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1. Introduction 

Metals and alloys are generally produced and shaped in bulk form but can also be 
intimately combined with another material that serves to improve their performance. The 
resulting material is known as a metal matrix composite (MMC). This class of composite 
encompasses many different materials that can be distinguished according to their base 
metal (e.g., aluminium, copper, titanium), their reinforcement phase (e.g., fibers, particles, 
whiskers), or their manufacturing process (e.g., powder metallurgy, diffusion bonding, 
infiltration, mechanical or electromagnetic stir casting and die casting).  

Processing advantages make die casting one of the most efficient technologies available 

for producing a wide range of durable and rigid MMC products for use in commercial, 

industrial and consumer applications. There are several well-established die casting 

methods that can be used to produce castings for specific applications. Including squeeze 

casting and semisolid molding (thixocasting and rheocasting). Squeeze casting is a 

method by which molten alloy is cast without turbulence or gas entrapment at high 

pressure to yield high-quality, dense and heat-treatable components). Thixocasting is a 

procedure whereby semisolid metal billets, with no dendritic microstructure, are cast to 

provide dense, heat-treatable castings with low porosity. Rheocasting refers to several 

processes that allow the creation of globular structures and thixocasting involves the 

reheating of ingots obtained by rheocasting until the semisolid gap followed by one 

semisolid molding step. 

Modern technology is currently geared towards net-shape processes, which are able to 

eliminate the intermediate storage of ingots (required in thixocasting), and looking to obtain 

a more economic process. Despite being known as a pressurization process for melting 

alloys, die-casting can be used as a post-re-crystallisation, or a semisolid die-casting process. 

As a result, in this work a high pressure die casting (HPDC) system was integrated with a 

mechanical stir casting (MSC) system. This MSC&HPDC equipment produces components 

with near-net shapes in a continuous process that avoids semisolid ingot storage. It is useful 
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for research and production of MMCs for functional and/or automotive applications. 

Emphasizing the need for such processes, the current automotive industry regulations for 

lowering emissions of CO2 demand a significant vehicle weight reduction. Due to the recent 

CAFE (CAFE: Corporate Average Fuel Economy) regulations set in North America, the 

automotive OEMs will have to develop advanced materials and new technologies to meet 

the new targets set for the industry by 2025. Recent research1 shows that approximately 50% 

of the powertrain components of a vehicle will have to be replaced by new parts developed 

with advanced materials and new technologies. 

This chapter traces the development of new materials and processes with a view to 

improve the quality of aluminum-made parts. Since casting parts have different 

defectology types, (primarily porosity), net-shape processes provide a way to reduce 

defects and to increase mechanical properties. Additionally, the main engineering metals 

and alloys for different components, including aluminum alloys, now have roughly the 

same E/ρ ≈ 26MJ kg−1. Thus the only practical way to exceed this limit in a metallic 

material is to replace a significant fraction of the metal atoms with a new phase as 

happens in Al-MMC. In this work the ultimate tensile strength and yield strength at room 

temperature of Al-Si7-Mg0.3-T6/ǃSiC-15wt% composite manufactured by MSC were 

increased by 73% and 92%, respectively, compared to those of the original alloy with no 

reinforcement. The elongation of the composite material was decreased 44% because the 

reinforcement effect. 

2. Materials 

MMC are mostly aluminium-based alloys reinforced with particles. These alloys include pure 

aluminium, high-resistance alloys and the very common foundry Al-Si alloys, which allow the 

synthesis of light composites. In our case it is also important to consider an adequate gap 

temperature in the semisolid state of the alloy. Thus an Al-Si alloy has been used. Table 1 lists 

its chemical composition obtained using a Shimadzu spectroscopy 5500-OES. 

Si Fe Cu Mg Mn Zn Al 

6.5 -7.5 
0.2 

max 
0.2 max 0.25-0.45 0.1 max 

0.1 
max 

balance 

Table 1. Chemical composition of the alloy A-356 (wt%). 

The mechanical properties of ASTM test specimens made from MMC typically match or 

approach many of the characteristics of iron castings and steel, at lighter weight. 

