between the anode and 
cathode initiates an electrical discharge at the anode. The typical voltage range for anode 
and cathode is from 150 to 1000V and from 0 to 100V respectively. Temperature and local 
pressure in the discharge channels are among the parameters that  affect the MAO coating 
qualities such as high strength, well adhesion, high micro-hardness, and wear resistance 
(Liu et al., 2010). Since MAO can provide high hardness and a continuous barrier, this 
coating is suitable for protection against wear, corrosion or heat as well as electrical 
insulation (Curran and Clyne, 2005).  General characteristics of these coatings are porous, 
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firm adhesion to substrates and the pores are homogenously distributed on the coating’s 
surface with nanostructure grains (Kim et al., 2002). Due to superior corrosion resistance, 
thermal stability, photocatalytic activity, wear resistance and CO sensing properties makes 
MAO coatings as a popular research area (Shin et al., 2006, Jin et al., 2008). MAO has been 
popular in the biomedical community since Ishizawa et al. pioneered the technique to 
biomedical titanium implants (Ishizawa and Ogino, 1995). Biomimetic deposition of apatite  
is possible on Ca and P-containing MAO coatings (Song et al., 2004).  Zhao et al. found that 
the MAO coatings benefit osteoblast adhesion (Zhao et al., 2007). They compared the 
adhesion performance of MAO coatings on various modified smooth and rough surfaces. 
Other researchers investigated the effect of variations in the electrolyte compositions to 
produce different kinds of nanostructured composite coatings under this method (Kim et al., 
2007, Yao et al., 2008) . Cimenoglu et al. investigated the MAO coating on Ti6Al7Nb and 
found that oxide layer shows grainy appearance rather than porous and contained calcium 
titanate precipitates, HA and rutile structure (Cimenoglu et al., 2011). In summary, MAO is a 
potential method for producing porous nanostructured coatings on Ti and its alloys which 
promote best osteoblast cell adhesion. This technique has been spreading into the field of 
orthopaedic and dental implant materials.  

5. Carburization of titanium alloy 

Poor tribological properties limit the usefulness of titanium alloy in many engineering 
applications (Bloyce et al., 1994). Moreover, not all titanium and its alloys can meet all of the 
clinical requirements. In order to improve the biological, chemical, and mechanical 
properties, surface modification is often performed (Huang et al., 2006, Kumar et al., 2010b). 
Till now various surface modification techniques by thermo-chemical process have been 
studied and applied for improving wear resistance of titanium alloys. These are carburizing, 
nitriding and oxidation (Biswas et al., 2009, Tsuji et al., 2009b, Savaloni et al., 2010). Among 
them, carburization technique is one of the methods that can be used to form hard ceramic 
coating on titanium alloys. The main objective of carburization is to provide hard surface on 
titanium and its alloys for increasing wear resistance in articulation application since 
titanium carbide is one of the potential biocompatible carbide layers (Bharathy et al., 2010).  
It is also one of the cost-effective surface modification methods to deliberately generate a 
carbide layer on titanium alloy.  Many researchers reported that the carbide layer enables to 
increase hardness, wear resistance and corrosion resistance to titanium and its alloy (Kim et 
al., 2003). Sintered solid titanium carbide is  a very important non-oxide ceramics that 
widely used in the fields of wear resistance tools and materials due to its high melting point 
(3170 oC), low density, high hardness (2500 ~3000HV), superior chemical and thermal 
stability, and outstanding wear resistance (Courant et al., 2005). Apart from sintering, 
titanium carbide layer can be created by other surface modification methods, such as plasma 
carburizing process, thermal carburization or high-temperature synthesis, carburization by 
laser melting, gas-solid reaction or gas carburization and sol-gel process (Lee, 1997, Yin et al., 
2005, Cochepin et al., 2007, Luo et al., 2011). Among these methods, thermal carburization 
process is considered as the simplest and the most cost effective. Typically, one of the main 
obstacles for TiC coating is the high affinity of titanium to oxygen which leads to form TiO2 
easily on the surface. To overcome this issue , vacuum carburization or inert gas 
environment is introduced to remove O2 contents in carburization chamber (Wu et al., 1997). 
Another common problem related to carburization is non uniform hardness profile across 
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the carburized layers due to variation of carbon concentration in the surface region (Saleh et 
al., 2010). The discussion of this chapter starts with the basic mechanism of carburization 
followed by three popular carburization methods, i.e. thermal, gas and laser melting. 

