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1. Introduction

This chapter covers selected aspects of the segmentation and measurements of spatial or
temporal features (i.e. morphometry) of biological objects in biomedical (non-optical)1 and
microscopic images. The term measurement refers to a succinct quantitative representation
of image features over space and time. This implies the application of the act of geometric
measurement to the raw imaging data, i.e. "morphometry". Measurements arise in a defined
experimental context.

1.1 Information complexity aspects

The life science experimentation strives to answer defined research questions via quantitative
analysis of multiple experimental trials. This process can be described by a workflow2 which
starts by defining the research hypotheses or questions (Fig. 1). During the last stage the
images are transformed into measurements, which are finally interpreted in the light of the
original research question (Fig. 1).

A substantial decrease of the volume of output data occurs at each step of the so-described
processing workflow. In contrast, this decrease is translated into an increase of the complexity
of generated information (e.g. derived data). For example, if one takes a microscopic image
representing a cell and measures its shape, then the raster image data (supposedly a matrix of
width x height) transforms into a set of shape parameters, each one having a different semantic
context (for example, neurite length, orientation, cell size). While in the raster data set the
biological object is only implicitly present, in the derived data the representation of at least
one attribute of the object under study is explicitly constructed (for example, the cell size).
At this stage, the explicit information contained in the raw image about the illumination and
staining distribution is lost. Therefore, the process of object (i.e. pattern) recognition and
reconstruction is accompanied by irreversible reduction of the input information. At each
step of the workflow the information in the previous step is transformed into contextual data,

1 The bioluminescence imaging methods will not be discussed here.
2 A workflow provides an abstracted view over the experiment being performed. It describes what

procedures need to be enacted, but not necessarily all the details of how they will be executed.
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2 Molecular Imaging

Fig. 1. The experimental workflow in life science imaging

The experimental workflow in life sciences aims at answering the initially- posed research
question via quantitative analysis of multiple experimental trials. It starts with definition
of experimental design and assignment of subjects (samples) to the experimental groups.
Upon completion of the manipulations, the final specimens are collected and the raw data
are acquired. Subsequent process of analysis leads to a decrease of the volume of the input
data and an increase in their structural complexity.

called meta data. In such manner, the information complexity increase is also mapped to an
increase of the complexity of the data structure.

Measurements, therefore, are reduced representations of the image features of interest, which
have higher information complexity compared to the raw data. Due to the irreversible
information loss introduced by the process of measurement, in order to be able to replicate
the measurements given the original data, one needs an instance of the applied algorithm.
Therefore, measurements are only implicitly "present" in images.

1.2 Biomedical imaging modalities

Processing and extraction of information from images have become indispensable aspects of
the experimental workflow in life science research. Two major branches of imaging methods
in life sciences can be discerned: microscopic imaging and biomedical imaging 3.

Biomedical imaging integrates aspects of medicine, medical physics, biomedical engineering,
and computer science. Notably, pre-clinical imaging comprises an assembly of techniques
exploiting different physical modalities4: (i) micro-ultrasound, (ii) micro Photoacoustic
tomography µPAT, (iii) micro Magnetic Resonance Imaging µMRI, (iv) micro Computed
Tomography µCT, (v) micro Positron Emission Tomography µPET and (vi) micro Single
Photon Emission Computed Tomography µSPECT.

3 The biomedical imaging can be narrowly defined as an assembly of imaging methods developed
for the study of human disorders and diseases for the purposes of mechanism characterization and
development of treatments in model organisms, i.e. pre-clinical imaging.

4 Since most of the work with animal models is done in rodent species the mirco aspect of the techniques
is emphasized.
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1.3 Drivers for biomedical imaging software development

The continuous improvement of biomedical imaging hardware enables development of novel
imaging methods for acquisition and visualization. Novel imaging techniques progress in 3
main aspects: improvement of the signal-to-noise ratio, improvement of the spatial resolution,
or adding new physical modalities to images. In microscopy, examples of the former can
be given in laser scanning confocal (van Meer et al., 1987; White et al., 1987), spinning disc
confocal (Nakano, 2002), wide-field deconvolution (Hiraoka et al., 1987) and multiphoton
microscopes (Denk et al., 1990) ubiquitously used in cell and developmental biology. In
non-optical imaging for example, the resolution in µMRI reached the order of 150 um,
while different super-resolution microscopic approaches brought up the spatial resolution of
microscopes to the order of 100 nm. Images having more than 3 dimensions (i.e. 3 spatial
plus time, wavelength, orientation, decay times, etc) have become ubiquitous in biomedical
imaging and life science microscopy.

Some examples can be also given in time-lapse microscopy, confocal microscopy (Canaria
& Lansford, 2010), hyperspectral imaging (Marcsisin et al., 2010) and non-invasive imaging,
such as MRI and PET. For example, contemporary tract reconstruction techniques in MRI
require computations on 5D image datasets, representing position and orientation (Jonasson
et al., 2005). As a result, developing novel image processing, data mining and database tools
gained an increasing focus in the scientific community (Peng, 2008).

2. Biomedical imaging software

Each step of the experimental workflow typically requires the use of different hardware
and software tools. Ideally, obtained raw data should be directly available for use in other
applications either by remote instrument read-out or by transfer of the data upon application
request. However, such ideal situation is far from reality and is inherently restricted by
the heterogeneity of meta data describing different experiments. Other impeding factors
are the limited interoperability between equipment vendor applications and the frequent
incompatibility between proprietary data storage formats. As a result, the field of biomedical
imaging suffers from considerable segmentation. There are numerous proprietary and
open-source software products.

2.1 Proprietary software

Proprietary software for pre-clinical imaging is usually distributed with the specialized data
acquisition hardware, such as MRI or PET scanners. Without being exhaustive, we could give
several examples:

The Paravision R© package of Bruker is used to operate the BiospinTM MR scanner. The
software performs image reconstruction, 3D visualization of the reconstructed images,
computation of parametric image maps and morphometry.

The IMALYTICS R© package of Philips is used to analyze ultrasound, PET, CT, SPECT and
MRI images (Fischer & Paulus, 2010). The package is targeted at the pharmaceutical
industry and provides project-based workflows, rigid registration, segmentation and
visualization. Advanced options are non-rigid registration, pharmacokinetic modeling
and analysis of SPECT data.
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4 Molecular Imaging

Amira is a general purpose package for imaging data rendering and 3D modeling
and analysis. Among its processing capabilities can be included image filtering,
segmentation, registration and morphing, deconvolution and tensor computation. Among
its measurement capabilities can be included spatial measurements, densitometry,
co-localization and statistics. Its functionality to an extent matches the one offered by the
Fiji distribution of ImageJ.

