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1. Introduction 

With an aging population, renovascular hypertension has become a major public health 

problem (Safian & Textor, 2001). Although various forms of fibromuscular disease of the 

renal arteries and/or traumatic disruption of renal vessels are the most common cause of 

RVH among the younger individuals, atherosclerotic renal artery disease (ARAD) is the 

most common lesion producing hypertension by far (Garovic & Textor, 2005). ARAD is 

present in over 6.8% of individuals over 65 years of age and is found in up to 49.1% of 

patients with coronary artery disease or aortoiliac disease (Iglesias et al. 2000; Valabhji et al. 

2000; Hansen et al. 2002; Rihal et al. 2002; Weber-Mzell et al. 2002; Textor 2003). Although 

many patients with asymptomatic renovascular disease do not develop progressive renal 

dysfunction, overall morbidity and mortality is significantly increased (Chabova et al. 2000; 

Textor 2002; Textor 2003; Textor 2003; Foley et al. 2005; Foley et al. 2005). On the other hand, 

some studies suggest that from 10% to 40% of elderly hypertensive patients with newly 

discovered end stage renal disease and no identifiable parenchymal renal disease have 

significant RAS (Textor and Wilcox 2001). As in other forms of renal disease, the severity of 

interstitial fibrosis, tubular atrophy, interstitial inflammation, and glomerular sclerosis are 

important predictors of renal outcome (Wright et al. 2001). It has been postulated that this 

acquired tubulointerstitial injury may contribute to at least some forms of essential 

hypertension (Raghow 1994). Mechanisms underlying vascular and renal dysfunction in 

RAS have not been well delineated, despite intense study (Textor 2004). This information is 

essential for the development of therapies – surgical or medical – to treat RAS.  

The hallmark of RVH arising from unilateral RAS is atrophy of the stenotic kidney and 
compensatory hyperplasia/hypertrophy of the contralateral kidney. Although this 
compensatory hypertrophy serves an adaptive function, this process may render the 
contralateral kidney more susceptible to other injuries (due to diabetes, glomerulonephritis, 
etc.) (Wenzel et al. 2002). Although the corresponding histologic, hemodynamic, and tubular 
alterations in the stenotic and contralateral kidneys have been superficially described in 
experimental animals, mechanisms underlying these alterations and the identification of 
markers that predict response to therapy have not been well defined. In particular, the stage in 
evolution of RAS at which the atrophic changes in the stenotic kidney preclude recovery of 
renal function after revascularization is not known. This lack of basic mechanistic knowledge 
is underscored by the variable response of RAS to surgical revascularization; significant 
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improvement in blood pressure control and recovery of renal function is achieved in only 
about half of patients, with approximately one-quarter showing no significant changes, and up 
to one-quarter of patients developing progressive deterioration of renal function (Textor and 
Wilcox 2001; Textor 2003; Textor 2004). Furthermore, angiotensin-converting enzyme (ACE) 
inhibitors or angiotensin receptor blockers potentiate hypoperfusion of the stenotic kidney, but 
have been advocated to prevent deterioration of function in the contralateral kidney (Mann et 
al. 2001; Schoolwerth et al. 2001). The stage during development of RVH and circumstances in 
which this treatment should be initiated are not known. This lack of understanding of basic 
mechanisms underlying the development of human RVH has prompted the development of 
animal models to address this issue. 

1.1 Animal model of renovascular disease 

The classic “Goldblatt” 2K1C rat model of RAS has been extensively used to model human 
RVH (Goldblatt et al. 1934). In the stenotic kidney, reduced renal perfusion stimulates renin 
secretion through the renal baroreceptor system, leading to increased plasma levels of 
angiotensin II (A-II), provoking systemic hypertension (Martinez-Maldonado 1991). A-II may 
increase blood pressure directly or through elaboration of other vasoconstrictors (such as 
endothelin, thromboxanes, etc.); aldosterone promotes sodium and water retention and 
secondarily suppresses renin release. Over time, secondary structural damage occurs to the 
kidneys, vessels, and other end organs. In this chronic phase, the role of A-II in maintaining 
elevated blood pressure is not clear, as this phase no longer completely responds to ACE 
inhibitor therapy. In this chronic phase, the renal damage and endothelial dysfunction may be 
associated with near-normal renin and A-II levels (Okamura et al. 1986; Carretero and Scicli 
1991). Indeed, lack of response to A-II inhibition in experimental animals with sustained RVH 
may predict lack of response to surgical intervention to remove the RAS (Pipinos et al. 1998).  