5.1 Basic mechanism of carburization 

Carburization is a process widely used method to harden the surface and enhance the 

properties of components that made from metal. Carburizing consists of absorption and 

diffusion of carbon into solid metal alloys by heating at high temperature. Historically, the 

carburizing process is generally done at elevated temperatures with a carbon medium that 

can supply adequate quantity of atomic carbon for absorption and diffusion into the steel 

(Luo et al., 2009). The carbon medium that use for carburizing process can be solid 

(charcoal), molten salt (cyanide), a gaseous or plasma medium (Prabhudev, 1998). There are 

three methods of carburizing process, i.e. solid carburizing, liquid carburizing, and gas 

carburizing. All these three methods have their own compounds medium that is used for 

the carbon supply during the process. In solid carburizing process, carburizing compound 

such as charcoal or graphite powder is used for its medium. In the liquid carburizing 

method, molten cyanide is used for carbon enrichment. Lastly, for the gas carburizing 

method, hydrocarbon gas or plasma is used as the source of the carburizing medium. 

During carburizing, the atomic carbon is liberated from carbonaceous medium due to 

decomposition of carbon monoxide into carbon dioxide and atomic carbon as given below: 

 2CO     CO2 + Cat (6) 

Then, the carbon atom from carburizing medium is transferred to the surface of the metal. 

These metal surfaces will absorb the carbon and diffuse deep into it. Thus, this phenomena 

results increase in hardness of the substrate materials surface. 

5.2 Thermal carburization  

Thermal carburization process is considered the earliest carburization technique and it is a 
kind of solid carburization. Generally solid particle such as charcoal, graphite powder, etc is 
used as a carbon source to surround titanium substrate during carburization process. 
Titanium can easily react with oxygen in ambient environment and form a thin passive layer 
of TiO2 on the outer surface with thickness range of 3 to 7 nm (Liu et al., 2004) . This passive 
layer becomes a barrier for carbon atom diffusion into the titanium surface. Since titanium is 
highly affinity to oxygen, an inert or vacuum environment is preferable for conducting 
carburization process. Argon gas is commonly used as a medium to remove oxygen in tube 
or muffle furnace heating chamber from pre-oxidizing the titanium substrate surface.  The 
quality of carburized layer largely depends on the carburizing temperature, soaking time, 
source of carbon (type and particle size) and the absence of oxygen level in the chamber. The 
carburizing parameters may have significant effects on the thickness, adhesion, density and 
chemical composition of carburized layer formed on the titanium substrate. Studies on 
titanium carbide powder synthesis by carbothermal method in argon environment requires 
high temperature in the range of 1700–2100 °C (Weimer, 1997) and long reaction time (10–24 
h) (Gotoh et al., 2001). Other workers tried to synthesize TiC powder at lower temperatures 
and shorter time with success. For instance, Lee et al. studied the chemical kinetics at various 
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temperatures (1100 to 1400 oC) for synthesising TiC from CP-Ti alloy and graphite powders 

(Lee and Thadhani, 1997). They found that Ti with compacted graphite powder shows 

highly activated state of reactants which reduce activation energies by 4-6 times, undergo a 

solid state diffusion reaction. They also concluded that increasing temperature will increase 

the rate of heat released. This released heat generates localized melting of unreacted Ti and 

initiate a combustion reaction. It has been reported that the carburizing rate of titanium 

dioxide, TiO2 into TiC can be accelerated by using the finest and homogenous carbon 

powder (Maitre et al., 2000). Sen et al produced fine and homogeneous TiC powders by 

carbothermal reduction of titania/charcoal in a vacuum furnace at different reaction 

temperatures from 1100 °C to 1550 °C (Sen et al., 2010). They observed that reaction 

temperature increases, uniform crystal grain arises with the liberation of much CO and 

higher temperature (at 1550 oC) produced large amount of TiC. They also noticed that as 

reaction temperature increased, formation of the compounds was in sequenced as Ti4O7, 

Ti3O5, Ti2O3, TiCxO1−x and TiC. Hardly found researchers study TiC formation on titanium 

solid substrate. Izman et al  initiated the study to investigate the effects of different 

carburizing times on the adhesion strength of carbide layer formed on the Ti-6Al-7Nb (S. 

