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1. Introduction 

Many mechanisms are involved in the regulation of blood pressure. Among the molecules, 
hormones, and factors known to be involved in blood pressure regulation, PRCP can 
generate the most potent inflammatory vasodilator molecules, including nitric oxide (Zhao 
et al., 2001c), prostaglandins (Kolte et al., 2011), bradykinin (BK)-(Chajkowski et al., 2010) 
and angiotensin 1-7 (Ang1-7)-(Mallela et al., 2008) dependent pathways in the endothelium 
and astrocytes. Experimental evidence suggest that PRCP appears to metabolize its main 
substrates, des-Arg9-bradykinin (des-Arg9-BK, BK1-8)(Chajkowski et al., 2010) and alpha-

melanocyte stimulating hormone 1-13 (-MSH1-13)(Wallingford et al., 2009), to prevent the 
production of prostaglandins and NO, indicating that the enzyme may promote anti-
inflammatory effects in cardiovascular and cerebrovascular systems. Evidence shows that 
Prcp gene expression is elevated in the developing murine brain vasculature during the 
intermediate phase of chick chorio-allantoic membrane (CAM)(Javerzat et al., 2009), 
suggesting that PRCP has a role during the active phase of vascular remodeling. 
Interestingly, Prcp gene is overexpressed in glioblastoma and it is suggested that PRCP also 
has a role in tumor angiogenesis(Javerzat et al., 2009). Thus, PRCP plays important roles in 
response to stress and may be an endothelial gate-keeper regulating blood flow, which 
tightly regulates endothelial barrier function. The historical perspective of knowledge of 
PRCP and its roles in physiological and cardiovascular diseases such as inflammation, 
hypertension, thrombosis, and obesity is tabulated in Table 1.  

2. Cardiovascular system function 

The cardiovascular system is composed of the heart, blood, and a complex network of blood 

vessels. Humans have a closed cardiovascular system in which the system allows a complete 

separation of function and blood loss due to having a relatively low blood volume 

compared to species with open cardiovascular systems. In a closed cardiovascular system, 

blood flows rapidly from arteries to capillaries and returns through the venous system. The 

heart sustains the high pressure necessary for the blood to reach the body’s tissues.  
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Year  References 

1971 
1978 
 
 
1981 
1981 
 
1990 
 
1993 
 
1994 
 
1995 
1995 
 
 
1995 
1997 
2002 
2002 
 
2005 
 
2006 
 
2007 
 
2009 
 
 
 
 
2009 
 
2009 
 
 
2009 
 
2010 
 
2010 
2010 
 
 
2011 
 
2011 

Human PRCP (EC 3.4.16.2) was found in biological fluids 
PRCP was purified from human kidney and its potential substrates 
was reported. The two substrates were angiotensin II, and
angiotensin III 
A novel and rapid radioassay for PRCP was developed 
PRCP was found in both inflammatory exudates and in cells that
appear at sites of inflammation 
Cultured Madin-Darby canine kidney (MDCK) distal tubular cells
was found to contain PRCP 
Human PRCP was sequenced and cloned. It was noted that PRCP
might have both exopeptidase and endopeptidase activities 
PRCP was found to have a modulatory role in the angiotensin II-
induced pulmonary vasoconstriction 
PRCP was found in monkey kidney 
PRCP was purified from cell free extracts of Xanthomonas
maltophilia, a bacteria species which is normally found in clinical
specimens 
PRCP was found to be highly active in macrophages 
Watson and associates described localization of Prcp gene 
PRCP was found to be an endothelial cell prekallikrein activator 
Moreira and associates described the extracellular PRCP that
activates prekallikrein 
Overexpression of PRCP on Chinese hamster ovary cells was 
reported 
Wang and associates described the functional significance of PRCP
in the etiology of preeclampsia 
Hooley and associates described a C-terminal extension in the PK
serine protease domain as a potential substrate for PRCP. 
Wallingford and associates described that Prcp-null mice had 
elevated levels of alpha-MSH1-13 in the hypothalamus and were
leaner and shorter than the wild-type controls on a regular chow 
diet. Prcp null mice were also resistant to high-fat diet-induced 
obesity 
Soisson and associates described the crystal structure of human
PRCP 
E112D polymorphism in the prolylcarboxypeptidase gene was
found to be associated with blood pressure response to benazepril
in Chinese hypertensive patients 

Javerzat and associates described overexpression of PRCP during
the intermediate phase of the chick chorio-allantoic membrane 
Recombinant PRCP (rPRCP) metabolized BK1-8 to BK1-7, whereas 
rPRCP was ineffective in metabolizing BK 1-9 
PRCP was found to be active in human cerebrospinal fluid 
Overexpression of angiotensin type 2 (AT2) receptor in mouse
coronary artery endothelial cells was found to increase expression
of PRCP, which may contribute to kinin release 
PRCP is a 4OHTAM resistance factor in estrogen receptor-positive 
breast cancer cells 
PRCPgt/gt mice were found to be hypertensive and prothrombotic 

(Sorrells and Erdos, 1971) 
(Odya et al., 1978) 
 
 
(Skidgel et al., 1981) 
(Kumamoto et al., 1981) 
 
(Deddish et al., 1990) 
 
(Tan et al., 1993) 
 
(Tamaoki et al., 1994) 
 
(Suzawa et al., 1995) 
(Suga et al., 1995) 
 
 
(Jackman et al., 1995) 
(Watson, Jr. et al., 1997) 
(Shariat-Madar et al., 2002) 
(Moreira et al., 2002) 
 
(Shariat-Madar et al., 2005) 
 