In the 2K1C model, the weight of the stenotic kidney tends to be lower than that of normal or 
sham-treated controls, indicating that the kidney has undergone atrophy. The weight of the 
contralateral kidney is higher than that of normal controls, indicative of a 
hypertrophic/hyperplastic response. Histopathologic alterations in this model are variable, 
and probably depend upon the extent of blood pressure elevation. As originally described, the 
“Goldblatt” 2K1C is a model of accelerated, or “malignant” hypertension, with mean systolic 
blood pressures >200 mmHg (Goldblatt et al. 1934; Wilson and Byrom 1939; Wilson and 
Byrom 1940). Under these conditions, the contralateral kidney, despite low renin expression, 
develops interstitial fibrosis, tubular atrophy, interstitial inflammation, glomerulosclerosis, 
and hyalinosis (Mai et al. 1993; Sebekova et al. 1998; Kobayashi et al. 1999; Gauer et al. 2003). 

These chronic tubulointerstitial alterations are associated with increased TGF-β expression 
(Wenzel et al. 2003). Reported histopathologic alterations in the stenotic kidney are variable, 
and range from minimal alterations (Eng et al. 1994) to focal interstitial fibrosis and tubular 
atrophy without significant glomerulosclerosis (Wenzel et al. 2002).  

In a rat 2K1C model that develops moderate hypertension (mean arterial pressure 158 
mmHg), atrophy of the stenotic kidney and hypertrophy of the contralateral kidney is 
observed. The stenotic kidney shows increased staining for renin associated with interstitial 
fibrosis and tubular atrophy, with minimal alterations observed in the contralateral kidney 
(Richter et al. 2004). In this model, COX-2 inhibitors significantly reduce interstitial fibrosis 
in the stenotic kidney (Richter et al. 2004). 
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The 2K1C model has been established in mice using a clip of 0.12 mm (Wiesel et al. 1997). 

Four weeks after clipping, these investigators reported that 2K1C hypertensive mice 

exhibited blood pressure approximately 20 mm Hg higher than their sham operated 

controls. We have recently defined the histopathologic alterations connected with renal 

artery stenosis in animal model (Figure 1) (Cheng et al., 2009) and human (Keddis et al., 

2010). In a murine model of 2K1C of RVH, we found that both the clipped and the 

contralateral kidney underwent minimal histopathological alterations during the first two 

weeks following surgery. Subsequently, the clipped kidney underwent atrophy, with 

generalized tubular atrophy, interstitial fibrosis and focal mononuclear infiltrates, whereas 

the contralateral kidney underwent hypertrophy/hyperplasia with minimal histopathologic 

alterations (figure 2). We propose that the murine 2K1C model is a good model of 

renovascular disease in humans with moderate hypertension. These animal models have 

helped to elucidate and suggest which cytokines and pathways are involved in RVH. Of 

these, the renin-angiotensin-aldosterone system, long known to have effects on the 

hemodynamics of RAS, is becoming more interesting for the inflammatory effects it causes 

as well. 

    

Fig. 1. Gross picture of the stenotic and contralateral kidney of mice (A) after placement of 
renal artery clip, the 2K1C model, compared to (B) sham procedure.  

  

Fig. 2. Glomerular appearance of the (A) contralateral and (B) stenotic kidney with H&E 
staining.  

A B 

A B 
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1.2 The Renin-Angiotensin System and renovascular disease 

Though its normal function is to preserve organ perfusion by regulating sodium and water 

balance, extracellular fluid volume and cardiac activity, the Renin-Angiotensin-Aldosterone 

System (RAAS) also plays an integral part in RVH. The RAAS has been found to be 

significantly activated in the presence of RAS. It is known that the increase in blood pressure 

caused by the RAAS has significant detrimental effects on the body, but it may also play a 

number of other roles in the development and progress of RVH. 