Izman et al., 2011b). Prior to carburization process, all samples were treated to remove 

residual stress and oxide scales by annealing and pickling processes respectively. Hard 

wood charcoal powder was used as a medium. The carburizing process was carried out 

under normal atmospheric condition. They found that a mixture of oxide and carbide layers 

formed on the substrate and the thickness of these layers increases with carburizing time. It 

was also revealed that the longer carburizing time provides the strongest adhesion strength 

and TiC as the dominant layer. Porous structure of TiC was observed and this structure is 

believed able to facilitate the osteoblast cell growth on implant. In summary, thermal 

carburization is a simple and cost effective method to produced TiC for increasing the wear 

resistance properties of titanium and its alloys. However, the technique has not been 

explored rigorously this far. Issues regarding carbide grain growth, carbon particle 

agglomeration, non-uniform carbide particle shapes and large amounts of unreacted TiO2 

and carbon in the substrate are still under on-going research. 

5.3 Gas carburization  

The main difference between thermal and gas carburization process is the carbon source 

medium. Instead of solid, hydrocarbon gas is used as a carbon source and carburization 

process takes place either under gaseous or plasma condition. This process is typically 

performed using plasma or flowing hydrocarbon gas over the Ti and Ti alloy substrate at 

high temperature in a inert gas or vacuum furnace. Gas carburizing also have various 

categories such as hydrocarbon gas carburizing (using methane or ethane), plasma 

carburizing, etc. The advantage of gas carburizing over solid carburising is faster processing 

time but this method is costlier compared to solid carburization (Robert et al., 1994). Due to 

high affinity to oxygen, plasma carburizing method has difficulties in carburizing the Ti 

alloys because thin protective titanium oxide film easily forms on its surface which cause in 

obstruction of the carbon diffusion (Okamoto et al., 2001). Kim et al  carburized Ti6Al4V at  

900 oC  and  250MPa pressure using CH4–Ar-H2  plasma for 6 hrs to increase the wear 

resistance (Kim et al., 2003). Hardness of titanium alloy was improved significantly from 

400HV to 1600HV with the carburized layer thickness of about 150 µm along the surface.  
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They revealed that fine and homogeneous dispersion of hard carbide particles such as TiC 

and V4C3 found in the carburized layer able to improve wear resistance as well as fatigue life 

for more than two folds. Tsuji et al. carburized Ti6Al4V at  600 oC  in  a Ar gas conditioned 

furnace using CH4-H2  plasma for 1 hr for improving hardness from  400 HV to 600 HV 

(Tsuji et al., 2009a). They also investigated the effects of combining plasma-carburizing and 

deep rolling on the notched surface microstructure and morphology, micro-hardness and 

notch fatigue life of Ti-6Al-4V alloy specimen in a laboratory at an ambient temperature. 

They reported that the notch root area of plasma-carburized specimen’s surface roughness 

has been significantly improved by deep-rolling. This method effectively introduces 

compressive residual stress and work hardening in the substrate. Plasma-carburization with 

subsequent deep-rolling largely enhances the notch fatigue strength of specimen in 

comparison with untreated specimen. The developed compressive residual stress and work 

hardening zone influence the initial crack growth rate of deep-rolled carburized specimen. 

The thickness of this zone is approximately 350 µm depth from the surface. However, the 

crack rapidly propagates toward the inside after it passes through this zone. They 

concluded that plasma-carburizing process combined with deep-rolling effectively improves 

the notch fatigue properties of Ti-6Al-4V alloy. Another researcher made an effort to 

investigate the plasticity effect on titanium alloy after being treated under gas carburization.  

Luo et al.   carburized Ti6Al4V at  1050 oC in  a vacuum furnace using C2H2 gas for 4 hrs for 

improving the of hardness from 350 HV to 778 HV (Luo et al., 2011). TiC or also called 

titanium cermets were successfully formed on the surface. It was reported that the plasticity 

of the titanium cermets was slightly lower (10.86%) than original titanium bare material. 

This indicates that the carburized titanium has significantly improved in fracture toughness 

as compared to typical ceramics material. They concluded that carburization is a way to 

produce titanium cermets efficiently which consists of hard surface, high toughness and 

plasticity. All these properties make titanium carbide as a potential candidate for artificial 

articulation material. In summary, the primary objective of gas carburizing is to produce 

carburized layer on the substrate in order to increase wear resistance property of titanium 

alloys. However, improvement in hardness introduces other issues such as reduction in 

plasticity and fatigue strength in the titanium substrate. 