(Wang et al., 2006) 
 
(Hooley et al., 2007) 
 
(Wallingford et al., 2009) 
 
 
 
 
(Soisson et al., 2010) 
 
(ZHANG Yan et al., 2009) 
 
 
(Javerzat et al., 2009) 
 
(Chajkowski et al., 2010) 
 
(Zhao et al., 2010) 
(Zhu et al., 2010) 
 
 
(Duan et al., 2011) 
 
(Adams et al., 2011) 

Table 1. Historical Perspective  
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To deal with proper delivery of blood to the tissues as well as many types of insults, 
including chemical and physical damage as well as infection, the cardiovascular system has 
evolved an intricate multilayer of specialized biochemical pathways. Multiple feedback 
mechanisms controlling blood flow with contrasting effects regulate normal vascular 
function, which have either stimulatory or inhibitory effects. These features enable the 
cardiovascular system to perform its tasks effectively. Of these regulatory feedback 
machinery, a few have multiple and redundant control mechanisms that tightly uphold 
cardiovascular functions. Among these regulatory feedback mechanisms within the 
mammalian cardiovascular system, we review the renin-angiotensin(Savinetskaia et al., 
2008; Hayashi et al., 2010), kallikrein-kinin(Bryant and Shariat-Madar, 2009; Saxena et al., 
2011), and pro-opiomelanocortin (POMC) (Wang et al., 2008) systems that communicate 
with each other. Although within each of these systems are surely a network of molecular 
interactions with other pathways, their interactions are not either compared or reviewed. 
However, special attention is given to the role of PRCP in health and disease.  

2.1 Renin-angiotensin system (RAS) 

The systemic RAS is a complex, but fairly well understood pathway(Perret-Guillaume et al., 
2009; Molteni, 1982; Brown et al., 1983; Oishi et al., 1996; Renshaw et al., 2001; Hettinger et 
al., 2002; Volzke et al., 2005; Clerk et al., 2005). Although the physiological importance of the 
RAS for regulation of blood pressure and water homeostasis has been established(Fukuchi 
et al., 1973; Bing and Nielsen, 1973), emerging evidence suggests that the components of 
RAS are important players for maintenance and regulation of many physiological and 
pathophysiological processes, such as angiogenesis (Abali et al., 2002), inflammation 
(Akishita et al., 2001), tumorigenesis(Ager et al., 2008), thrombosis (Asselbergs et al., 2008; 
Asselbergs et al., 2007), vascular hypertrophy (Brede et al., 2001), vascular development 
(Lasaitiene et al., 2006), and remodeling (Akishita et al., 2000; Alcazar et al., 2009). The 
molecular mechanisms by which the components of RAS exert their pleiotropic effects are 
redundant in order to ensure an appropriate balance between the stimulatory and inhibitory 
signals favoring normal blood delivery. More interestingly, there is also a balance between 
RAS function and its counter-regulatory hormones, in particular plasma kinins, the main 
effectors of the plasma Kallikrein-Kinin System (KKS) (Shariat-Madar et al., 2002a). The 
active metabolites of these two systems regulate each other in an antagonistic manner. In 
view of the opposing effects of these two systems(Bader, 2001), the complex interplay of 
RAS and KKS with the local microenvironment of endothelial cells lining blood vessels is 
responsible for delivering nutrients. The RAS and KKS signaling pathways are also 
responsible for sustaining the high pressure necessary for the blood to reach all of the tissues 
of the body while maintaining blood pressure within a narrow range.  

The RAS encompasses numerous peptides that act in concert in a cascade triggered by low 

blood volume or a drop in blood pressure cascades or water-fall(Taquini, Jr. and Taquini, 1961; 

Nicholls and Robertson, 2000; Shariat-Madar and Schmaier, 2004; Ritz, 2005; Oudart, 2005). 

These peptides exert their actions, which can be autocrine (Chan and Wong, 1996), paracrine 

(Haulica et al., 2005), or endocrine(Gohlke et al., 1992), acting through specific cell surface 

receptors on their target cells to control blood pressure and body fluid homeostasis. In a 

stepwise enzymatic process, the aspartyl protease renin (a rate-limiting enzyme) cleaves 

circulating angiotensinogen to the inactive angiotensin I (Ang I) (Helmer, 1965). Subsequently, 
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angiotensin converting enzyme (ACE) cleaves the two C-terminal amino acid residues of Ang 

I to generate the key effector of RAS, angiotensin II (Ang II, Ang 1-8) under physiological 

conditions (Figure 1)(Peart, 1975). However, the tonin-, cathepsin G-, tissue plasminogen 

activator- or chymase-induced Ang II generation is apparently important under 

pathophysiological conditions (Doggrell and Wanstall, 2004; Doggrell and Wanstall, 2003; 

Leckie, 2005; Belova, 2000). Recent evidence suggests that Ang I can block a downstream 

protease, PRCP in vitro (Mallela et al., 2008). Up to now, the physiological significant role of 

Ang I in blocking PRCP is uncertain. Ang II primarily exerts its physiological effects by 

activating angiotensin type 1 (AT1) receptors (Figure 1) (Chassagne et al., 2000). However, 

angiotensin type 2 (AT2) receptors also appear to mediate Ang II effects (Figure 1)(Anavekar 

and Solomon, 2005). Activation of this signaling pathway leads to cardioprotection. Both AT1 

and AT2 belong to the G-protein couple receptor (GPCR) superfamily(Ali et al., 1997a). While 

AT1 can couple to two members of the G family (Gq/11 and Gi) and to G complexes 

(Okuda et al., 1996), AT2 can couple to Gi and Gs subunits (Kai et al., 1996).  