Pre-clinical imaging systems usually do not comply with any specific standard regarding raw
data storage. In contrast, each manufacturer usually develops a proprietary storage format,
which makes it difficult to share data and distribute data processing efforts.

In the field of imaging for microscopy there are also several powerful commercial systems
distributed by the microscopic equipment manufacturers; for example the AxioVisionTM and
ZENTM systems of Carl Zeiss (Germany) or the Cell-RTM system of Olympus (Japan). They all
provide image processing and measurement features to a varying extent. The most-popular
specialized morphometry software packages are listed in the paragraphs below:

Huygens is a package specialized in deconvolution, rendering and visualization developed
by Scientific Volume Imaging, The Netherlands. Its advanced characteristics include
estimation of the 3D point spread function from images and simulation of microscopic
image formation.

Image-Pro Plus is a package specialized in 2D and 3D image processing, enhancement,
and analysis developed by Media Cybernetics, USA. Among its advanced capabilities
can be counted image fusion, extended depth of view, object tracking, thresholding of
color images and morphological segmentation. Its functionality closely matches the one
developed in ImageJ.

Imaris is a package for image rendering and visualization of 3D and 4D microscopy datasets
of Bitplane Scientific Software, Switzerland. Its advanced capabilities include object fusion,
illumination, segmentation and volume rendering. Its functionality to an extent matches
the one offered by the Fiji distribution of ImageJ.

MetaMorph is an advanced system for image processing and morphometry developed
by Molecular Devices, USA. The advantages of the system include different filtering
and segmentation algorithms and the integration between measurements and display of
results. Its functionality closely matches the one developed in ImageJ.

Volocity is a package of PerkinElmer (USA) for microscopic image rendering, interactive
exploration, and analysis. Among the analysis options can be included colocalization,
ratioed images, Fluorescence Recovery After Photobleaching (FRAP) and Fluorescence
Resonance Energy Transfer (FRET). Its functionality closely matches the one offered by
the McMaster’s distribution of ImageJ.

In addition, general purpose data-processing languages, such as IDL R© (ITT Visual
Information Solutions, USA) and Matlab R© (The Mathworks Inc, USA) computational
environments are also used by the community.

A substantial and usual shortcoming of proprietary software is that the researcher is forced
to use the offered package as a black box. In contrast, open-source implementations
allow the researcher to critically examine the used approaches and the correctness of the
implementation. Due to this, open-source solutions typically have faster development cycles
including faster bug fixing. Consequently, to the authors’ understanding they are preferable
for development of new image processing and morphometric algorithms.
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2.2 Open source software

There are numerous open-source programs for biomedical image processing. This can
be attributed in part to the fact that in the past every imaging center developed its own
analysis tools. Traditionally, many image processing algorithms were developed in C or C++.
Attempts to overcome the fragmentation of the field of C/C++ programs were funded in
1990s by NIH in USA, which lead to the development of the general-purpose platforms for
image visualization – VTK (Visualization Toolkit), and image registration and filtering – ITK
(Insight Toolkit) which are currently supported by Kitware Inc (Ibanez et al., 2005). Both sets
of libraries are implemented in C++ and require sophisticated building systems. However,
their use in life-science microscopy is very limited.

While C/C++ platforms dominated the field before the year 2000, the evolution of Java and
the continuous improvement of its performance in the last 10 years made it a language
of choice for scientific software. Among the advantages of Java can be counted its
portability across platforms; the richness of the available functionality; the extended user base
including academic, commercial and community end-users and developers; its automated
multi-threading and its object-oriented architecture.

The analysis packages having more extensive functionality are listed in Table 1 (Ciliberti,
2009). For didactic purposes, the open-source packages can be classified into analysis suites,
which are suitable for comprehensive analytical tasks, and specialized toolsets, which focus
into a limited number of processing and analysis tasks.

name web site platform language

Mango http://ric.uthscsa.edu/mango/ JAMA Java
Seg3D http://www.sci.utah.edu/SCIRunDocs/index.php/CIBC:Seg3D ITK/VTK C++
MedINRIA http://www-sop.inria.fr/asclepios/software/MedINRIA/ ITK/VTK C++
BioImage Suite http://www.bioimagesuite.org/ ITK/VTK C++
3D Slicer http://www.slicer.org/ ITK/VTK Tcl/Tk
FSL http://www.fmrib.ox.ac.uk/fsl/fsl/list.html FMRIB C++
FreeSurfer http://surfer.nmr.mgh.harvard.edu/ FMRIB C++

Table 1. Some popular open source biomedical imaging programs

2.2.1 Analysis suites

BioImage Suite provides image editing, voxel classification, deformable user-interactive
segmentation, rigid and non-rigid registration, modules for Diffusion Tensor Imaging
(DTI) analysis and General Linear Model (GLM) functionality for fMRI analysis
(Papademetris et al., 2008).

Seg3D is a volume segmentation and processing tool, which is distributed under the MIT
License and is developed by the NIH Center for Integrative Biomedical Computing at the
University of Utah. The data are organized in multiple layered volumes supporting either
manual or filter-based segmentation and annotation.

3D Slicer is a software package for visualization and image annotation (Pieper et al., 2004).
Present versions of 3D Slicer provide a workflow engine, command-line and GUI interfaces
and scripting. The packages is distributed under BSD-style license.

Mango is a Java 3D-based program which supports image registration, surface rendering
and analysis (statistics and profiling) (Lancaster & Martinez, 2007). It also provides
extensibility via plugins and high level API.

187
Automated Segmentation and Morphometry of Cell
and Tissue Structures. Selected Algorithms in ImageJ

www.intechopen.com



6 Molecular Imaging

FSL is a set of command line and GUI image analysis and statistical tools for fMRI, structural
MRI and DTI analysis (Smith et al., 2004). FSL is written mainly by members of the
Analysis Group, FMRIB, Oxford University, UK. It is distributed under non for profit use
license.

2.2.2 Specialized tool-sets

Among the specialized tools, two main application areas can be discerned: DTI analysis and
fMRI.