5.4 Carburization by laser melting 

Laser carburizing technique is developed from laser surface hardening of steel. In a simple 

way, laser carburization can be defined as a process of using laser as a source of high energy 

to perform carburization. There are various types of laser carburizing methods where the 

categories are based on laser source, such as Neodymium Yttrium Lithium Fluoride 

(Nd:YLF), Neodymium Yttrium Aluminium Garnet (Nd:YAG), Titanium Sapphire 

(Ti:Sapphire), CO2 laser, etc. Laser carburizing process involves carbon diffusion into the 

metal substrate using laser irradiation. The typical source of carbon is graphite powder. 

Other type of powder such as TiC is also being used in laser melting technique to form 

carburized layer on titanium based materials. Fig. 3  shows a schematic diagram of laser 

melting working principle. This process involved heating of specimen through continuous 

or pulse wave laser irradiation, rapid melting, intermixing or diffusion of carbon particle, 

and rapid solidification of the pre-deposited alloying elements on substrate to form an 

alloyed zone or carburized layer.   
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Fig. 3. Schematic diagram of typical pulsed laser carburization set up. 

Investigations on laser carburizing technique were extended from steel to ǂ-Titanium 
(Fouilland et al., 1997), commercial pure titanium (Courant et al., 2005) , and biomedical 
grade titanium (Sampedro et al., 2011). Laser melting carburization produces thick coating 
ranged between one and several hundred micrometers depending on the irradiation 
conditions. Other carburizing methods are more suitable for producing thin film coating. 
Another advantage of this method compared to other techniques is that it’s capability of 
coating complex substrate geometry and shape such as notches or grooves where through 
other methods very difficult to reach these inaccessible areas. Wide heat affected zone is a 
general issue for thermal or plasma method heating which leading to shape distortion. On 
the other hand, laser carburizing method is free from these disadvantages since an accurate 
focused heating on the work piece can be controlled easily. Other commonly controlled laser 
processing parameters are laser power (W), scanning speed (mm/min), pulse/deposition 
time (ms), laser frequency (Hz) and overlapping factor (%). The effects of these variables are 
investigated in terms of changes to the hardness, compositions, heat affected zone, pores, 
cracks and microstructure of the carburized zone. For instance, a group of researchers  
investigated the effect of processing time on the TiC microstructure formation on titanium 
alloy using Nd-YAG laser (Courant et al., 2005). They observed that the time ratio has a 
significant effect on the carburized microstructure. A lower time ratio caused an increase in 
pulse power leading to form a thick layer of melted zone with rich in carbon but free from 
graphite formation. In contrast, higher time ratio produces large amount of graphite 
formation in the melted zone which can act as a solid lubrication. This phenomenon shows 
the potential to reduce abrasive wear rate and hence increase the tribological performance of 
articulation implants. One group of researchers compared the effect of process parameters 
(laser power and scanning speed) on solidification of TiC microstructure using two different 
laser sources on Ti-6Al-4V  substrate (Saleh et al., 2010). They found that TiC appears either 
in the form of dendrites or as particles located inside the grains and at the grain boundaries. 
This resulted significant increment in microhardness of the surface after carburizing process. 
They concluded that both Nd–YAG and the CO2 lasers able to produce macroscopically 
homogeneous microstructures of carburized layers. However, the former laser produces 
deeper carburized layer compared to the later. Recently, another group of workers studied 
pulse wave laser method (Nd-YAG laser) to form TiC layer on CP-Ti. They investigated the 
effect of process parameters (irradiated energy per length and pulse duration) on the 
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microstructure as well as hardness of the substrate surface. It is noted that the 
microhardness of the surface increased 3-5 times higher than the base metal substrate when 
increasing the pulse duration. It is also observed that the microhardness of microstructure 
reduced by decreasing the irradiated energy per unit length of the material where irradiated 
energy can be reduced by increasing the process travel speed (Hamedi et al., 2011). In a 
summary, laser carburization is a potential route of strong surface hardening method with a 
short process time to increase the wear resistance property of the titanium alloys without 
affecting its bulk properties. This method provides hardest carbide layer compared to other 
two carburization techniques. 