 

Fig. 1. Metabolites of the renin-angiotensin system influence cardiovascular system.  
Ang I; Angiotensin I, Ang II; Angiotensin II, Ang III; Angiotensin III, Ang IV; Angiotensin 
IV, Ang1-9; Angiotensin 1-9, Ang1-7; Angiotensin 1-7, ACE; Angiotensin converting enzyme, 
ACE2; Angiotensin converting enzyme 2, AT1; angiotensin type 1, AT2; angiotensin type 2, 
AT4; angiotensin type 4, PAI-1; plasminogen activator 1, TF; tissue activator, Mas; Ang1-7 
Mas receptor, NO; nitric oxide, PG; prostaglandin.  

Ang II-induced AT1 receptor-dependent vasoconstriction is mediated by activation of 

Gq/11, Gi, and Gcomplexes(Kai et al., 1996). The activation of these heterotrimeric G 

proteins triggers the activation of phospholipase C (PLC)(Griendling et al., 1997) and 

phospholipase D (PLD)(Griendling et al., 1997; Ushio-Fukai et al., 1999), leading to an 

increase in intracellular calcium, actin-myosin interactions, and release of leukotrienes.  
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Although AT2 appears to be cell-type specific with a low expression pattern in adult tissues, 
it is the dominate receptor in fetal tissues(Akishita et al., 1999; Guan et al., 2008). 
Experimental evidence in support of AT2-independent G-protein signaling pathway has 
been demonstrated (Bottari et al., 1991). AT2 receptors are essential for triggering 
vasodilation and it can also mediate cell death (Gwathmey et al., 2009). Ang II-induced AT2 
receptor-dependent vasodilation is mediated by activation of nitric oxide/cyclic guanosine 
3’,5’-monophosphate (cGMP) signaling cascades. On the other hand, AT2 activation by Ang 
II may lead to the activation of proapoptotic second messengers, MAPK phosphatase 1 
(MKP-1)(Horiuchi et al., 1997), SH2 domain-containing phosphatase 1 (SHP-1)(Feng et al., 
2002), and protein phosphatase 2A (PP2A)(Huang et al., 1996) and subsequent inactivation 
of MAPKs(Bedecs et al., 1997; Horiuchi et al., 1997), and ERK1/2(Horiuchi et al., 1997). 
While identification and characterization of the molecular switch that controls differential 
activation of distinct downstream signaling pathways by Ang II are poorly understood, our 
understanding of the downstream events is exponentially mounting.  

In the next step of the RAS cascades, angiotensin converting enzyme 2 (ACE2) and PRCP 

metabolize Ang II (a prothrombotic risk factor) to angiotensin 1-7 (a vasodilator, 

antithrombotic factor)(Mallela et al., 2008), highlighting the functional significance of these 

two enzymes. Notably, ACE2 (Gurley et al., 2006) and PRCP (Adams et al., 2011)null mice 

do not exhibit excessive elevated blood pressure compared to control littermates, suggesting 

that these enzymes play a critical role in the maintenance of normal vascular physiology, 

Figure 1. PRCP also metabolizes angiotensin III (Ang III, Ang2-8) to angiotensin 2-7 (Ang 2-

7)(Mallela et al., 2008). Ang III, like Ang II, is also a pressor agent whose response is 

mediated by AT1 receptors (Campbell et al., 1979). Ang III is implicated in cell proliferation 

and matrix accumulation(Ruiz-Ortega et al., 1998). Ang II- and Ang III-induced AT1 

receptor stimulation mediate vasoconstriction, mitogenic and hypertrophic effects and 

inflammatory responses (Ishanov et al., 1998; Schluter and Wenzel, 2008; Marshall et al., 

2000). Hydrolysis of Ang III by PRCP leads to a decrease in Ang III-mediated effects, further 

pointing out the importance of PRCP in contributing to regulation of blood pressure. 

2.2 RAS and angiogenesis 

Ang II is a proangiogenic hormone and AT1 mediates its proangiogenic actions(Wilop et al., 

2009). The proangiogenic effect of Ang II leads to upregulation of EGF (Friedlander and 

Terzi, 2006; Lautrette et al., 2005), FGF (Liu et al., 2009), PDGF(Blaschke et al., 2002; Li et 

al., 2005), IGF-1 (Kajstura et al., 2001; Song et al., 2005(Jia et al., 2011), hepatocytes growth 

factor(Bataller et al., 2003), and NO(Abassi et al., 1997). Ang II-induced AT1 mediated 

signaling pathway cause an activation of mitogen-activated protein kinases (MAPK) (Guo et 

al., 2006; Morrell et al., 1999; Taniyama et al., 2004).  

The MAPK pathway induces cellular protein synthesis, volume regulation, gene expression, 
and growth (Morrell et al., 1999). In contrast, activation of AT1-independent G-protein 
signaling pathway by Ang II can also cause endothelial cell proliferation through non-receptor 
tyrosine kinase Src-mediated increase of NADP oxidase activation, phosphorylation of 
extracellular signal-regulated kinases 1 and 2 (ERK1/2), P38 MAP kinase, and a decrease in 
phosphorylation of Src homology 2 (SH2)-containing inositol phosphatase 2 (SHIP2)(Ali et al., 
1997b; Feng et al., 2002; Bedecs et al., 1997). These experimental observations suggest that Ang 
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II is proangiogenic. However, evidence suggests that Ang II may inhibit angiogenesis under 
certain conditions by activating AT2-receptors, suggesting that AT1 mediates effects that 
counteract those mediated by AT2 receptors (Chung et al., 1996).  