Diffusion Tensor Imaging – MedINRIA is a program based on VTK and ITK, which is
developed by INRIA in France (Fillard et al., 2009). It is specialized in DTI and fiber
tracking, tensor visualization and image registration.

fMRI – SPM is a software package designed for the analysis of brain imaging data sequences.
The sequences can be a series of images from different cohorts, or time-series from the same
subject. The current release is designed for the analysis of fMRI, PET and SPECT data. SPM
is developed by the Functional Imaging Laboratory at University College London, UK
(Ashburner et al., 2010). It is based on the proprietary MATLAB R© (The MathWorks, Inc)
environment. The FreeSurfer program provides reconstruction of the brain cortical surface
from structural MRI data, and overlay of functional MRI maps. CARET is a software
program for the structural and functional analysis of the cerebral and cerebellar cortex. The
name is an abbreviation from Computerized Anatomical Reconstruction Toolkit. AFNI is
an environment for processing and displaying functional MRI data5.

3. ImageJ in the big picture

ImageJ is a public domain image processing program written in Java. Since its inception
in 1997 ImageJ has evolved to become a standard analytical tool in life science imaging. It
has an open architecture providing extensibility via 3rd party Java modules (called plugins)
and scripting macros. It is developed by Wayne Raspband since 1997 and expanded via
contributed software code by an international group of contributors (Abramoff et al., 2004;
Collins, 2007). Plugins are distributed together with their source code under various licences
determined by the pluing authors. Occasionally, some plugins are included in the main body
of the program.

ImageJ supports a large number of file formats either natively or through the plugin
extensions, for example using the Bio-Formats library 6.

There are several popular plugin distributions and collections. The most popular distributions
are listed in the next paragraphs:

NIH’s plugin collection is historically the 1st plugin collection. It is hosted on the ImageJ
web site itself 7. Main categories include acquisition, analysis, color processing, filters,
segmentation, graphics, input/output, stacks, utilities and links to developers’s sites.

Fiji is a plugin distribution aimed at microscopic applications in Neuroscience. It is
developed and maintained since 2008 with the support of the Max Planck Institute of

5 http://afni.nimh.nih.gov/afni/about/summary
6 http://www.openmicroscopy.org/site/products/bio-formats
7 http://rsbweb.nih.gov/ij/plugins/

188 Molecular Imaging

www.intechopen.com



Automated Segmentation and Morphometry of Cell and Tissue Structures. Selected Algorithms in ImageJ 7

Molecular Cell Biology and Genetics (MPI-CBG), Dresden, Germany. The collection
includes plugins and libraries for neurite tracing (Longair et al., 2011), 3D reconstructions,
trainable interactive segmentation (Schindelin, 2008) and mathematical morphology
(Prodanov et al., 2006). It also comes with several additional scripting engines such
as Jython and JRuby and Java enhancements like Java 3D. Every plugin included in the
collection has a user manual.

The McMaster’s University plugin collection8 is aimed at fluorescent microscopy
applications. There are specialized plugins for collocalization analysis, spectral and
iterative deconvolution for image denoising (Dougherty, 2005) including parallel
implmentations9. The distribution includes a user manual.

The CRP Tudor’s plugin collection is structured around the documentation Wiki web site10

and is hosted and maintained with the support of the Public Research Centre Henri Tudor,
Luxembourg. It is a general purpose collection. Different categories include: filtering,
color processing, morphometry and processing, segmentation and others. Every plugin
included in the collection has a user manual and a history page.

It should be noted that some of the contributed plugins are present in all plugin distributions;
while others are only distribution-specific.

While developed more for microscopic analysis ImageJ can be also used as a tool for
visualization and measurements of pre-clinical imaging data. Key features of ImageJ are
its support of (i) different modes of segmentation, (ii) the advanced image editing, (iii)
the advanced filtering and processing capabilities and (iv) the well-established user and
developer communities.

ImageJ can also produce derived results plots. Supported modalities are linear and surface
plots. The basic measurement types in ImageJ are: areas, diameters, perimeters, angles,
circularity, coordinates in 2D and 3D, intensities, and calibrated pixel values. Finally, ImageJ
can also produce image and measurement statistics. A complete user guide of ImageJ is
maintained by T. Ferreira and W. Rasband since 2010 (Ferreira & Rasband, 2010). What makes
ImageJ superior to most of the specialized biomedical imaging programs are its capabilities:

• to support add-on functionality via plugins;

• to implement several scripting languages, such as its native macro script and JavaScript;

• to provide extensive measurement functions (e.g. morphometry and statistics).

• to run without modification on multiple operation systems.

4. Applications of ImageJ in MRI

Although historically analysis of non-optical biomedical images was one of the first
applications of ImageJ there are still not so many algorithms for such types of images. Recently,
however, with the spread of common non-optical biomedical imaging modalities the demand
to use ImageJ for processing of such data has grown (Prodanov et al., 2010).

8 http://www.macbiophotonics.ca/imagej
9 http://sites.google.com/site/piotrwendykier/software/deconvolution/

paralleliterativedeconvolution
10 http://imagejdocu.tudor.lu/
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The most common MRI techniques map the distribution of hydrogen atoms in different
tissues. The primary contrast mechanisms exploit relaxation of the atomic magnetization:
spin-lattice relaxation, characterized by the relaxation time T1, i.e T1-contrast, and spin-spin
relaxation, characterized by the relaxation time T2, i.e. T2-contrast. MRI can be used for
non-invasive monitoring of models of human diseases, such as traumatic brain edema, stroke
or spinal cord injury. Such monitoring requires development of differential contrasting
techniques either for T1 or for T2.

Parametric mapping functionality for ImageJ 3D and 4D datasets is provided by the MRI
Processor plugin made available from the ImageJ documentation Wiki website (Prodanov
et al., 2010). The plugin calculates parametric maps based on reconstructed MR images.
Such parametric maps are derived images where each pixel value represents a parametric
fit to time varying data sequence. Parametric maps are, for example, T1, T2 and proton
density maps. Data fitting is available using either the Levenberg-Marquardt or the Simplex
algorithm. Currently supported types are T2 and T1 maps. Unique features of the plugin are
(i) the possibility to fit multicomponent exponential models, (ii) the support of 4D data sets
and (iii) the support of arbitrary closed Regions of Interest (ROIs). The T2-map functionality
has been already validated against the Paravision 4.0 software.

Fig. 2. Operation of the MRI Processor plugin
A – UI of the MRI Processor. The user can select different types of maps and fitting algorithms.
B – Computed T2 map. The image was colorized using the royal LUT. The calibration is given
in ms. Scale bar – 2 mm.