Renin is made primarily by the juxtaglomerular cells in the Juxtaglomerular apparatus in 
response to 1) low pressure in the afferent renal artery, 2) sympathetic nervous system 
activity 3) A-II levels and 4) low sodium delivered to the macular densa in the distal 
convoluted tubule of the nephron. Other signals, such as potassium concentration, atrial 
natruretic peptide and endothelin also modulate renin synthesis. Renin enzymatically 
converts angiotensinogen, made in the liver, to angiotensin I. ACE, synthesized primarily in 
the lungs (though also in other tissues), then converts angiotensin I to A-II, a significantly 
biologically active molecule. A-II, in addition to its numerous tissue effects, induces the 
synthesis of aldosterone in the zona glomerulosa of the adrenal medulla, which then acts on 
mineralocorticoid receptors throughout the body, though when considering RAS, their most 
notable function is in the kidney (Laragh et al., 1992). This pathway is also located 
completely within other organs, including, the kidney. The proximal tubule, interstitium 
and medulla of the kidney have higher-than-systemic concentrations of A-II, because of 
local synthesis, which allows it to act in a paracrine function (Johnston et al., 1992). A-II and 
aldosterone can also be synthesized through an ACE-independent pathway, which is what 
allows for the return to normal A-II levels in the presence of ACE inhibition. This effect is 
also particularly prominent in the kidneys, where an estimated 40% of renally-synthesized 
A-II does not rely on ACE (Hollenberg, 1999). 

A-II acts on 2 different receptors (angiotensin receptor type 1, or AT-1, and angiotensin 
receptor type 2, or AT-2) producing very different biological responses. Of these, AT-1 
appears to play the most significant role in renal vascular disease (AT-2 is mostly known for 
its role in fetal organ development). Stimulation of the AT-1 receptor is best known for its 
systemic vasoconstrictive effects, and its vasoconstrictive effects on the efferent renal 
arteriole. The former causes general rises in systolic blood pressure, while the later decreases 
renal plasma flow, but increases glomerular filtration fraction. AT-1 stimulation also causes 
salt-retention through a number of mechanisms, increasing blood pressure even further 
(Dzau & Re, 1994; Liu & Cogan, 1989; Brewster & Perazella, 2004). A-II also mediates non-
hemodynamic effects. A-II has the ability to promote fibrosis through a number of 
mechanisms, including induction of collagen synthesis, inhibition of collagen-cleaving 
proteases, stimulation of the secretion of platelet-derived growth factor, and, most 
interestingly, direct stimulation of TGF-ǃ receptor type II(Luft, 2003; Wolf, 2000). AT-1 
stimulation also has the ability to promote fibrosis by up-regulating expression and 
synthesis of NF-κB and thus TGF-ǃ, as well as a number of other cytokines (Tsuzuki, 1996). 
Downstream, aldosterone, in addition to its hypertensive effects mediated through the 
mineralocorticoid receptor, also up-regulates the expression of TGF-ǃ (Juknevicius et al., 
2000). These studies have supported a widespread use of RAAS inhibitors (ACE-inhibitors, 
AT-1 inhibitors and aldosterone receptor inhibitors) to prevent renal disease progression. 
However, there is concern with the often-seen deleterious effects on renal function of the 
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stenotic kidney caused by these anti-hypertensive agents. With already compromised blood 
flow, concern about increased damage to the ischemic kidney must be weighed with the 
benefits to the contralateral kidney (Jackson et al., 1986). With substanstial arterial 
obstruction, simply reducing perfusion pressure can reduce post-stenotic blood flow beyond 
that required for metabolic demands in the kidney. Early experimental studies in rats 
emphasized the potential for irreversible damage to the clipped kidney in animals treated 
with ACE inhibitors, resulting in “medical nephrectomy” (Jackson, 1990). However, it is 
important to note that this adverse reaction can develop with any forms of antihypertensive 
therapy (Textor et al., 1983). The risk factors for this adverse event include older age groups, 
pre-existing renal dysfunction, and episodes of acute illness leading to volume depletion 
(such as diarrhea or reduced intake during diuretic administration) (Speirs, et al., 1988). 

With the increasing evidence of the involvement of TGF-ǃ in RAS induced damage, the role 
of the RAAS in RAS, especially with respect to its induction of an inflammatory response, is 
being re-thought. There should be careful consideration and evaluation of the role of the 
immunologic and cytokine-associated effects of RAAS in the pathological process and 
initiation of RAS induced kidney damage. Such research may shed new light on whether the 
benefits of RAAS inhibition outweigh the costs in patients with RAS. 