2.3 RAS in cardiovascular disease  

Since Ang II, Ang III, Ang IV, and Ang 1-7 can act systemically and locally to control blood 
pressure and body fluid homeostasis, components of RAS have become therapeutic targets 
for diseases such as hypertension(Farmer, 2000), cardiac hypertrophy(Brasier et al., 2000; 
Billet et al., 2008), congestive heart failure(Volpe and De, 2000; Yang et al., 1998), ischemic 
heart disease(Burrell et al., 2005), coronary heart disease(Farmer and Torre-Amione, 2001), 
and renal diseases.  

3. Plasma kallikrein kinin system (KKS) 

The primary functions of plasma KKS are to 1) assist hemostasis and limit blood loss, 2) 
increase capillary permeability and dilate arterioles, 3) promote antiatherogenic and 
antithrombogenic properties of endothelium by maintaining or increasing antiatherogenic 
agents including nitric oxide, prostaglandins, and tissue plasminogen activator, and 4) induce 
acute vascular pain. In addition to its hemodynamic actions, antifibrotic and renoprotective 
effects of kallikrein have been reported (Pawluczyk et al., 2008). Although the expression and 
activity of components of plasma KKS are known to be age-dependent (Gordon et al., 1980) for 
three decades, the mechanism underlying this phenomenon is yet to be unravelled. 

The components of KKS, also called the contact activation pathway, consist of three serine 

zymogens (prekallikrein, factor XII, and factor XI) as well as a kinin and antiangiogenic 

precursor (high molecular weight kininogen)(Figure 2)(Ratnoff and Saito, 1979). Plasma 

kallikrein, a serine protease, is synthesized in the liver. It is predominantly secreted by 

hepatocytes as an inactive molecule called prekallikrein (PK) that circulates in plasma as a 

heterodimer complex bound to high molecular weight kininogen (HK) with 1:1 molar 

stoichiometry. PK is a single chain α-globulin that is present in the plasma of humans and of 

other animal species. About 80-90% of PK is normally in complexed with HK.  

HK is a single-chained glycoprotein synthesised by liver and secreted into the circulation 

(Sueyoshi et al., 1987). HK consists of three domains: an amino acid-terminal heavy chain, a 

carboxyl-terminal light chain, and bradykinin moiety (Figure 3)(Kleniewski et al., 1988). The 

heavy chain linked to the light chain by a single disulfide bond (Kleniewski et al., 1988). 

Domain 6 of HK has a PK and FXI-binding site (Reddigari and Kaplan, 1989). HK binding to 

cell surface proteins or artificial surfaces is vital for activation of the plasma KKS(Pixley et 

al., 2011; Joseph et al., 2001; Zhao et al., 2001). The procoagulant activity of HK is dependent 

on whether it is in complexed with PK or FXI (Gailani and Broze, Jr., 1991). The proteolytic 

cleavage of HK by kallikrein results in the production of BK and cleaved HK (HKa). HK 

could be metabolized by activated factor XI into three peptide fragments, yet its 

physiological significance has been unclear. HK is involved in angiogenesis and in cell 

adhesion and the matrix of various endothelial cells (Motta et al., 2001). 

Unlike PK, factor XI (FXI) is involved in normal hemostasis in vivo. FXI synthesis is primarily 
in the liver. Factor XI activity is age-dependent (Andrew et al., 1987). While its activity is low at 
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birth, FXI levels are reached to normal adult plasma levels by six months of age. FXI circulates 
in the plasma as a disulfide bond-linked dimer complexed with HK. It is important for 
propagation of blood coagulation(Walsh and Griffin, 1981). FXI can be activated to activated 
FXI (FXIa) by FXIIa-mediated activation on the negatively charged surfaces or thrombin-
mediated activation on the platelet surface(Baglia et al., 2004), Figure 2. FXIa augments 
thrombin generation via interaction with a coagulation factor of the extrinsic pathway, factor 
IX(Baglia and Walsh, 1998; Taketomi et al., 2008). It appears that FXI along with activated 
platelet are a prerequisite for optimum thrombin generation in which the procoagulant activity 
of KKS is so just below the threshold point (Keularts et al., 2001).  

Plasma KKS activation has been demonstrated under physiological conditions and in 

numerous inflammatory human diseases. Under pathological conditions, conversion of 

plasma factor XII (FXII) to its active form (FXIIa) is concomitant with the appearance of 

hematologic responses including coagulation, fibrinolytic, and inflammation. FXIIa initiates 

propagation of the intrinsic pathway (IP) of blood coagulation via factor XI activation, Fig. 2 

(1; Pathway 1). In the presence of HK, FXIIa converts plasma prekallikrein (PK) to kallikrein, 

Fig. 2 (2; Pathway 2). In a reciprocal feedback mechanism, kallikrein accelerates FXII 

activation. Kallikrein causes the release of tissue plasminogen activator (tPA) via a 

bradykinin-dependent pathway.  

 

Fig. 2. A schematic representation of factor XII (FXII) activation during pathological plasma 
proteolytic states. FXIIa; activated factor XII, 1; pathway 1, FXI; factor XI, FXIa; activated 
factor XI, 2; pathway 2, HK; high molecular weight kininogen, PK; prekallikrein, BK; 
bradykinin, tPA; tissue plasminogen activator, FDP; Fibrin degradation Products. 
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Fibrinolysis is the process by which plasmin digests fibrin, Fig. 2. This aids in thrombus 
(clot) dissolution and limits the promotion of coagulation (clot formation). tPA converts 
plasma plasminogen to plasmin, which in turn remodels the thrombus. Plasmin breaks 
down the clot fibrin to fibrin degradation products (FDP). Consequently, FDP blocks 
thrombin-induced fibrin (clot) formation, Figure 2. Notably, plasmin triggers a positive 
feedback amplification by accelerating conversion of PK to kallikrein.  