6. Ion implantation and deposition 

Ion implantation or ion beam processing is a procedure in which ions of a material are 

accelerated in an electric field and bombarded into the solid substrate surface. Various ions 

such as oxygen, nitrogen, carbon, etc. can be implanted on any substrate material for a 

coating purpose to modify the substrate surface. When carbon is implanted on substrate 

material then the effect of the surface modification is similar to carburization. Similarly, this 

method also can be applicable for nitridation as well as oxidation. Two common types of ion 

implantation process are (i) Conventional beam line ion implantation and (ii) Plasma 

immersion ion implantation (PIII) method. The basic difference between the beam line ion 

implantation and plasma immersion ion implantation method is the target function. In beam 

line ion implantation, the target is totally isolated from the ion beam generation. In contrast, 

the target is  an active part of the ion  generation  through bias voltage in PIII system 

(Savaloni et al., 2010). Fig. 4 shows the two typical types of ion implantation systems.  The 

ion implantation phenomena started with the acceleration of ions and it directed towards a 

substrate (titanium in the present case) which is called target. The energy of the ions is 

usually in the range of several kilo electronvolt to few mega electronvolt. This level of 

energy could cause significant changes in the surface by the ions penetration. However, the 

energy of ions is selected carefully to avoid deep penetration inside the substrate. Therefore, 

the surface modifications are limited to the near-surface region and a depth of 1 µm from the 

surface is normal (Rautray et al., 2011). In other words, bulk material properties will not be 

affected by the ion implantation process.  

 
(a)      (b) 

Fig. 4. Schematic diagram of (a) beam line ion implantation system and (b) PIII ion 
implantation system  
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For instance, in carbon ion implantation process, the implanted carbon ions are limited 

either to form titanium carbides or carbon atoms with C–C bonds near the surface. This may 

result in improvement of the mechanical properties as well as biocompatibility of titanium 

alloys. However, studies on the issue regarding corrosion resistance of TiC formation by ion 

implantation carburization are still underway. It is reported that a very high carbon ion dose 

of implantation (1018 cm-2) will reduce surface hardness of the titanium substrate (Viviente et 

al., 1999). The reaction between excess carbon and titanium produces mixed layer of 

graphite (C–C bonds) and TiC which cause reduction in hardness. In other study, a 

moderate dose of ion implantation from 5 x 1015  to 1x1017 cm-2 able to create nanocrystalline 

titanium carbide (TiC) layer which hardness of more than two folds on  Ti–6Al–4V alloy 

substrate (Liu et al., 2004). Liu et al. also reported that the tribological properties of titanium 

alloys are significantly improved at ion implant doses of over 4 x 1017 cm-2, producing 

friction coefficients of 0.2–0.3. Ion implantation method is free from some disadvantages of 

plasma process  such as thick coating, different phases of mixed crystalline  and low 

crystallinity which leads to delamination problem (Rautray et al., 2011). Effects of ion 

implantation process on wear resistance also have been studied by various researchers. 

Williams et al. investigated carbon ion implantation effect on the wear resistance of Ti–6Al–

4V alloys in a corrosive environment with the composition of 0.9% NaCl or 0.9% NaCl + 

10% serum (Williams, 1985). Two-stage  carbon ion implantation: 2.5x 1016 cm-2 at 35 kV 

followed by 1.6 x 1017 cm-2 at 50 kV were carried out for the test. They revealed that ion 

implanted sample shows reduction in corrosion current by a factor of 100 compared to that 

untreated samples. A group of researchers investigated Ti–6Al–4V alloy’s corrosion 

resistance after  80 kV, 3 x 1017 cm-2 carbon ion implantation (Zhang et al., 1991). They 

carried out examinations using electrochemical methods in two media: 0.5 M H2SO4 and 

(HCl + NaCl) solution (pH = 0.1) at 25 oC. In both solutions, ion implanted samples show 

higher corrosion potential (Ecor) than unimplanted samples. They also reported that the 

increment in the surface corrosion resistance was due to a durable solid passive layer 

formation. Other group of researchers experimented various carbon doses on the titanium 

alloy for evaluating corrosion resistance of TiC formation at energy of 100 keV. in 0.9% NaCl 

solution at a temperature of 37 °C (Krupa et al., 1999). They revealed that the corrosion 

resistance of titanium alloy improved significantly by producing a continuous solid 

nanocrystalline TiC layer when applying 1×1017 C+ cm−2 of carbon dose or more. Another 