The T2 maps are computed by fitting of the MRI dataset to the equation:

Mxy(t) = Mxy(0)e
−t/T2 + ǫ (4.1)

where Mxy is the transverse field magnetization component and ǫ is the offset term introduced
by the unsigned pixel representation. The T1 maps are computed by fitting of the dataset to
the equation:

Mz(t) = Mz,eq(0)(1 − 2 e−t/T1 ) + ǫ (4.2)

where Mz is the longitudinal field magnetization component and ǫ is the offset term
introduced by the unsigned pixel representation.
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5. Selected Morphometric algorithms

Cell and tissue structures can be segmented in a variety of ways. For a successful image
segmentation it is important to have prior knowledge of the image composition, i.e. the
texture properties of the background and the objects of interest. In general, a typical algorithm
includes the following stages:

• preprocessing steps, which decrease the spatial variation of the image

• thresholding, which produces one or more binary masks

• masking or Region of interest (ROI) selection

• postprocessing steps, for example including second thresholding or parametric fitting

• final measurement of volume, area, angles, etc.

Image processing algorithms can be classified based on the spatial (temporal) transformations
which they introduce into the image. Point operations transform an input pixel into an
output value. An example for such an operation can be given by histogramming or contrast
adjustment. Zonal operations transform all the pixels in a certain spatially- or temporally-
connected neighborhood into some output. Such neighborhoods are, for example, defined by
structuring elements or convolution kernels. Map operations compute output image based
on 2 or more input images. For example masking, addition and subtraction of images are such
operations.

In the next sections we describe protocols based on granulometric filtering (a class of
morphological filters), differential contrast enhancement, area thresholding, or distance map
transforms.

5.1 Thresholding

Thresholding is performed using a labeling operator Tr. By definition, Tr labels a pixel in the
image only if its intensity g exceeds certain value Tmin:

Trα [g(x) ≥ Tmin] : g(x) → 1(x)

where 1 is the binary pixel label denoting the foreground value and g – the pixel intensity at
the co-ordinates vector x. There are different ways to propose a Tmin value based on zonal
or regional statistical variables. Some of the most popular methods include Otsu, maximal
entropy and percentile thresholding. A good review on thresholding techniques can be found
in Sezgin & Sankur (2004).

5.2 Local area thresholding

The local area thresholding is a regional image operation depending on the parameter α. If it
is assumed that this ROI represents predominantly the image texture, α acts as a sensitivity
parameter that determines the overall proportion of the "noise" pixels in the ROI. If so
determined threshold level is extended to the overall image then a signal to noise ratio, SNR
can be calculated as

SNR =
Tmin

ḡ
(5.3)

where ḡ is the mean intensity of the image.
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The action of a parametric thresholding operator Trα is conditioned on the ratio between the
area of the labeled pixels and the total ROI area:

Trα

[

x ∈ ROI|
HROI (Tmin)

AROI
≥ 1 − α

]

: g(x) → 1(x) (5.4)

where AROI denotes the ROI area, Tmin is the locally-computed threshold level and H() the
cumulative histogram of the ROI (Prodanov & Feirabend, 2008).

5.3 Granulometric filtering

The algorithm is implemented as an ImageJ plugin. Particles of different sizes can be extracted
from an image if two images from a granulometric image sequence are subtracted (see
Appendix 12). Accordingly, the granulometric filtering is defined as:

D = I ◦ SE[dlow]− I ◦ SE[dhigh]

where ◦ denotes morphological opening and SE is a structuring element defining the
neighborhood around a pixel.

5.4 Differential Contrast Enhancement

The algorithm assumes that one of the images samples only background Ibackground while
the other samples background and objects of interest Iobjects. Further, it is assumed that the
histograms of the background and the objects overlap to an extent so that it is not-possible to
separate them by thresholding. The contrast of the image (channel) of interest is rescaled with
a coefficient assuring that 0 /∈ Con f idence95[Ibackground − Iobjects]. This condition is achieved if
the original image is contrast-rescaled by a factor

kb =
E[Iobjects]

P95[Ibackground]
(5.5)

where P95 denotes the 95th percentile of the empirical pixel intensity distribution and E[]
denotes the expectation. Next, to obtain the objects, the contrast-rescaled image is subtracted
from the objects image in order to produce an output image R.

R = Iobjects − kb · Ibackground (5.6)

5.5 Distance map transformations

Distance map are produced from binary images. The map is an image derived from the
original image where every pixel in the background is assigned the shortest possible distance
to a foreground pixel given a certain metrics. The most popular distance maps are derived
from the city-block (e.g. having diamond equidistant contours), the chessboard (e.g. having
square equidistant contours) or the euclidean (e.g. having circular equidistant contours)
metrics. In mathematical terms:

D(x) = minp{dist(x, p) | g(p) = 1}
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where 1 denotes the foreground label, x and p denote pixel coordinates, and g denotes
intensity. From this equation a naive implementation can be derived directly. However, its
execution time scales very badly with the image size and is of little practical use. ImageJ
implements an approximate Euclidean distance map algorithm as part of its EDM plugin. The
EDM algorithm is similar to the 8SSEDT in Leymarie & Levine (1992). The algorithm provides
a fast approximation of the EDM, with the deviation from a full calculation being between
-0.09 and 0.

6. Spatial distribution of labeled cells around a lesion site

Distance distribution of cell structures around an object can be used to demonstrate
spatially-distributed effects or interactions. The distance from an arbitrary pixel set (for
example a connected ROI representing the objects of interest) can be computed using the
(approximate) Euclidean distance map transformation. In such case, the quantity of the effect
(e.g. the amount of immuno-reactivity) can be given by the support volume. Since the area
of a ring enclosed by two equidistant levels in the distance map increases monotonously
with distance, to allow for comparison one needs to normalize the integral intensity by the
ring area. Such normalization produces so called support volume density, having the same
mathematical expression as the mean intensity inside the ring formed between 2 concentric
contours:

G =
1

Ar

255

∑
g=0

h(g) · g (6.7)

where Ar denotes the are of the ring.

The algorithm is demonstrated on images produced from transversal cortical histological
slices stained for ED1 (microglial cell marker) and GFAP (astrocytic cell marker). The principle
of the algorithm is similar to the previous work of Blacher et al. (2001), which employed
distance maps to determine the effects of small molecules (Blacher et al., 2001) or enzymes
(Chabottaux et al., 2006) on vascularization. In contrast to the works of Blacher et al., we did
not attempt segmenting individual glial cells, since their processi form an overlapping mesh.