Kallikrein acts on HK to generate HKa (cleaved HK) and bradykinin (BK), Figure 3. BK-
induced activation of the B2 (B2) receptor leads to the formation of tissue plasminogen 
activator (tPA, a potent fibrinolytic molecule)(Czokalo-Plichta et al., 2001), Fig. 3. BK upon 
activation of its constitutive B2 receptors on endothelial cells leads to an increase in 
intracellular Ca2+ levels and subsequent production of nitric oxide (NO, a vasodilator) and 
prostacyclin (PGI2, a platelet activation inhibitor), ultimately leading to vasodilation, 
increased vascular permeability and edema (Zhao et al., 2001b; Hong, 1980; Palmer et al., 
1987). Whereas B2 receptors are constitutively expressed, the expression of bradykinin B 1 
(B1) receptors is induced during inflammation (Marceau, 1995). Metabolism of BK by 
carboxypeptidase N (CPN) in plasma or carboxypeptidase M (CPM) on endothelial cells 
yields des-Arg9-BK which interacts with B1 receptors to potentiate and/or perpetuate the 
inflammatory response (Figure 3)(Marceau et al., 1981). 

 

Fig. 3. A schematic representation of PRCP-dependent prekallikrein activation. HK; high 
molecular weight kininogen, PK; prekallikrein, PRCP; prolylcarboxypeptidase, K; 
kallikrein, BK1-9; bradykinin, HKa; cleaved HK, BK; bradykinin, NO; nitric oxide, PGI2; 
prostacyclin, tPA; tissue plasminogen activator, CPN; carbox peptidase N, CPM; 
Carboxypeptidase M, BK1-8; bradykinin 1-8 (des-Arg9-bradykinin), BK1-7; bradykinin 1-7. 
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Under physiological conditions, PK bound to HK on endothelial cells can lead to PK 
activation through a FXIIa-independent mechanism, which in turn leads to BK generation. 
While assembly and activation of the plasma KKS is regulated by PRCP on several cultured 
cell lines, heat shock protein 90 (HSP90) is the main activator of the plasma PK in 
mesothelium-derived cell lines (Varano, V et al., 2011). Thus, the plasma KKS participates in 
both surface-dependent activation of blood clotting and inflammatory process. Further, 
PRCP participates in cell surface – dependent activation of PK and its dependent pathways. 
The question remains how PRCP-dependent PK signaling pathway is assembled, activated, 
and regulated in response to plasma levels of Ang II and/or Ang III. However, in an elegant 
study, the authors find evidence for a cross-talk among the kinin, PRCP, and angiotensin 
signaling pathways(Zhu et al., 2010). 

3.1 The plasma KKS and cardiovascular diseases  

Whereas the normally functioning KKS can successfully counteract blood pressure, promote 
smooth blood flow, modulates neovascularisation and eliminates pathogens by promoting 
the recruitment of neutrophils to the site of injury, inappropriate responses can lead to 
extensive tissue damage. KKS has been implicated in the pathogenesis of inflammation, 
hypertension, endotoxemia, and coagulopathy. Increased BK levels is a hallmark in all of 
these cases. In some cases, the persistent production of BK due to the deficiency of the blood 
protein C1-inhibitor, which controls kallikrein and activated FXII, is detrimental to the 
survival of the patients with hereditary angioedema (HAE). In others, the inability of 
angiotensin converting enzyme (ACE) to degrade BK leads to elevated BK levels and edema 
in patients on ACE inhibitors.  

3.2 The importance of KKS for angiogenesis 

Various cancers exhibit upregulation of either epidermal growth factor or urokinase 
receptor or both, which leads to poor prognosis. On studies done on human prostate cancer 
cells (DU145) the cleaved fragment of HK, HKa and also domain 5 prevented colocalization 
of uPAR and EGFR, decreased downstream extracellular signal-regulated kinase (ERK) and 
AKT-mediated signal transduction at EGFR(Wuepper and Cochrane, 1972). This indicates  
therapeutic potential of HKa and D5 to inhibit metastasis involving migration and invasion 
of human prostate cancer cells. 

Both HK and LK are proangiogenic as demonstrated by induction of vascularization on 

chorioallantoic membrane. Monoclonal antibody directed against HK has been shown to 

inhibit HK-induced neovascularization on chorioallatoic membrane as well as HK-induced 

fibrosarcoma formation. Domain 5 of HK, also called kininostatin, is antiangiogenic(Colman 

et al., 2000). There are reports that peptides derived from domain 3 and domain 5 inhibit 

angiogenesis in Zn2+ independent and dependent manner (Zhang et al., 2002). Antibody 

directed against domain 5 also prevents neovascularization(Song et al., 2004).  

Like HK, BK also is proangiogenic and a reduction in its levels may be associated with 
impaired neovascularization(Krankel et al., 2008). But HKa is antiangiogenic as it prevents 
VEGF and FGF2 induced vascularization. HKa through its D5 domain has been shown to 
inhibit sphingosine 1-phosphate (S1P) and vascular endothelial growth factor (VEGF) 
mediated endothelial cell migration by modifying PI3 kinase-Akt signaling (Katkade et al., 
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2005). HKa acting through uPAR can also bring about apoptosis in endothelial cells, which 
is due to inhibition of uPA binding to uPAR thus preventing subsequent uPAR 
internalization and regeneration to the cell surface (Cao et al., 2004). This results in 
interference with all aspects of angiogenesis such as cell migration, proliferation, and 
survival.  