Properties can exceed those of most Al, Mg, Zn or Cu components commonly produced 

by die casting. Aluminum MMC parts offer higher stiffness and thermal conductivity, 

improved wear resistance, lower coefficient of thermal expansion, reduced porosity, and 

higher tensile and fatigue strengths at elevated temperature, with densities within 5% of 

Al die casting alloys. In addition, particles used as reinforcement are generally less 

expensive than other reinforcement materials, such as fibers, because of their abundance. 

Also, some ceramics have far better properties in finely divided form. Notably, 

                                                                 
1 See: http://www.greencarcongress.com/ (August 2011) 
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micrometer-sized ceramic fibers or ceramic particles can be much stronger than bulk 

ceramics. Additionally, small-single-crystal ceramic particles can be excellent conductors 

of heat. There is a large variety of reinforcing ceramic materials. MMCs commonly are 

reinforced with silicon carbide (SiC) particles, because of SiC’s excellent physical and 

mechanical properties. SiC can be obtained by several mechanisms, one of which is of 

particular interest as it contributes greatly to minimizing waste; this procedure involves 

the controlled pyrolysis of rice husks (RH). 

The production method of Martínez & Valencia (2003), designed for the synthesis of SiC 

from RH, starts with the cleaning, sizing and conditioning the RH before the pyrolysis 

process. This conditioning is made up of the removal of garbage, size classification by 

sieving and the use of catalysts to increase the efficiency of the process. FeCl2.4H2O was 

used as a catalyst and NH4OH is used as an agent for precipitation of Fe. Pyrolysis is 

achieved through controlled thermal decomposition of the RH at 1370°C in an argon 

atmosphere for 40min. The final product is ground and subjected to a pneumatic separation 

process and characterization. 

Fig. 1 summarizes the analysis of the resulting SiC particles via SEM. Semi-quantitative 

analysis by EDS yielded the following values: 68.99 wt%C, 23.99 wt%O, 6.42 wt%Si and 0.59 

wt%Fe, the latter as a result of the catalyst.  

 

 

Fig. 1. Elemental mapping of SiC particles obtained by pyrolysis of RH: (a) SEM image, (b) 
EDS trace (c) C, (d) O, (e) Si, (f) Fe. 

The XRD spectrum from the resulting sample has strong peaks at 41.58° and 48.40°, 

confirming the formation of SiC crystals of the Moissanite (ǃ-SiC) variety (Fig. 2). 
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Fig. 2. XRD spectrum of pyrolyzed RH, confirming the formation of SiC. 

3. Experimental procedure 

In order to synthesize the composite material the difficulties associated with ceramic-metal 

incompatibility must be resolved; these difficulties are described in terms of the wettability 

between SiC and aluminum. In addition, avoiding air engulfment during the immersion and 

dispersion of the reinforcement particles must be ensured. These two requirements and 

other details of the synthesis process are discussed below. 

For semisolid casting, this synthesis process is started with a partially molten aluminum 

matrix. Once the proper dispersion for the phases has been attained, the conformation 

process takes place. In this stage the fluid is translated into the cavities of the die casting 

device, finishing with heat treatments to ensure the required mechanical and physical 

properties are realized (Fig. 3). 

 

Fig. 3. Production method for Al-MMC. 
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3.1 Ceramic-metal compatibility 

The wettability of SiC by aluminum presents two main difficulties. First, the liquid 

aluminum reacts with the SiC to form Al4C3 near the interface through a dissolution-

precipitation mechanism. The formation of Al4C3 can be controlled by using low 

temperatures (<700°C), which also avoid the sublimation of Mg (vital in the subsequent heat 

treatment), as well as by minimizing the time between mixing and pouring. In our case, the 

estimated time was less than 50min. The second difficulty is that the liquid aluminum is 

normally covered by an oxide layer that inhibits wetting (Laurent, V. et al., 1996). Several 

possibilities are available to improve wetting between SiC and Al, such as inclusion of 

reactive elements (e.g. Li, Mg, Si) (Martínez & Valencia, 2004) or using metallic coatings to 

generate a metal-metal interface, and hence a higher wettability. Previous investigations 

have shown that the use of Ni or Cu coatings is effective, resulting in an increase in the 

resistance of the composite, its toughness and a better dispersion of the reinforcement 

particles within the molten metal (Ghomashchi, 2000). To solve the wetting problems, from 

the experimental model proposed by Sharma et al. (2006), we proceeded to cover the SiC 

with Cu deposited by electroless plating (EP); the specific pretreatment, coating and drying, 

processes are explained in the following section. 