The application, which is presented here, is the measurement of the amount and distribution
of glial cells in a histological section encompassing an implanted microelectrode. Following
chronic implantation, the brain matter around the electrode forms glial scar spanning about
500 um from the electrode (review in Polikov et al. (2005)). Shortly after implantation, the
astroglial and microglial cells undergo activation and hypertrophy and invade the region of
primary injury. The distribution of glial cells around a lesion in the brain can be used to
measure the extent of reactive gliosis and compare effects of treatments with anitinflammatory
agents after such an implantation. In particular, such distributions can be used to study the
brain tissue response to chronically implanted silicon microelectrode arrays (Welkenhuysen,
2011).

6.1 Imaging protocol

Tissue slices were stained using the following protocol: preincubation - 4h in 10 % normal
goat serum, containing 0.1 % Triton-X 100; incubation - rabbit GFAP antibody (1:500,
Dakocytomation) + mouse ED1 (1:200, Abcam) overnight at room temperature. Following
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12 Molecular Imaging

secondary incubation with antibodies for 4h with a cocktail of anti-mouse Alexa-444 and
Alexa-568 (1:500, Molecular Probes) in blocking buffer, the sections were cover-slipped with
Vectashield-DAPI (Vector Labs) mounting medium.

Confocal images were acquired on LSM5 Pascal confocal microscope (Carl Zeiss
Microimaging GmbH, Germany) using Plan Apochromat 5x/0.16 objective. The images were
composed of 2 acquisition channels (having 8-bit dynamic range each) for demonstration of
Alexa-444 (green LUT) and Alexa-568 emission (red LUT), respectively. The implant side
was centered in the field of view (Fig. 3A). Exposure times were optimized to provide best
compromise between cell contrast and saturation fraction. Images were imported in ImageJ
using the LSM Reader plugin.

6.2 Outline of the algorithm

The following algorithm was used for computation of the binary mask from the ED1 image:

1. Perform Gaussian filtering, kernel diameter 5 pixels;

2. Perform morphological erosion with SE of d=5 pixels;

3. Perform morphological dilation with SE of d=10 pixels;

4. Do median thresholding (Doyle, 1962) (Fig. 3B).

5. Do magic wand selection from a point in the lesion site.

6. Clear the non selected area.

7. This mask is then transformed by Euclidean distance mapping and serially thresholded at
increasing distances.

The resulting ring-like images are then overlaid in turn onto the GFAP image (Fig. 3D).

Proposed approach can be used to investigate the factors which contribute to the loss of signal
in chronic microelectrode recordings. From the side of the brain this phenomenon can be
caused by (i) spatial shift caused by the formation of the glial scar, (ii) neuronal cell death
around the implanted probe or (iii) silencing of the surrounding neurons (review in Braeken
& Prodanov (2010)). Activation of microglial cells results in a substantial increase in their
phagocytic capacity. So-described process could lead to changes of the neuronal activity of
the remaining neurons and may lead to atrophy or cell death of the neuronal cell bodies and
axons, respectively. This in turn increases the variability of recorded bioelectrical signals and
impedes the interpretation of the acquired physiological data. Moreover, the glial scar in the
brain has growth-inhibitory properties for the regenerating axons, which could additionally
impede the signal readout.

7. Morphometry of cultured neurons

To establish the dose- or time- dependence of a specific pharmacological effect often a large
number of different experimental groups are needed. This rapidly increases the number
of individual samples to be evaluated. Because of the high variability of the localizations
of synapses on dendrites and the clustering of boutons, the stereological assumption of
homogeneity of spatial distribution is violated. Therefore, complete dendritic trees are
counted. To facilitate counting in cell cultures we have developed a reproducible and robust
method for automatic identification and morphometry of synaptic boutons (Prodanov et al.,
2006). The method is further illustrated with identification of synaptic boutons marked for
synapsin I immuno-fluoresecence from micro-island cultures of neocortical neurons.
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Fig. 3. Spatial distribution of GFAP immunoreactivity around an electrode insertion track

A – ED1-labeled neuronal cell bodies (red) overlaid on GFAP-positive glial cells (green). The
electrode insertion track can be recognized as the tissue defect in the center of the image.
B – mask of the insertion track segmented as a background object in the center of the image;
C – Euclidean distance map of the insertion track. The closest distance to a point on the track
border is represented by the intensity value of the pixel. D – concentric equidistant regions
overlaid on the GFAP-image. Original image resolution 1.217 pixels/µm; scale bar – 100 µm.

7.1 Imaging protocol

Micro island cortical cultures were prepared from embryonic day 18 murine embryos.
Cultures were stained with antibodies against a marker for dendrites, microtubule-associated
protein 2 (MAP-2), and a marker for synaptic vesicles, synapsin I. Cultures were fixed by
4% paraformaldehyde, washed with 0.1M Phosphate buffered saline (PBS) and incubated in
0.1% Triton X-100 followed by 4% fetal calf serum for 20 minutes. After washing with PBS,
cultures were incubated for 1 hour at room temperature in a mixture containing 0.1% Triton
X-100, mouse monoclonal anti-MAP-2, 1:200 (Boehringer, Alkmaar, The Netherlands) and
rabbit polyclonal anti-synapsin I, 1:1000 antibodies diluted in PBS. After washing with PBS,
the cells were incubated for 1 hour at room temperature in secondary antibodies conjugated to
anti-rabbit-Cy5 or anti-mouse-Alexa546 (Molecular Probes, Oregon, USA). Finally, the slides
were washed in PBS and cover-slipped with Dabco-Mowiol (Prodanov et al., 2006).

Samples were analyzed on a Zeiss 510 Meta confocal microscope (Carl Zeiss, Heidelberg,
Germany). A set of high-resolution digital images of different cultures was recorded at a
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resolution of 4.45 pixels per µm. Images were acquired on 2 channels - cyan, comprising
anti-synapsin staining and red, comprising anti-MAP-2 staining.

7.2 Outline of the algorithm

The algorithm employed in the study can be outlined in the following main steps:

1. Perform granulometry of the image and compute its granulometric size density G(d)
(Appendix 12).

2. Identify the scale of interest by the pattern of the peaks in G(d); select low bound Ilow =
S ◦ Elow and high bound images Ihigh = S ◦ Ehigh and subtract the images.

3. Construct the binary "mask" using the k-means clustering segmentation algorithm.

4. Delete irrelevant structures by superimposing the mask on the original image using
bit-plane logical AND operation (masking).

5. Threshold the resulting image using the area thresholding (Sec. 5.2).

6. Construct disjoint grains from the pixels that are above the threshold based on their
8-connected neighborhoods.

7. Enumerate and measure the grains constructed in this way. Produce derivative images
where the identification numbers of the positive fibers are visible.