1.3 TGF-β and renovascular disease 

Mechanisms underlying the differential response of the stenotic and contralateral kidney 

during the development and progression of RVH have not been adequately defined, despite 

numerous studies (Goldblatt et al., 1934; Martinez-Maldonado, 1991; Carretero, 1991). TGF-

β is involved in a number of processes relevant to the development of RVH, including cell 

cycle regulation leading to hypertrophy and/or apoptosis, MAPK activation, inflammation, 

and extracellular matrix synthesis (Cheng & Grande, 2002). 

It is well recognized that TGF-β plays a central role in fibrotic diseases (Cheng & Grande, 
2002; Border et al., 1990; Border & Noble, 1994, 1997; Border & Ruoslahti, 1992). All aspects 

of fibrogenesis have been shown to be regulated by TGF-β, including the initial 
inflammatory phase in which infiltrating inflammatory cells and macrophages set the stage 
for the subsequent fibrotic phase in which activated fibroblasts and myofibroblasts 
contribute to the pathogenic accumulation of matrix (Cheng et al., 2005). In the past few 

years, receptors and signal transduction pathways mediating the effects of TGF-β on cells 
have been identified, enabling the identification of specific pathways involved in pathogenic 
events dependent on this cytokine. TGF-β signals through a set of transmembrane receptor 

serine/threonine kinases unique to the larger superfamily of TGF-β-related proteins. The 
active heteromeric receptor complex is formed by binding of ligand to a type II receptor, 
recruitment and activation of the type I receptor kinase, and phosphorylation of intracellular 
mediating target proteins (Massague, 1992, 1998; Attisano et al., 1994). Increased TGF-
β receptor expression is observed in experimental glomerulonephritis (Shankland et al., 
1996; Tamaki et al., 1994). In experimental renal disease associated with epithelial to 
mesenchymal transformation, TGF-β type 1 receptor expression is increased in tubular 
epithelial cells (Yang & Liu, 2002). Downstream mediators are the Smad family of 
proteins (Piek et al., 1999). Smad2 and 3 are phosphorylated directly by the type I receptor 
kinase, after which they partner with Smad4 and translocate to the nucleus where they act 
as transcriptional regulators of target genes, including those essential for apoptosis, 
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inflammation, differentiation, and growth inhibition (Massague & Wotton, 2000; Derynck et 
al., 1998; Attisano et al., 2001). TGF-β plays a critical role in chronic inflammatory changes of 
the interstitium and extracellular matrix accumulation during fibrogenesis (Cheng & 

Grande, 2002; Grande et al., 1997, 2002). TGF-β initiates the transition of renal tubular 
epithelial cells to myofibroblasts, the cellular source for extracellular matrix deposition, 
leading to irreversible renal failure (Yang & Liu, 2001; Iwano et al., 2002; Li et al., 2002). 

A predominant role of TGF-β1 in regulation of extracellular matrix deposition is highlighted 
in our published studies employing renal tubular epithelial cells derived from animals 

bearing a homozygous deletion of the TGF-β1 gene (Grande et al, 2002). Although the most 

direct means to test the hypothesis that T TGF-β1 plays a central role in the development of 

RVH would be to perform these studies in mice bearing homozygous deletion of the TGF-β1 

gene, the phenotype of these animals precludes such studies. TGF-β1 KO animals have an 
extremely high rate of embryonic lethality, and the few surviving mice develop a systemic 
inflammatory syndrome, leading to their death within 2-4 weeks of age (Letterio et al, 1994; 
Martin et al., 1995; Kulkarni & Karlsson, 1993; Boivin et al., 1995). For this reason, more 
recent studies have employed mice with genetic manipulation of the Smad proteins to 

define potential mechanisms by which the TGF-β signaling pathway is involved in chronic 
tissue injury. Smad3 KO mice show accelerated healing of wounds, in association with 
decreased local inflammation (Ashcroft et al., 1999). Smad3-null mice have been used in 
several chronic injury models, including ureteric obstruction (Sato et al., 2003). In WT mice, 
unilateral ureteric obstruction (UUO) produces extensive interstitial fibrosis and tubular 

atrophy, with TGF-β1-driven epithelial to mesenchymal transformation of tubular epithelial 

cells, as evidenced by reduction in E-cadherin staining and de novo induction of α-smooth 

muscle actin (α-SMA) staining. This is associated with extensive influx of monocytes. In 
Smad3 KO animals subjected to UUO, there was a marked reduction in interstitial fibrosis, and 
epithelial to mesenchymal transformation, indicating that the Smad pathway is necessary for 

epithelial to mesenchymal transformation by TGF-β (Itoh et al., 2003; Yu et al., 2002). 