group of workers studied the formation of TiC on titanium alloy using PIII method by 

varying the deposition times (Baba et al., 2007). They concluded that the formation of TiC 

through ion implantation on titanium alloy depends on amount of carbon ion implantation 

which is proportional to ion implantation process time. Corrosion resistance on biomedical 

grade titanium alloy can also be improved by nitrogen ion implantation. It was reported 

that increasing of N+ flux will influence the corrosion potential, corrosion current and 

passive current. These changes lead to initial increase in the corrosion resistance of the 

titanium alloy (Savaloni et al., 2010). Other group of researchers investigated the effect of 

process temperature and implantation time on the corrosion properties of Ti-6Al-4V. It was 

found that prolonged implantation times do not contribute to a major changes in corrosion 

resistance where process temperature does (Silva et al., 2010). They also reported that the 

best corrosion resistance achieved at 760 oC with 2 hr processing time.  Previous studies on 

PIII method basically focused on single non-metallic ion implantation to improve 
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tribological properties such as hardness as well as corrosion resistance. However, in the 

recent development, it shows that the research interests in this method have been expanded 

to include implanting both metal and non-metallic ion simultaneously on titanium alloy. 

The main driving force of introducing this dual implantation method is to address the 

clinical and tribological issues concurrently. For example, Ca and Mg ion implanted into 

titanium alloy for increasing the bone integration (Kang et al., 2011). Ag and N ion have been 

used to have dual effects on titanium alloy (Li et al., 2011). Ag provides antibacterial effect 

and nitride layer (TiN) formed on the titanium surface increases wear and corrosion 

resistance. The ion implantation sequence in this dual method also has impact on the 

deposited particle size and distribution. In a summary, ion implantation method is more 

suitable for wear and corrosion resistance application. However, recent research trend on 

ion implantation shows the focus is not only on tribological issues but also on the effect in 

clinical aspects. Therefore, various metallic ions implantation on titanium alloy appear to be 

a future prospective research area.  

7. Conclusions 

Various surface modification methods used for improving properties of biomedical grade 

titanium and its alloys are discussed in this chapter. There are at least six (6) different 

methods available in the current practice. These are mechanical, chemical, physical, sol-gel, 

carburization and ion implantation.  Oxidation and carburization methods are discussed in 

detail while the discussions on other methods are in brief.   

Oxidation method modifies the titanium surface into various types of oxides. The main 
objective is to produce porous oxide structure for promoting cell growth and cell 
attachment. There are cases where corrosion and wear resistance are also improved by 
applying this technique.  The recent trend shows that the oxide layer formed on the titanium 
substrate serves as a basis for growing hydroxyapatite layer to increase bioactivity.  

Carburization is mainly used to improve wear resistance by increasing titanium surface 

hardness via thermal, gas and laser melting methods. Hardness of titanium carbide layer 

formed through these methods varies from 1.5 to 5 times as compared to bare material. Higher 

hardness of carbide layer assists to increase wear and corrosion resistance of implant surface.  

Ion implantation method provides better wear and corrosion resistance than other thermal 

surface modification techniques. In the recent trend, ion implantation technique is found to 

provide dual effects concurrently such as wear resistance and antibacterial effect. 

Generally, it is observed that the overall trends of surface modification methods seem to 

shift from the use of conventional source (chemical, induction heater and gas) to the 

application of advanced technology (electrolyte based, laser, plasma and ion). This could be 

due to the low efficiency of conventional methods that require longer time and huge amount 

of energy. The works on surface modifications also appear to expand from focusing on 

tribological issues such as wear resistance, corrosion resistance and hardness of modified 

layer to clinical issues such as cell growth, cell attachment and antibacterial effects. These 

developments demand newer technologies in the future for providing solutions of dual 

issues simultaneously, i.e. tribological and clinical. 
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9. Nomenclature  

BCP Biphasic Calcium Phosphates  
CVD  Chemical Vapour Deposition 
CP Commercial Pure 
DGUN  Detonation Gun 
HVOF High Velocity Oxygen Fuel spraying 
HA  Hydroxyapatite 
LSA Laser Surface Alloying  
MAO Micro Arc Oxidation 
Nd:YAG Neodymium Yttrium Aluminium Garnet  
Nd:YLF Neodymium Yttrium Lithium Fluoride  
PIII Plasma Immersion Ion Implantation 
SBF Simulated Body Fluid 
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