The algorithm was applied to the synapsin channel of every image. The identified
boutons were numbered and their areas, equivalent diameters, and planar co-ordinates were
automatically measured and recorded. The final measurements were uploaded in the LabIS
system using the SQL Results plugin (see Sec. 10.3).

2
1

5

6

3
4

A B

Fig. 4. Illustration of the granulometric filtering technique on a real image. A -
Co-localization of synapsin I (cyan) and MAP-2 (red); B - co-localization of the detected
synaptic boutons (red outline) with the inverted image from A. Scale bar - 5 µm.

As the fluorescent patches in the real images were round, granulometry was performed with a
family of flat disk-shaped SEs ranging from d=1 to d=25 (0.2 µm - 5.6 µm). For the construction
of Ilow values of either dlow=3 or dlow=5 were selected depending on the amount of debris in
an image; dhigh=11 was selected as a parameter for Ihigh. Based on the discrimination of dark
background, auto-fluorescing cell mass, and synapsin positive grains three brightness classes
were used during k-means clustering. During the area thresholding, sufficient overlap of the
thresholded particles with the actual synapsin grains was typically achieved for α = 0.8. The
brightest class was selected for the construction of the mask. A typical result of the detection
procedure is presented in Fig. 4B.

An advantage of the proposed automated approach is that, apart from the number of
synaptic boutons in a light microscopic image, it also allows to be measured morphological
characteristics such as area, circularity, and maximal diameter.
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8. Spatial mapping of tracer-filled axons

Specific populations of myelinated nerve fibers can be investigated by retrograde tracing from
a muscle followed by morphometric assessment of the labeled fibers at different anatomical
levels. Transversal sections of so-labeled nerves would then represent spatial maps of the
specific muscle representations (Fig. 5). To facilitate such mapping studies we have developed
a reproducible approach for image segmentation and morphometry (Prodanov & Feirabend,
2008).

Gastrocnemius muscles of adult rats were injected under anesthesia with the retrograde tracer
Fluoro-Gold. After a survival period of 3 days, the sciatic nerves and spinal roots were
harvested and fixed in 4% paraformaldehyde.

8.1 Imaging protocol

The samples were sectioned at 14 µm, mounted on glass slides and inspected on an Axioplan
(Carl Zeiss Microimaging GmmbH, Germany) fluorescence microscopes. The fluorescent
signal from the specimens was recorded on 2 channels. Fluoro-Gold signal was recorded
using a standard filter set for DAPI (4’,6-Diamidino-2-phenylindole) detection (excitation
320 - 370 nm), see Fig. 5/Fluoro-Gold. The signal from the myelin sheaths (comprising
autofluorescence) was recorded using a standard filter set for FITC (Fluorescein) detection
(excitation 450 - 490 nm), see Fig. 5/FITC. Tracer-positive axonal profiles were isolated
from the resulting images by means of Differential Contrast Enhancement and Granulometric
filtering.

The following procedure was employed to identify the Fluoro-Gold-positive fibers. Due to
the excitation characteristics of Fluoro-Gold its signal was absent from the FITC channel (Fig.
5/FITC). Therefore, it was possible to isolate the Fluoro-Gold using the DCE implemented
as the Channel Filter plugin. For the optimal differential brightness enhancement a thin
rectangle ROI was drawn across the image and the intensities of the pixels were averaged
in the direction perpendicular to the larger side of the rectangle and the input images were
transformed according to Eq. 5.6.

8.2 Outline of the algorithm

The algorithm employed in the study can be outlined in the following main steps:

1. Perform DCE (Sec. 5.4).

2. Perform granulometry on the resulting image and compute G(d).

3. Identify the scale of interest by the pattern of the peaks in G(d); select Ilow = S ◦ Elow and
Ihigh = S ◦ Ehigh and subtract the images.

4. Interactively threshold the resulting image.

5. Construct disjoint grains from the pixels that are above the threshold based on their
8-connected neighborhoods.

6. Enumerate and measure the grains constructed in this way. Produce derivative images
where the identification numbers of the positive fibers are visible.

Spatial maps obtained in this way were uploaded to LabIS using the SQL Results plugin. The
data were imported to Matlab and the spatial distribution of the Fluoro-Gold-positive axons
was further studied on demand using custom code (Prodanov & Feirabend, 2008; Prodanov
et al., 2007).
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Fig. 5. Gastrocnemius topography in the sciatic and tibial nerves revealed by the Differential
Contrast Enhancement algorithm (Prodanov & Feirabend, 2008)

Left pane: FITC – showing the myelin sheath auto-fluorescence; FG – showing Fluoro-Gold
fluorescence and Enhanced – showing the subtraction of the other two. Images are
composed of several "stitched" complete microscopical fields. Stitching was performed
semi-automatically using the the 2D stitching plugin (Preibisch et al., 2009). Fascicle borders
are enhanced by dotted lines. Enhanced image was generated by the Channel Filter plugin.
Right pane: Gastrocnemius axons inside a fascicle of the tibial nerve (top - Tibial/FG) and a
microscopic field in the sciatic nerve (bottom - Inset/FG). The corresponding inset is outlined
in the Enhanced image. Tibial/FG – the Gastrocnemius fascicle borders are outlined by a
dotted line. Scale bars – 100 µm.
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9. Outlook

Presented algorithms can be developed further in two directions.

Parallelization: As the sizes of available images increase and the parallel computer
architectures become increasingly available a logical step would be the development
of parallel implementations. Such parallelizations can be especially useful in zonal
and map algorithms where the same elementary operations are repeated multiple times
on different pixels. Notably we expect substantial speedups for image convolutions
and morphology operations. Parallelization can be implemented either using general
purpose semi-automatic parallelization libraries, or optimized at a low level for the specific
algorithms.

Multidimensionality: Another direction for future development is the support of
multidimensional kernels and structuring elements in zonal operations. Multidimensional
imaging data are increasingly used in life sciences but at present they are not
well supported by the data model in ImageJ, which assumes at best a collection
of loosely-coupled 2D images. Such support can be achieved by development of
a multidimensional data model in combination with generic zonal image transform
algorithms.

It is expected that the development and support of ImageJ will continue in the future as the
user and developer base of the program is growing and there are structured institutional
efforts to sustain and support this trend. Therefore, both directions will be pursued further
in the context of ImageJ and the developed plugins and libraries will be made available to the
user community.