1.4 MAPK pathways and renovascular disease 

It is well recognized that cellular adaptive responses to environmental stimuli, including 
hypertrophy, hyperplasia, and atrophy associated with increased apoptotic activity, are 
transduced through the MAPK pathway(s) (Kyriakis 2000; Kyriakis and Avruch 2001). 
Cardiac hypertrophy in A-II dependent hypertension is associated with activation of p38, 
whereas ERK and JNK are preferentially stimulated in an A-II independent model of RVH 
(Pellieux et al. 2000). The development of hypertension is associated with persistent ERK 
activation in the aorta of Dahl salt-sensitive rats and stroke-prone spontaneously 
hypertensive rats (Kim et al. 1997; Hamaguchi et al. 2000). In human diabetic nephropathy, 
there is increased immunohistochemical staining for p-ERK in glomeruli which correlates 
with the severity of glomerular lesions and increased p-p38 staining which correlates with 
severity of tubulointerstitial lesions and number of CD68-positive macrophages (Adhikary 
et al. 2004; Toyoda et al. 2004; Sakai et al. 2005). Hypertension accelerates the development 
of diabetic nephropathy in a rat model of type 2 diabetes through induction of ERK and p38, 

as well as TGF-β (Imai et al. 2003). Similarly, the p38 and JNK pathways are activated in the 
early stages of experimental proliferative glomerulonephritis, whereas the ERK pathway is 
persistently activated (Bokemeyer et al. 1998). Both p38 and JNK are activated in 
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experimental anti-glomerular basement membrane antibody mediated glomerulonephritis 
(Stambe et al. 2003). In a variety of other human renal diseases, p-ERK expression is 

observed in regions of tubulointerstitial damage, within α-SMA positive myofibroblasts 
(Masaki et al. 2004). In cultured cells, ERK is involved in epithelial to mesenchymal 
transformation (Li et al. 2004; Xie et al. 2004; Yang et al. 2004). We have previously identified 
ERK, p38, and JNK as essential intermediates for MC mitogenesis, and ERK and p38 as 

essential intermediates for TGF-β stimulated collagen IV mRNA expression and MCP-1 
production (Cheng et al. 2002; Cheng et al. 2004). We have also shown that ERK is 
significantly upregulated in a rat model of salt sensitive hypertension (Diaz et al., 2008). 

Others have shown that p38 activation is necessary for TGF-β stimulation of fibronectin 
production (Suzuki et al. 2004).  

The MAPK pathways are involved in regulation of cell cycle arrest and apoptosis, which is 
of direct relevance to the renal atrophy which occurs in the stenotic kidney of the 2K1C RAS 
model. Activation of ERK is necessary for TGF-β-mediated induction of p21 and cell cycle 
arrest (Hu et al. 1999). High glucose promotes hypertrophy of MC through ERK mediated 
phosphorylation of p27 (Wolf et al. 2003). Activation of p38 or JNK is frequently associated 
with cell cycle arrest or apoptosis (Cardone et al. 1997; Frasch et al. 1998). Induction of 
apoptosis in MC requires sustained activation of JNK (Guo et al. 1998). Apoptosis and other 
cellular responses may be directed by a balance between ERK and JNK activation (Xia et al. 
1995). 