3.1.1 Pretreatment 

Since the EP technique is a chemical reduction process, the preparation of the surface where 

the metal will be deposited is essential. That is why the particles were immersed in SnCl2 

and PdCl2 solution, respectively. Table 2 lists the details of the pretreatment of the particles. 
 

Solution 
Chemical 
Species 

Concetration Operation 
Time 
(min) 

Sensitization 
SnCl2.2H2O 

HCl 
20g/l 

0.5 ml/l 

Mechanical 
Stirring 

(400 rpm) 
30 

Water wash (pH 7.0) and vacuum filtration 5 

Activation 
(2000 ml) 

HCl 
PdCl2 

5.5ml/l 
0.25g/l 

Mechanical 

Stirring 
(400 rpm) 

35 

Water wash (pH 7.0) and vacuum filtration 5 

Table 2. Superficial Pretreatment of ǃ-SiC. 

3.1.2 Coating and drying 

Once the particles were catalyzed, they were taken to the plating bath, which is constantly 

stirred, in which the reduction reaction took place (Fig. 4). This bath consists of a metallic 

ions solution of cupric sulfate, formaldehyde as a reducing agent and sodium-potassium 

tartrate (Rochelle’s salt) as a complexing agent, which keeps the metallic salt from 

precipitating. Stirring was maintained and, as the reaction ran out, the solution color 

changed until it becomes transparent (Fig. 4c), which corresponded to when the Cu from the 

solution was deposited on the surface of the ceramic particles as metallic Cu. 
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The temperature of the bath was kept at 80ºC while the pH was kept at 12.0. Table 3 
summarizes the details of the plating process. As soon as the coating reaction was 
completed, the particles were washed with water and then dried in a vacuum (~1 bar) at 
60ºC for one hour. 

Fig. 4. Evolution of the plating bath, (a) 0 min, (b) 10 min and (c) 40 min. 

 

Solution 
Chemical 
Species 

Value 
Role in 
the bath 

Operation 
Time 
(min) 

Coating 
(3000ml) 

CuSO45H2O 10g/L 
Metal ions 

Coating 

Mechanical 
stirring 

(1200rpm) 

To 
complete 
reaction 

CH4O6NaK4H2O 50g/L Complexing 

HCHO 15m/L Reducer 

NaOH 
To 

adjust 
pH 

Buffer solution 
for pH control 

Water wash (pH 7.0) and vacuum filtration 5 

Table 3. Parameters for the electroless plating of ǃ-SiC. 

Fig. 5a is a SEM image of ǃ-SiC particles after the sensitization bath. Fig. 5b shows the 

qualitative analysis, indicating the presence of Sn, which was used as a catalytic material in 

the SnCl2 bath. Fig. 5c shows the coated ǃ-SiC particles. Again, elemental analysis shows the 

presence of Sn and Pd from the pretreatment process. A high amount of Cu can be observed 

due to the plating process (Fig. 5d). 

By modifying the metal-ceramic interface (SiC-Al) by with a metal-metal type interface (Cu-
Al), the micro-composites Cu/ǃ-SiC developed to this point can be introduced into the 
aluminum to the synthesis of Al-MMC/ǃ-SiC. Kim & Lee (2005) have shown that the 
sintering of Al-MMC/10wt% SiC, after SiC coating with 8wt%Cu, is significantly improved, 
achieving a further increase in bending strength. However, the addition of Cu to SiC, with a 
view to the synthesis of particulate composites Al/ǃ-SiC is limited by the formation of inter-
metallic compound CuAl2 of fragile nature. The formation of this compound is subject to the 
solubility of Cu in Al, which according to Kim & Lee (2005) is up to 2wt%. This means that 
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contents at or below 2wt%Cu in Cu/ǃ-SiC avoid precipitation of Cu and the generation of 
unwanted inter-metallic compounds. The amount of Cu deposited is a function of coating 
thickness. In this case it has acted to control the thickness to approximately <0.6μm. 