10. Management of the information flow

Until recently, management of the data produced along the life science workflow (Fig. 1) was
not perceived as a pressing issue in the academic environments. Traditionally, the scientific
publications were considered as the only sufficient reports of the experimental findings.
However, the scale of current imaging experiments and the volumes of data generated by
them would also require persistent data management and collaboration solutions. This is a
situation already recognized in brain mapping studies (Bjaalie, 2002). On the second place,
sharing of raw data and code gains momentum in Neuroscience. The exchange of raw
imaging data between groups offers the opportunity to differently re-analyze previously
collected data and encourage new interpretations (Eckersley et al., 2003). While something
new for Neurosciences such practices are common in other fields like Physics and to
some extend in Bioinformatics, i.e. in Proteomics. With the increase of experimental
complexity and the article size restrictions imposed by the scientific publishers, frequently
essential experimental details are omitted from the final peer reviewed publications. This
eventually impedes the reproduction of the original experiments and could eventually lead
to unnecessary reproduction of experiments and waste of time and resources. In contrast,
data sharing can reduce the experimental and analytical errors. However, both high-level
data archiving and the raw data sharing will have limited utility if they are not backed by
information system solutions on the research laboratory level.

In the following sections we present an integrated information system for image
measurements, LabIS. The system was publicly demonstrated for the first time at the
6th FENS Forum of European Neuroscicence, although developmental versions existed since
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2004. Previous versions of the system supported data analyzed in publications about:
motor endplate distributions in (Prodanov, 2006; Prodanov et al., 2005); synaptic boutons
morphometry in (Prodanov, 2006; Prodanov et al., 2006); peripheral axon spatial distributions
in (Prodanov, 2006; Prodanov & Feirabend, 2008; Prodanov et al., 2007). Development of LabIS
has the objectives to automate (i) the process of storage, annotation and querying of image
measurements and (ii) to provide means for data sharing with 3rd party applications utilizing
measurement data (Prodanov, 2008). A developmental snapshot of the system is available
through the website Sourceforge.net at http://labinfsyst.sourceforge.net/.

10.1 System realization

LabIS realizes 3-tier architecture with a relational database back-end and an application logic
middle tier realizing web-based user interface for reporting and annotation and a web service
communication layer. LabIS is a distributed Internet and intranet application. It can be
accessed (i) through the web user interface by a web browser, (ii) through web-service or
(iii) database clients (Fig. 6). LabIS is based on commonly-accepted open-source software
technologies and open communication and data storage protocols. In order to enforce data
organization in a structured manner, LabIS realizes a centralized data storage model. LabIS is
designed and developed in a modular manner and the data model for communication with
3rd party applications is also extendable.

Interaction with users is executed via dynamically-generated web pages. All user-interface
modules are organized in a similar manner: users can generate reports, enter data or annotate
already present database records. The Project planning module is used for management of the
records of research projects. The users can perform tasks, such as deployment of new and/or
changing the state or the attributes of ongoing projects. Groups of results can be organized
in results collections. The Subject management module manages the records for experimental
animals. The users can perform tasks, such as registration of new subjects/animals, editing
of records, introduction of new species etc. The subjects can be assigned to projects and
to experimental groups. Dynamic reports can be generated for arbitrary periods. The
Manipulation management module manages the records for performed manipulations. The
users can perform tasks, such as registration and editing of manipulations. Dynamic reports
can be generated for arbitrary periods. The Image Measurements and Morphometry module
manages uploaded measurement records. Uploaded measurements can be associated to a
project, an experimental subject, experimental group, sample, result collection, or paired
to other measurements. The measurements can be queried by the name of the measured
image, by the internal ID or simply browsed. There are possibilities for flexible reporting
of the performed measurements. The Administration module manages the user roles, the
maintenance of the database, and the system configuration. The users can also define custom
ontologies.

It should be noted that LabIS is not a raw image database. The raw images are let to reside
in remote repositories, such as on a local client file system or 3rd party file server, while only
references to them are stored centrally. In contrast, the imaging meta data and the produced
measurements are stored centrally in the relational database. Such an approach provides a
definite advantage for the integration of 3rd party imaging data, such as large scale digital
atlases. It also increases the portability of the system since its entire database can be easily
copied from one host to another. Most notable characteristics of LabIS are the possibilities to
annotate and collate measurements and its interoperability with 3rd party software. In this
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Fig. 6. LabIS user interface and data upload clients

The information system can be accessed through the web user interface by a web browser.
The user interface of the ImageJ SQL access plugin for measurement upload and annotation is
overlaid onto a web browser window displaying the Morphometry module.

context, interactions with LabIS are executed either by exchange of structured messages over
the web or by database queries in an intranet.

10.2 Annotations of measurements

Measurement type annotations Uploaded measurements can be annotated by ontology
entries. Support of 3rd party ontologies is provided using the publicly available Ontology
Lookup Service (OLS) registry web site 11. This support is realized on 2 levels: (i)
individual measurement types can be annotated with ontology keys, for example using
the Unit Ontology; (ii) the complex measurement objects can be annotated using terms of
any of the ontologies supported by OLS. The integration with OLS is transparent for the
user and is realized using a cascade of client and 3rd party server calls. This is an example
of mixed client-server interoperability.

Spatial annotations LabIS provides also atlas mapping and registration functionality. Major
features include the possibility to associate a Results collection to an atlas and to map
individual measurement entries of the collection to the atlas imaging space. An example is
demonstrated in Fig. 7 where some measurements are mapped to a rat coronal histological

11 http://www.ebi.ac.uk/ontology-lookup/
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atlas. This is achieved by integration with public atlas datasets, for example those available
at Brain Maps web site12 (Mikula et al., 2007) .

10.3 Interoperability

Interoperability with 3rd party software is realized both on the client and server sides.

ImageJ can directly upload measurements to LabIS via specialized plugin clients. In such way,
the entire image processing functionality of ImageJ can be made available to the end user.
The user can perform arbitrary measurements using any type of built-in or customized

Fig. 7. Spatial annotation and atlas registration

Three types of atlas annotations are demonstrated in the figure. A ROI annotation delineating
a region in the frontal cortex is displayed in solid blue, Nissl stating, source Brain Maps,
contributed by Edward Jones, 2007. In red are demonstrated provisional annotations produced
by mouse clicks on the client side. In black are demonstrated measurements already stored on
the server. Spatial annotation storage and retrieval can be done using the user interface in the
bottom left part of the web page. Spatial navigation in the atlas dataset can be done using the
icons in the top left part of the web page.