Based on these considerations, there has been intense interest in developing low molecular 
weight pathway specific MAPK inhibitors as therapeutic agents to treat cancer and 
fibroproliferative inflammatory conditions (Duncia et al. 1998; Sebolt-Leopold et al. 1999; 
Clemons et al. 2002; Duan et al. 2004; Sebolt-Leopold and Herrera 2004; Jo et al. 2005; 
McDaid et al. 2005). These agents have been employed in experimental renovascular 
disease, with mixed results. The ERK inhibitor U0126 was effective in reducing acute renal 
injury in an experimental mesangial proliferative glomerulonephritis model (Bokemeyer et 
al. 2002). In human renal diseases associated with injury to podocytes, p38 is induced. The 
p38 inhibitor FR167653 prevents renal dysfunction and glomerulosclerosis in chronic 
adriamycin nephropathy (Koshikawa et al. 2005) and in experimental crescenteric 
glomerulonephritis (Wada et al. 2001). Similarly, the p38 inhibitor NPC31145 reduced acute 
inflammatory injury in an experimental anti-glomerular basement membrane 
glomerulonephritis model (Stambe et al. 2003). On the other hand, the p38 inhibitor 
FR167653 increased proteinuria in a passive Heymann nephritis model of podocyte injury 
(Aoudjit et al. 2003), suggesting that activation of p38 protects podocytes from complement 
mediated injury. Furthermore, the p38 inhibitor NPC31169 exacerbated renal damage in a 
remnant kidney model due to in vivo induction of ERK (Ohashi et al. 2004).  

1.5 The role of inflammation in renovascular disease 

RVH initiates activation of the renin–angiotensin system and structural remodeling, 
evidenced by fibrosis and vascular deterioration in the affected kidney. Although the renin–
angiotensin system tends to resolve once a stable blood pressure (BP) is reached, it has been 
suggested that transient elevation of plasma A-II could precipitate macrophage infiltration, 
thereby initiating an inflammatory response within the kidney (Ozawa et al., 2007). This 
inflammatory cascade may well underlie the degenerative processes within the kidney as its 
renal artery begins to narrow.  
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We performed PCR array studies of renal homogenates obtained from mice subjected to RAS 
or sham surgery. The results of our PCR Array studies (Table 1) implicate monocyte 
chemoattractant protein-1 (MCP-1) as a key chemokine in this inflammatory response. In 
addition to infiltrating inflammatory cells, tubular epithelial cells of the stenotic kidney of mice 
exposed to RAS express high level of MCP-1 (figure 3). Our findings are in accord with those 
of other investigators who have studied renovascular hypertension. High salt diet in DSS rats 
caused expression of NADPH oxidase and MCP-1 in the dilated renal tubules and resulting in 
interstitial inflammation and migration of mononuclear cells (Shigemoto et al., 2007). Increased 
MCP-1 levels also seem to stimulate TGF-ǃ formation in glomerular cells despite the absence 
of infiltrating inflammatory cells (Wolf et al., 2002). Studies in the swine model of renovascular 
hypertension using bindarit, a selective MCP-1 blocker, show that inhibition of MCP-1 confers 
renal protective effects by blunting renal inflammation and reducing the level of collagen 
deposition, thereby preserving the kidney in chronic RAS (Zoja et al., 1998; Zhu et al., 2009). It 
was further indicated that MCP-1 contributes to functional and structural impairment in the 
RAS kidney, specifically in the tubulo-interstitial compartment.  

 

Gene function Gene symbol Gene name Fold change 

Inflammation Ccl2 MCP-1 (monocyte chemoattractant protein 2) +43 

 Ccl3 MIP-1ǂ (macrophage inflammatory protein 
1ǂ)

+22 

 Ccl4 MIP-1ǃ (macrophage inflammatory protein 
1ǃ)

+8 

 Ccl5 RANTES (regulated upon activation, normal 
T-cell expressed and secreted cytokine)

 

 Ccl7 MCP-3 (monocyte chemoattractant protein 3) +153 

 Ccl8 MCP-2 (monocyte chemoattractant protein 2) +149 

 Ccl12 MCP-5 (monocyte chemoattractant protein 5) +56 

 Ccl20 MIP-3ǂ (macrophage inflammatory protein 
3ǂ) 

+105 

 Ccl22 MDC (macrophage derived chemokine) +41 

 Ccr2 Chemokine (C-C motif) receptor 2 +30 

 Ccr3 Chemokine (C-C motif) receptor 3 +35 

 Ccr4 Chemokine (C-C motif) receptor 4 +6 

 Cxcl2 MIP-2ǂ (macrophage inflammatory protein 
2ǂ) 

+208 

 Cxcl3 MIP-2ǃ (macrophage inflammatory protein 
2ǃ) 

+7 

 Cxcl5 AMCF-II (alveolar macrophage chemotactic 
factor) 

+653 

 Cxcl9 Mig (monokine induced by Ǆ-interferon) +5 

 IL1ǂ Interleukin-1ǂ +18 

 IL1ǃ Interleukin-1ǃ +11 

Table 1. PCR array results of proinflammatory cytokine expression in stenotic kidneys of 
RAS mouse 
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Fig. 3. MCP-1 staining in the (A) contralateral kidney and (B) stenotic kidney of C57BLKS 
mouse 4 weeks after placement of renal artery clip. 