Histidine proline rich glycoprotein (HPRG) is present in plasma abundantly and might be 
the predecessor of HK(Koide and Odani, 1987). HPRG is similar in sequence and function to 
HKa and is shown to bind to tropomyosin and inhibit angiogenesis through apoptosis 
(Donate et al., 2004).  

4. Pro-opiomelanocortin (POMC) 

POMC is expressed in numerous mammalian tissues (Tatro et al., 1992; Tatro and Reichlin, 
1987). It undergoes extensive posttranslational modification by a family of serine proteases 
and the prohormone convertases (PCs). The metabolism of POMC results in the generation 

of alpha-melanocyte stimulating hormone (α-MSH, -MSH1-13) along with -MSH, -MSH, 

and -endorphin (Shariat-Madar et al., 2010). Although all four of these hormones are 

important, only -MSH1-13 will be discussed here. The synthesis of α-MSH1-13 from POMC 
involves numerous specific enzymes in addition to PC1 and PC2. It appears that PRCP plays 

an important role in regulating -MSH.  

5. The interactions among KKS, RAS, and POMC 

The participation of the components of the plasma kallikrein-kinin system in some 
pathological processes like hypertension and cardiovascular diseases is still a matter of 
controversy. The availability of transgenic and knock-out mice for B2 and B1 receptors and 
angiotensinogen and angiotensin II receptors have advanced our understanding about the 
roles of KKS and specifically these receptors in cardiovascular regulation and inflammatory 
processes.  

Bradykinin (BK) is the natural hypotensive agent that causes vasodilatation by stimulation 
of endothelial B2 receptors of arteries and arterioles, and the subsequent endothelial release 
of nitric oxide and prostaglandins(Sharma, 2009). BK influences the kidneys to produce 
diuresis and natriuresis (Katori and Majima, 2008; Katori and Majima, 2003). The diuretic 
effect of the exogenous BK administered by the renal artery is by B2 receptors (Boric et al., 
1998; Croxatto et al., 1999), whereas the BK–induced natriuresis and increase in renal blood 
flow are due to both B1 and B2, Figure 3 (Lortie et al., 1992). Tissue injury such as myocardial 
ischemia and inflammation can cause the expression of B1 receptors on their surfaces 
(Foucart et al., 1997b; Foucart et al., 1997a). In addition, elevated concentrations of BK have 
been observed in ischemic myocardium(Burch and DePasquale, 1962; Burch and 
DePasquale, 1963). Occlusion of the proximal left anterior coronary artery causes a change in 
BK(Hashimoto et al., 1979; Kimura et al., 1973; Hashimoto et al., 1977). Exposure of the 
epicardium of anesthetized dogs to BK leads to stimulation of sympathetic afferent fibers 
protruding into the left ventricle(Uchida and Murao, 1974). Inhibition of the B2 receptor 
inhibitor resulted in increased kallikrein activity, but not kallikrein mRNA levels, in kidney 
of adult rats. There is a direct correlation between increased renal interstitial BK levels in 
dogs in low-sodium balance and the presence of B2 receptors(Siragy et al., 1997). There is 
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also evidence that kinin or B2-receptor inhibitor administration increases renin secretion or 
decrease plasma renin levels in anesthetized rabbits, respectively(Chiu and Reid, 1997). This 
data plus the location of B2 receptors in different parts of the kidney and vascular 
endothelium suggests a role for the plasma KKS in the cardiovascular system (Schricker et 
al., 1995).  

There have been numerous suggestions that kallikrein converts prorenin to renin and a few 
results suggest that RAS and KKS are interdependent and KKS regulates RAS activity 
(Sealey et al., 1979). In this report, the plasma prorenin was activated to renin in vitro by 
kallikrein when plasma acidity increased (Sealey et al., 1979). Later, Purdon and colleagues 
evaluated the effect of kallikrein converting prorenin to renin in plasma deficient in C1 
inhibitor (hereditary angioedema) at neutral pH(Purdon et al., 1985). Although PK was 
completely activated to kallikrein and despite normal prorenin concentration, prorenin was 
not converted to an active enzyme. Regardless of kallikrein metabolic capability in 
converting prorenin to renin, studies suggest the presence of a crosstalk between the 
vasoconstricting RAS and the vasodilating KKS(Yokosawa et al., 1979).  

In summary, the increased activity of RAS could be responsible both for arterial wall 
constriction and KKS activation and subsequent BK production to relief vasoconstriction. 
This explains the previous finding when the pressure is raised in the perfused heart muscle 
and brain, the flow can be held constant independently of any external neurogenic 
control(Mosher et al., 1964). The regulation of tissue flow as perfusion pressure changes can 
be affected by the rate of delivery or removal of BK and Ang II to the perfused region, 
influencing the state of contraction of the smooth muscle cells of the blocked vessels directly. 
This signifies the importance of the feedback mechanism between KKS and RAS. These 
systems may serve as a “on-off” biological switch impacting the risk of thrombosis/bleeding 
and those of low/high blood pressure.  

6. Prolylcarboxypeptidase or angiotensinase C 

PRCP has a subtle role in preserving the blood flow through the endothelial lining of blood 

vessels so that the tissues can maintain cellular function. PRCP exerts this effect through 

regulation of local levels of autocrine-paracrine hormones such as angiotensin II (Ang II), 

angiotensin III (Ang III), and bradykinin generation via kallikrein-kinin pathway. 