12 http://brainmaps.org/
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ImageJ plugins. After the end of the measurement session this object together with a
JPEG-encoded thumbnail view of the active image are upload either using the SQL client or
using the web service client. Known measurement unit types are associated automatically
to terms in 3rd party ontologies, i.e. the Unit Ontology. If a new measurement type is
encountered it is also automatically included in the database. Such a new type can be later
annotated using the web UI and the ontology terms lookup service. The GUI front-end
clients were implemented as a set of plugins: the SQL Results plugin and web-service
plugins SOAP Results and JSON Results plugins. The SQL-plugin implements a MySQL
client that interacts directly with the database server. It is intended for use in intranet
environments. The web-service plugins interact with the Object Server interfaces of LabIS
(Fig. 6). This functionality is an example of interoperability on the client side.

Matlab R© can directly query LabIS via its web-service interface. Since its R2007 version,
Matlab R© provides client functionality for web services. The generation of client scripts
is fully automated and transparent to the end-user by the service discovery mechanisms.

On the application level, advantages of the system are the use of open communication
standards and the integration of server and client technologies, which are transparent for
the end-user. On the system level, advantages of LabIS are the extendable data model, the
independence of a particular programming language and the scalability of the component
technologies. On the level of exploitation and deployment, advantages of the system are the
use of open-source platforms, which are available as standard hosting options in the most web
hosting services.

11. Summary

This chapter presents several techniques for morphometry of microscopic and non-optical
images. The main focus of the manuscript is the automation of image processing and
measurement steps along the experimental workflow. Main algorithms are implemented as
either plugins or macros for the public domain image processing program ImageJ. We present
several generic processing and segmentation techniques, which can be used in a variety of
applications.

Notably, the utility of mathematical morphology was demonstrated in several image filtering
and segmentation algorithmic steps. Morphology-based Granulometric filtering was used to
facilitate segmentation of globular structures, such as synaptic boutons or cross sections of
axons. In the first application, morphological granulometry was used to estimate size of
synaptic boutons, which are then segmented by means of granulometric filtering followed
by thresholding. Using this approach quantitative effects of different treatments of cell
cultures can be measured. In the second application, Differential Contrast Enhancement and
granulometry were used to segment images of fluorescent tracer filled axons. An additional
application of the morphological image simplification were the preprocessing steps in the
analysis of astroglial distribution.

The computation of spatial parametric maps was demonstrated in the context of MRI data
sets. Such maps are produced by parametric fitting to time-varying spatial measurements.

The utility of the Local Area Thresholding was demonstrated in the context of segmentation
of histological images. The Differential Contrast Enhancement algorithm can be used to reduce
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bleed-through artifacts from a background channel to a signal channel. Presented algorithm
was used in the context of image enhancement in fluorescent tracer studies.

The utility of distance transform for analysis of spatial distribution of objects was
demonstrated in the context of estimation of radial distributions of the glial fraction of the
neuropil.

In addition, we also present an information system, which is capable of managing the
measurements uploaded from ImageJ. The system provides a structured information context
for querying and retrieval of primary morphometric information, which goes beyond
acquisition metadata. In such way, the increase of the information complexity along the
experimental workflow is supported. The system is a step towards providing the link
between the raw image, the performed measurements and their meaning in the context of
the experiment.

12. Appendix

A. Mathematical morphology

Mathematical morphology is a branch of mathematics applicable to image processing.
Morphology operators are a class of zonal operations where the pixels of a certain
neighborhood (Structure Element) are combined to produce a single output value. Principal
operations in mathematical morphology are erosion, dilation, opening and closing (Matheron,
1975; Serra, 1982).

Grey level images can be represented by 3D geometric bodies (called umbras) where the
elevation conventionally signifies intensity. Morphology operations of gray level images can
be constructed from ordering and ranking of the pixels. If S(x) is the umbra of the image S
and E(x) is a Structuring Elements (SEs) set, erosion (⊖) and dilation (⊕) are defined by:

S ⊖ E =

{

min
b∈Ê

[

S (x + b) + Ê (b)
]

}

(12.8)

S ⊕ E =

{

max
b∈Ê

[

S (x − b)− Ê (b)
]

}

(12.9)

where Ê is the complement of the structure element and x or b denote vector coordinates.

Opening is defined as I ◦ E = (I ⊖ E)⊕ E and closing as I • E = (I ⊖ E)⊕ E.

An example of the four major morphological operations is given in Fig. 8.

As seen from their definition, erosion and closing increase the number of dark pixels and
decrease image brightness, while dilation and opening do the opposite.

Sizes of different objects present in an image can be collectively studied by the operation of
granulometry, introduced by Matheron (1975).

In a way similar to sieving grains, pixels comprising an image are "sieved" according to their
connectivity imposed by a certain SE. Granulometry is formally defined as a set of openings
by a family of SEs, characterized by certain scale parameter d. In the case of closings, the set
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Fig. 8. Prinicipal morphological operations

Fig. 9. Granulometry of a synthetic image

Granulometric image sequence; from left to right: original image, d=5; d=10, d=15, d=20, d=25

is termed antigranulometry. If the SEs are homothetic, that is E[d] = d · E, the granulometry
is calculated as

Gd(I) =
⋃

d

I ◦ (d · E) (12.10)

where d denotes the proportionality parameter of the homothety. By convention G0(S) = S
and for negative d opening is replaced by closing.

For greyscale images, the measure of the interaction with SE is the support volume removed
after opening. This can be expressed by the granulometric (size) density distribution:

GSD (d) =
V[I ◦ dE]− V[I ◦ (d − 1)E]

V[I]
(12.11)

where g is the intensity. The support volume is estimated from the image histogram H =
{h(g)}. In particular, for unsigned 8-bit images g ∈ [0, 255] and

V[I] =
255

∑
g=0

h(g) · g

Gray-level morphological operations erosion, dilation, opening and closing are implemented
as a plugins for ImageJ.
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B. Resources

Grayscale Morphology http://rsbweb.nih.gov/ij/plugins/gray-morphology.html

Granulometric filtering http://rsbweb.nih.gov/ij/plugins/gran-filter.html

Color Histogram http://rsbweb.nih.gov/ij/plugins/color-histogram.html

MRI Processor http://imagejdocu.tudor.lu/doku.php?id=plugin:filter:mri_processor:start

DCE http://imagejdocu.tudor.lu/doku.php?id=plugin:filter:differential_contrast_enhancement:start

Table 2. Lsit of Plugins
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