 

 

 
 

Fig. 5. SEM and EDS for (a), (b) SiC particles without Cu; (c), (d) SiC particles modified  

with Cu. 

3.2 Mechanical Stir Casting (MSC) 

In the case of aluminum-silicon alloys, the microstructure is by nature a dendritic type 

(Yang et al., 2005), which is commonly known as a morphology which decreases the 

strength of the material depending on the spacing of secondary dendritic arms. During the 

stirring action it was sought to convert the aluminum microstructure from the semisolid 

dendritic to a globular form (Mada & Ajersch, 1996). The technique is to generate shear 

stresses of sufficient magnitude by means of mechanical agitation, causing relative 

movement between layers and interlaminar friction, that in the best cases, generates a 

globular morphology (pseudo spheres of about 60 to 72 microns) (Fan, 2002). Nevertheless, 

a high shear index can be the source of the engulfment of impurities, increasing power 

consumption and the stress in the rotor system (Biswas et al., 2002). This is why the 

geometry of the stirring system is a key part in the process. The efficiency, the quasi-

isotropy of the material, the micro-structural changes and the transformation the thixotropic 
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matrix depend on this. Similarly, the agitation system must allow the distribution of 

reinforcement in the matrix to be uniform, depending on the stirring speed and time in 

steady state for the molten metal. 

With the purpose of increasing the shear efficiency, preventing the formation of an external 

vortex and obtaining a proper dispersion of the reinforcing material, two trowel systems 

were studied. In both systems the mechanism was optimized with a set of trowels at 90°-y in 

the bottom to avoid the sedimentation of non processed material. The two configurations of 

the upper set of trowels are shown in Fig. 6. 

 

Fig. 6. Two configurations of upper trowels: (a) 45°-x, (b) 45°-x/45°-y. 

To ensure adequate mixing conditions the most effective approach is the simulation of the 

mechanical stir casting (MSC). In this sense, simulations of flow (Flow-3D ®) were initially 

carried out using computational fluid dynamics (CFD) for each type of agitator to identify 

the shear rates and changes in material viscosity. The actual process parameters are 

included in the parameterization of the simulation software (Fig. 3). 

3.2.1 Strain rate 

The 45°-x/45°-y agitator showed a higher level of shear stress in the fluid, and greater 

turbulence compared with the 45°-x agitator (Fig. 7a, 7b). For the needs of the mixing 

process the 45°-x/45°-y stirrer is more efficient as it creates greater strain in the material at 

the same engine speed. By achieving greater strain on semisolid material a lower viscosity 

was obtained, ensuring the optimum rheological conditions for the dispersion of the 

particles. 
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3.2.2 Viscosity 

In both cases it is apparent that the viscosity increases in areas where the agitation 

generates a low speed level in the fluid, which turns out to be useful to generate 

tixtotropic behavior in the fluid. The 45°-x/45°-y agitator (Fig. 7d) shows a higher 

viscosity than the 45°-x (Fig. 7c). 

 

 
 

 

Fig. 7. Simulation of the agitation process. Shear stress profile (a, b) and viscosity (c, d). 
Agitator 45°-x; (a, c), agitator  45°-x/45°-y (b,d). 
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3.2.3 Velocity magnitude 

The analysis of the agitation a few seconds after the start of the process showed that the 
fluid velocity reaches a higher value with the agitator 45°-x/45°-y, approximately 26 m/s, 
while the agitator 45°-x reaches 0.13 m/s (Fig. 8a, 8c). 

The dispersion of particles with the 45°-x/45°-y agitator, when it is not completely 
immersed, is not as effective as with the 45°-x agitator, and the result is that the particles 
flow to the bottom of the crucible faster (Fig. 8c). However, the 45°-x and 45°-x/45°-y 
configurations allow a homogeneous particle distribution in the radial direction of the 
crucible (Fig. 8b, 8d).  