Subsequently, the modification of these vasoactive substances influences the secretion or 

expression of a diverse group of endothelium mediators that are involved in the contraction 

and relaxation of smooth muscles, regulating blood flow, blood clotting, inhibition of 

platelet aggregation, and electrolyte homeostasis. It is well-established that dysfunction of 

endothelium significantly contributes to the development of thrombosis.  

6.1 Physiology 

PRCP is a serine peptidase that cleaves peptides at C-terminal amino acids linked to a 
proline residue. The first evidence that PRCP might play a role in the cardiovascular system 
was provided by catalytic activity analysis, which showed the metabolism of angiotensin II 
(Ang II) to angiotensin 1-7 (Ang 1-7)(Odya et al., 1978b). The mere inactivation of Ang II 
results in two events that broaden the functional spectrum of PRCP. First, it is a negative 
regulator of the pressor actions of the renin-angiotensin system (RAS). Second, PRCP 
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activity provides a measure of endothelium relaxation due to its ability to initiate nitric 
oxide generation through Mas receptor activation (Silva et al., 2007). PRCP metabolizes 
angiotensin III (Ang III) to angiotensin 2-7 (Ang 2-7)(Odya et al., 1978c). Ang III is a pressor 
agent whose response, like that of Ang II, is mediated by AT1 receptors(Felix et al., 1991a; 
Gammelgaard et al., 2006b). We described that when the complex of high molecular weight 
kininogen (HK) and prekallikrein (PK, Fletcher factor) binds to endothelium membrane, PK 
is rapidly converted to kallikrein by PRCP, Figure 3(Shariat-Madar et al., 2002b). The 
formed kallikrein then cleaves HK to liberate bradykinin (BK), which leads to vasodilation 
and subsequent nitric oxide and PGI2 formation by activating constitutive bradykinin B2 
and inducible bradykinin B1 receptors (Zhao et al., 2001a; Colman and Schmaier, 1997). BK 
also causes release of tissue plasminogen activator (tPA, a profibrinolytic factor) to convert 
plasminogen to plasmin, which inhibits platelet aggregation, thrombus formation and 
promotes fibrinolysis, Figure 2(Pawluczyk et al., 2006). Thus, PRCP locally regulates nitric 
oxide-dependent vasodilation and indirectly modulates fibrinolysis within the vascular 
wall. 

6.2 Protein structure and molecular biology 

The human Prcp gene has been mapped to 11q14 and the gene is more than 147 kb in length 
and has 9 exons (Watson, Jr. et al., 1997). More recently, a new Prcp-like gene (Prcp2) has 
been discovered. The human Prcp gene family contains at least 2 genes. Both genes share 
important similarities including significant homology at the nucleotide level. Both genes 
encode for putative serine proteases. However, the functional role of Prcp2 gene has not 
been characterized.  

PRCP belongs to the single chain serine peptidase S28 family. It is derived from a larger 
precursor, prepro-PRCP, whose primary nucleotide structure was first described in a human 
cDNA clone by Tan et al., 1993. It appears that the precursor is homodimer polypeptides 
containing a secretory signal sequence. PRCP regulates the activity of bradykinin, Ang II, 

Ang III, prekallikrein, and -MSH(Odya et al., 1978a; Shariat-Madar et al., 2002c; Moreira et 
al., 2002; Wallingford et al., 2009), suggesting that PRCP has versatile roles in influencing 
cardiovascular system. The enzyme is ubiquitously present in all major areas of the vascular 
bed as well as in the kidney, heart, placenta, and hypothalamus (Jackman et al., 1995b; 
Skidgel et al., 1981; Rosenblum and Kozarich, 2003; Schmaier, 2003; Shariat-Madar et al., 
2010). However, PRCP is highly produced in endothelial cells, which is one cell type 
involved in the release of vasodilators and antithrombotic mediators.  

6.3 PRCP in cardiovascular diseases 

PRCP and angiotensin converting enzyme 2 (ACE2) are exopeptidases, which convert Ang 
II to Ang 1-7. ACE2 metabolizes AngII at a much faster rate than PRCP (Rice et al., 2004), 
suggesting that Ang II is a poor substrate for PRCP. Clinical studies have provided reliable 
evidence that ACE2 is an essential regulator of angiotensin I (Ang I), Ang II and 
angiotensin-induced cardiac hypertrophy (Huentelman et al., 2005). Increased myocardial 
levels of Ang II concomitant with a significant decrease in Ang 1-7 in ACE2 deficient hearts 
has been reported (Kassiri et al., 2009). These data suggest that PRCP may indeed be 
important in metabolizing Ang II in the absence of ACE2. These observations suggest that 
PRCP is a redundant catalyst contributing to alternate pathways for Ang II metabolism. 
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Over thirty years ago, Odya et al (Odya et al., 1978d) showed that PRCP can metabolize Ang 
III to Ang 2-7. Evidence indicates that Ang 2-7 excites some neurons in the paraventricular 
nuclease (Ambuhl et al., 1992). Differential regulation of Ang 2-7 during ACE inhibitor 
treatment suggests a cardiovascular role for this peptide (Campbell et al., 1991). Because of 
the significance of Ang 2-7, AngIII regulation and metabolism are important. Results from 
several studies show that Ang III is a pressor agent. It exerts its hypertensive effects via AT1 
receptors (Felix et al., 1991b; Gammelgaard et al., 2006a). Ang III can enhance renal disease 
through the overproduction of aldosterone and subsequent development of arterial 
hypertension and/or to atrial fibrillation (Al-Aloul et al., 2006). Aldosterone which is 
produced by adrenal cortex maintains blood volume, pressure, and electrolyte balance. It is 
tightly regulated by renin, an enzyme produced in the juxtaglomerular apparatus of the 
kidneys. Renin production is elevated by low blood pressure, decreased blood flow to the 
kidneys or sodium deficiency. In theory, inactivation of Ang III by PRCP might lead to a 
decrease in blood pressure. However, further studies are needed before claims can be made 
of a beneficial effect of PRCP on hypertension.  