At a cellular level, it is apparent that the renal artery stenosis did elicit an inflammatory 
cascade in the kidney as evidenced by macrophage infiltration, the rise in MCP-1 and its 
receptor chemokine (C-C motif) receptor 2 (CCR2), NFκB, protein kinase C (PKC) and TGF-
ǃ. Remarkably, we also saw transient increase in MCP-1 and TGF-ǃ in the contralateral 
kidney which indicates some inflammatory process taking place despite lack of 
inflammatory cells and/or tissue damage. It is apparent that blockade of the MCP-1 receptor 
does offer renal protection and prevents the progressive fibrosis development in 
renovascular hypertension. Elucidating the underlying mechanisms of this protection will 
allow us to develop preventive measures and novel therapeutic interventions that could 
possibly be applied to other renal diseases.  

1.6 Therapeutic implication 

Hypertension is one of the most common reasons for a visit to a physician. There are several 
key issues that need to be addressed during evaluation of a patient with hypertension: 
accurate blood pressure reading, determination of target organ damage due to 
hypertension, screening for other cardiovascular risk factor, stratification of cardiovascular 
disease, and assessment for the cause of hypertension (primary vs. secondary hypertension). 
Thorough assessment of the cause of hypertension is essential for determining the correct 
treatment approach, especially in children where atherosclerosis is not common. For 
children with hypertension, it is necessary to consider genetic diseases (i.e. coarctation of the 
aorta, primary aldosteronism) and auto-immune diseases (i.e. post-infectious-
glomerulonephritis). When initiating treatment, it is important to maintain low systolic 
pressure as systolic pressure is a stronger predictor of cardiovascular event (Mancia et al. 
2009; Cherubini et al. 2010). Maintenance of blood pressure goal should ideally be achieved 
within 6 to 9 months of therapeutic initiation.  

2. Conclusion 

Optimal management of renovascular hypertension requires an understanding of the 
disease process and remains an important challenge for clinicians caring for patients with 
hypertension. Although the pathophysiology and the consequence to human health caused 

A B 
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by RVH are well understood, the exact mechanism by which the stenosis of the renal artery 
induces the damage is not. Revascularization studies have demonstrated highly variable 
results, with significant improvement in a small subset of patients, but an overall lack of 
justification of the risks, when applied to large groups of patients (Textor et al., 2009). While 
parsing out why some patients benefit while others do not will be an important task in the 
years to come, the more significant benefit will be from determining the reasons for the 
continued renal damage in the majority of revascularized patients. Developing novel 
therapies to address these yet-unknown pathological processes will yield benefit for all RAS 
patients. Recent studies implicate the non-hemodynamic effects of the renin-angiotensin-
aldosterone system and the inflammatory chemokines as possible initiating signals for the 
atrophic, inflammatory and fibrotic changes seen. Elucidating, more thoroughly, the role 
these pathways play in renal damage due to RAS could identify new targets for therapeutic 
intervention and the first biomarkers to aid in diagnosis, limiting the need for costly and 
damaging imaging studies. Many questions remain to understand how these pathways are 
initiated, how they interact and how they ultimately lead to renal damage. What cells first 
sense the stenosis, and how do they sense it? Which of the pathways contribute to damage 
and which are necessary to preserve kidney function? The answer to these and other such 
questions hold the possibility to further the science, diagnostics and treatment of 
renovascular hypertension, and to improve the lives of the millions it affects. 
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peripheral vascular disease which may prove fatal or disabling. This book has tried to present an update on

risk factors incorporating new research which has thrown more light on the existing knowledge. It has also tried

to highlight regional diversity addressing such issues. It will hopefully be resourceful to the cardiologists,

general practitioners, family physicians, researchers, graduate students committed to cardiovascular risk

prevention.
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