 

Fig. 8. Simulation of the agitation process. Stirrer speed profile for the 45°-x agitator (a, b), 
and for the 45°-x/45°-y agitator (c, d). 

3.2.4 Air engulfment 

Finally, according to the simulations the condition of air trapping in both mixers is minimal. 
Neither case produces a pronounced vortex that allows the entry of air into the molten 
aluminum. At the start of agitation during the first 6s, the trapped air was ~14vol% (Fig. 9a, 
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9c). However, after stirring for 20s, the fraction of trapped air drops to ~0.4vol%, indicating 
that the agitation is effective and does not introduce air into the melt (Fig. 9b, 9d). 

For simulations of the MSC process, the 45°-x/45°-y agitator was selected, since it produced 

the best results in productivity and process efficiency. Then we proceeded to the synthesis 

of composite material. In order to control the MSC process in real time (rpm, rotation 

direction and geometric localization of the stirrer), a LabView® interface was implemented 

using a National Instruments USB data acquisition (DAQ) device. 

 

 

Fig. 9. Simulation of the agitation process. Profile of trapped air stirrer at 45°-x (a, b), agitator 
45°-x/45°-y (c, d). stirring during first 6s (a, c), after 20s (b, d). 

Table 4 lists the key parameters used during MSC. The solid fraction is 0.4. Stirring is 

performed in an argon atmosphere and in an anti-clockwise direction. 
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Parameters for MSC Value 

Melting temperature (°C) 610 

Process temperature (°C) 594 

Velocity magnitude (rpm) 600 

Stirring conditions (min, °C) 20, 594 

Reinforcement fraction (wt%) 15 

Reinforcement size (μm) <38 

Table 4. General parameters for MSC. 

Fig. 10 illustrates the microstructural evolution of the semisolid processed material. The 
resulting morphology consists of ǂ globular phases with a diameter of about 70μm, 
surrounded by eutectic microconstituents. 

 

Fig. 10. Optical images of microstructure evolution for the alloy A-356 during the MSC. (a) 
dendritic structure (50X), (b) rosette type morphology (50X), (c) formation of globular 
structure (50X), (d) globular structure (including reinforcement particles 50X). 

Figs. 11 and 12 shows the morphology obtained after the addition of reinforcement material. 
Fig. 11a shows the alloy processed by MSC with ǃ-SiC particles. The morphology of the 
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matrix is completely globular, with grain sizes ranging from 75 to 100μm. In Fig. 11b, Fig. 
12a and 12c the reinforcement particles are fully dispersed and preferentially located in the 
eutectic zone. Some faceted forms for the reinforcement particles were observed (Figs. 11b, 
12c), which creates fewer opportunities for a mechanical interface with the metal matrix. It 
can be argued that the interface must be chemical, as it was envisaged during the EP 
treatment of the reinforced particles, modifying the metal-ceramic interface (SiC-Al) into a 
metal-metal type interface. At the experimental level there is minor porosity, which must be 
corrected in the subsequent HPDC process. 

 

Fig. 11. Optical images of the microstructure of A-356/ǃSiC-15wt% composite at (a) 50X and 
(b) 100X. 

 

 

Fig. 12. SEM images of the A-356/βSiC-15wt% composite; (b) and (d) are magnified views of 
(a) and (c), respectively, showing reinforcement particles engulfed in eutectic zones. 
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3.3 High Pressure Die Casting (HPDC) 

After obtaining a homogeneous composite, a die cast is made in order to obtain an ingot by 

applying moderate pressure for 12 to 15s. Our MSC&HPDC (Fig. 13) is useful both for 

research and production on a laboratory scale. The HPDC has four hydraulic cylinders to 

provide the load. The HPDC process for an ingot of semisolid material and its solidification 

take place when a pressure ranging from 50 to 100 MPa is applied. Other parameters are 

listed in table 5. This device has no striker ejection pin; instead, after the hydraulic cylinders 

are opened, the part falls to a container located at the bottom of the device. 