It is well known that cells produce and secrete a large variety of proteases either as 
proenzymes or activated proteases. Although PRCP can be viewed as a proenzyme based on 
its primary structure, its post-translational regulation has not been characterized. PRCP is 
distributed throughout endothelial cells, including lysosome, cytoplasm, and plasma 
membrane. The membrane bound PRCP activates plasma PK to kallikrein in endothelial 
cells. The activation of PK is characterized by elevated kallikrein expression along with 
increased local BK production. Kallikrein-induced BK production causes endothelial cells to 
produce proinflammatory prostaglandins and vasodilatory nitric oxide (Ngo et al., 2009). 
Thus, the PRCP-dependent PK activation pathway might be considered as an additional 
mechanism to counteract the hypertensive activities of both Ang II and Ang III.  

Local skeletal muscle ischemia and acidosis are shown to increase the generation of BK and 

prostaglandins, the two circulating end-products of the PRCP-dependent pathways, Figure 

3 (Piepoli et al., 2001). The increased acidotic response during exercise and inflammatory 

mediators such as BK and prostacyclin have been shown to cause the abnormal exercise-

related symptoms and autonomic responses in congestive heart failure syndrome (Scott et 

al., 2003). Emerging evidence suggest that the long-term elevated concentrations of NO and 

prostacyclin may be detrimental and eventually responsible for cardiovascular diseases such 

as congestive heart disease (Kai C.Wollert and Helmut Drexler, 2004). Needless to say, the 

reduction of endogenous PGI2 synthesis is associated with the occurrence of cyclic 

reduction of coronary flow(Tada et al., 1984). Thus, PRCP-dependent Ang1-7 and PRCP-

dependent BK pathways have important biological activities. Altered PRCP expression 

levels mediates pathophysiological changes in the cardiovascular system.  

PK is markedly elevated during pregnancy(Maki and Soga, 1981). Among proteases that 
metabolize neuropeptide Y 3-36 (NPY3-36, anorexigenic hormone), plasma kallikrein 
metabolizes NPY3-36 to NPY3-35(Abid et al., 2009). In addition, specific inhibitor of plasma 
kallikrein prevents the production of NPY3-35. We find these studies intriguing because 
elevation of kallikrein should provoke anorectic effect via accelerated inactivation of NPY3-

36. Recent evidence suggests that there is a link between severe prekallikrein deficiency and 
pregnancy loss (Dasanu and Alexandrescu, 2009). As mentioned earlier, PRCP activates PK 
to kallikrein. If PRCP is inhibited/down-regulated, kallikrein levels are lower. Thus, 
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disruption of PRCP-dependent PK activation may be a risk factor for pregnancy losses. The 
inhibitors of both kallikrein and PRCP may be contraindicated during pregnancy. However, 
further investigations are required to define the safety of these inhibitors.  

The activation of POMC is characterized by elevated -MSH1-13 production. -MSH1-13 
regulates inflammation and food intake, suggesting that it may contribute to tissue damage 

production. Recently, experimental evidence indicated that PRCP metabolizes -MSH1-13 to 

-MSH1-12 (Wallingford et al., 2009). Mice deficient for PRCP present high blood pressure 
(Adams G.N et al., 2009), a sustained long-term reduction in food intake, and increased 
energy expenditure (Wallingford et al., 2009). In humans, hypertension is considered to be a 
multifactorial disorder. Prcp gene and its variants contribute to hypertension (Wang et al., 
2006c; Zhang et al., 2009; Zhu et al., 2010). Rutaecarpine stimulates expression of PRCP in 
the circulation and small arteries in renovascular hypertensive rats (Qin et al., 2009). Since 
PRCP variant promotes disease progression (Zhang et al., 2009) in Chinese hypertensive 
patients and risk of preeclampsia in black and non-black women (Wang et al., 2006b), it is a 
candidate for pharmacological intervention. 

7. Conclusions and future directions 

In conclusion, PRCP is one of the conserved proteases throughout evolution in vertebrates. 
In-vitro and in-vivo studies of PRCP, this enzyme serves to generate nitric oxide and 
prostaglandins. Notably, bradykinin and bradykinin 1-8 are important mediators of pain 
(Argent et al., 1954) and endotoxin-induced vascular permeability {Ueno, 1995 783 /id}. BK 
production is increased in ischemic myocardial tissue (Dell'Italia and Oparil, 1999). They are 
involved in the control of local blood flow. Although PRCP is less efficient than ACE2-  
induced NO and prostaglandin generation under pathophysiological conditions, this 
redundant mechanism has presumably evolved for ischemic remodeling and smooth blood 
flow (Figure 1 and Figure 3). Overactivation of this mechanism may contribute to 
myocardial tissue damage or endothelial dysfunction. It inactivates BK1-8, suggesting that 
PRCP may also reduce marked inflammatory response. It appears that PRCP is fine-tuned to 
discriminate between physiological and pathophysiological changes. Since cardiomyocytes 
are unable to proliferate (Lagrand et al., 2000), inactivation of BK1-8 by PRCP may contribute 
to prevention of tissue damage. Further studies are warranted to evaluate the role of PRCP 
in cardiovascular system, in particular the heart.  
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