Parameters for HPDC Value 

Pouring temperature (°C) 594 

Mold temperature (°C) 250 

Load (MPa) 50-100 

Table 5. General parameters for HPDC. 

c 

d 

Fig. 13. MSC&HPDC device: (a, c) Mechanical stir casting unit; (b, d) High pressure die 
casting (shaping) unit. 

3.3.1 Computational fluid dynamics simulation 

The semisolid forging process of a piece was initially simulated using CFD tools (Flow-

3D®). Fig. 14 shows an image of the simulated part. With this simulation it is possible to 
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determine zones where defects could develop instantly, as well as sites where interlaminar 

differences could generate irregular and turbulent flow. This figure also shows the velocity 

profile in three different moments for the piece. It can be seen that in the external part of the 

mold there is an increase in the velocity of the flow. Despite the high velocity, at each of the 

time intervals analyzed, the outer or leading surface of the material inside the mold is 

homogenous, thus avoiding defects by gas inclusion. 

 

Fig. 14. Computational fluid dynamics analysis of piece to be created by HPDC (a) shape of 
the final part , (b) initial position of the ingot and mold, (c-d) velocity profiles at two stages 
of pressing of the composite paste. 

3.3.2 Manufacture and heat treatment 

After verifying the integrity of the piece through the simulation of the HPDC process, 

manufacture was carried out using the parameters of pressure and application load times 

mentioned above. Importantly, prior to the HPDC process the preformed mold and the 

mold (Fig. 14b) were heated to 300°C. The piece underwent thermal treatment in solution at 

548ºC for 8h, followed by cooling in water and artificial aging (T6) at 170ºC, for 6h and 

cooled with air. Fig. 15 shows the HPDC piece and molds. 
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Fig. 15. (a) HPDC molds, and (b) resultant piece produced by MSC&HPDC. 

4. Mechanical characterization 

The dispersion of stiff ceramic particles or fibers within a ductile metallic matrix leads to an 

increase in flow stress of the metal by load transfer across a strong interface from the matrix 

to the reinforcement (Mortensen & Llorca, 2010). Table 6 summarizes the mechanical 

properties of the materials processed by MSC&HPDC as compared with nominal A-356 T6 

alloy with no reinforcement (Fig. 16a). It is evident that an increase in mechanical resistance 

and a reduction in the elongation percentage were achieved, demonstrated by the high 

rigidity of the composite compared with the nominal alloy. 

 

Property Al-Si7-Mg0.3-T6 Al-Si7-Mg0.3-T6/β-SiC-15wt% 

Ultimate strength (MPa) 220 380 

Yield  strength (MPa) 180 345 

Elongation percentage (%) 18 10 

Hardness (HB) 110 130 

Table 6. Mechanical properties of processed materials 

 

a 

 

b 

Fig. 16. Comparison of microstructures of materials processed by MSC&HPDC at 50X (a) Al-

Si7-Mg0.3-T6 alloy and (b) (Al-Si7-Mg0.3-T6/β-SiC-15wt%)-T6 composite. Both parts were 

thermally treated in solution at 548ºC for 8h, followed by cooling in water and artificial 

aging (T6) at 170ºC, for 6h and cooled with air. 
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5. Conclusions 

Although research on the subject of MMCs reached a high level of intensity in the late 1980s 
and early 1990s, interest continues today, albeit in a wider array of more distinct directions, 
as for example, reported here for the production of pieces from Al-MMC/ǃ-SiC that can be 
used in different applications. 

Micrometric ǃ-SiC particles, obtained by controlled pyrolysis of rice husk have been 
modified with Cu through electroless plating (EP). EP coatings enhance the adhesion 
between Al and ǃ-SiC. 

A novel technique for manufacturing parts from MMCs has been designed and tuned. Since 
the device and processing routes are similar to the conventional ones used in casting, it is 
safe to say that mechanical stirring coupled with semisolid forging shows interesting 
advantages, including its low cost, easy process implementation, and the ability to form 
diverse, near-net-shape parts. 

A composite Al-Si7-Mg0.3-T6/ǃ-SiC-15wt% has been processed by MSC&HPDC and 
improved mechanical properties were achieved. This process could be useful for producting 
parts for various industries, including automotive applications. 
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