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1. Introduction 

Microfluidic chips have attracted significant attention over the past decade due to their wide 
range of potential applications in the biomedical and chemical analysis field such as drug 
delivery, Point of care diagnostics (Jakeway et al, 2004), flow cytometry (Fu LM et al 2004; 
Chen & Wang, 2009; Lin et al, 2009), polymerize chain reaction (Suna et al, 2007; Sun & 
Kwok, 2006; Hsieh et al, 2009), electrophoresis (Fu et al, 2007, 2009) and many other 
applications. 

Traditionally, silicon and glass are the predominant materials employed in the design of 
microfluidic systems. This was primarily due to their excellent chemical, physical, electrical 
and optical properties. But fabrication of a microfluidic device on these materials needs 
standard photolithography equipments such as Reactive Ion Etching  (RIE) system which 
are very expensive and increases the production costs specially in single-use applications 
which are desired in order to avoid contamination. 

In recent years application of polymeric materials for microfluidic device fabrication is 
becoming more and more important. Different methods for microfluidic fabrication on 
polymers such as hot embossing (Gerlach et al, 2002), injection molding (Rotting et al, 2002), 
soft lithography (Xia et al, 1998) and laser micromachining can be applied. 

Different kind of lasers such as UV (Ball et al, 2000) and Infrared lasers is used for laser 
micromachining of polymers. In infrared regime, CO2 laser has a predominant application 
due to it’s excellent absorption in polymers.   

In this chapter, we will deal with application of a CO2 laser in microfluidic device 
fabrication. The application of CO2 laser for fabrication of a optofluidic device and 
application of a optofluidic device for CO2 laser characterization is also presented. 

2. Interaction of a CO2 laser with polymers  

Application of the CO2 laser for microfluidic device fabrication was first proposed in 2002 
by H. Klank et al  (Klank et al, 2002).  

CO2 laser emits radiation with the wavelength of 10.6 micrometer. A CO2 laser mostly 
interacts with a polymer, photo-thermally. When a CO2 laser is irradiated on a polymer 
surface, it is strongly absorbed and raises the temperature of the polymer. The polymer is 
then melted, decomposed and leaving a void in a workpiece.  
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Different kind of polymers can be used for microfluidic applications by taking a choice care 
that the fluid in the device do not interact chemically with the device. However just some of 
the polymers can be machined with CO2 laser. Most of the polymers leave contamination 
and soot when exposed to CO2 laser irradiation. For example, polycarbonate (PC) leaves a 
brownish residue after exposing to the CO2 laser. 

Among different kind of polymers, poly methyl methacrylate (PMMA) is the most suitable 
polymer for CO2 laser machining. When PMMA heats up by the CO2 laser, after passing the 
glass temperature, the material turns into a rubbery material and by increasing the 
temperature, the chains are broken by depropagation process (Arisawa & Brill, 1997; Ferriol et 
al, 2003), and decompose with a non-charring process to it’s MMA monomer which is volatile  

 Solids Volatiles→    (1) 

Fig. 1 shows the decomposition process of PMMA polymer. 

 

Fig. 1. Decomposition process of PMMA. 

Decomposition of PMMA into volatile MMA monomers makes a hole in the workpiece. The 
shape and size of the hole, highly depends on the thermal properties of PMMA, focusing 
parameters, laser beam profile, exposure time and even exposure strategy. At the beginning 
of the exposure, the shape of the channel is very similar to the laser beam profile but as time 
goes up, the shape of the hole becomes more conical.  

3. Fabrication of a channel on PMMA utilizing a CO2 laser 

Fabrication of a channel on the surface of PMMA can be performed by scanning a CO2 laser 
over the surface of the workpiece. Commercial CO2 engraving systems with laser powers 
about a few watts to a few tens of watts and scanning speeds from a few tens of mm/sec up 
to a few hundreds of mm/sec, are good choices for micro channel fabrication.  

By scanning the PMMA surface with CO2 laser, different channels and cavities can be 
fabricated. However, the ablated structures may be very rugged such that those can not be 
used for microfluidic structures with optical detection. Martin et al. reported that the 
roughness of the machined surfaces depends on the grade of the PMMA sheets. He reported 
roughness of 1.54 microns and 0.42 microns for two different grades of PMMA  (Martin et al, 
2003). Presence of the different roughness should probably be sought in the chemical 
additives of the different types of PMMA. 
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Cheng et. al. reported that the roughness of the machined channels can be treated by 
thermal annealing of the samples (Cheng et al 2004). Fig. 2. shows the surface of their work 
piece before and after annealing. 

Hong et. al. also reported that the roughness of the microfluidic structures can be drastically 
reduced by out of focus machining of PMMA (Hong, et al, 2010).  

 

Fig. 2. The SEM pictures showing the rugged interior surface of the trench after laser 
machining (a) and smooth surface after thermal annealing (b). The AFM topography of the 
annealed surface is shown in the inset with full scale of 38 nm in the Z-axes. The viewing 
angle is perpendicular to the plane of the side wall (Cheng et al 2004) - Reproduced by 
permission of Elsevier under the license no. 283342005275. 

PMMA micro fluidic structures can then be top covered by other polymers like PMMA or 
poly carbonate (PC) utilizing thermal-bonding process. Thermal bonding is a process of 
joining two materials by the mechanism of diffusion; and unity of the materials. This 
process is accomplished through the application of pressure at temperature higher that the 
glass temperature of the polymers. 
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In addition to fabrication of the holes, channels and cavities, CO2 laser machining can be 
used to make some complicated structures, like bending holes. These structures can also be 
molded with other materials such as PDMS to get the negative of the PMMA structures. In 
the next section fabrication technique of the other complicated structure with 3D structure is 
presented. 

4. Fabrication of a 3D Mixer with CO2 laser machining of PMMA and PDMS 
molding 

In this section we present application of a CO2 laser for fabrication of a 3D mixer with 
bending cones (Riahi, 2012). Mixers are the elements in microfluidic and micro total analysis 
systems which are used for mixing two or more liquids in biological and chemical analyses. 
Mixers can be divided into the two categories, active and passive. In active mixers, an 
external actuation mechanism is used to mix liquids in a microfluidic chamber. In passive 
mixers, there is no energy consumption and the structure of these devices is simpler than 
that of active devices. Different schemes such as a Tesla structure (Hong et al, 2004), a T 
mixer (Hoe et al, 2004), a 3D serpentine (Liu et al, 2000) and twisted shapes (Bertsch et al, 
2001) are also used in passive micro mixers.  

The technique which is presented here is based on the application of the CO2 laser for 

fabrication of some bending and straight cones on PMMA followed by PDMS molding. The 

designed mixer is shown in Fig. 3. 

 

Fig. 3. Schematic of the designed 3D mixer (Riahi, 2012). 
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4.1 Fabrication of the bending cones 

When a shape, is engraved in a raster scan mode by a CO2 laser engraving system on 

PMMA, the system scans a shape, row by row which each row has a certain overlap with a 

previous row. During the first row scan, a symmetrical V-shape channel is ablated on the 

PMMA surface. When the laser scans the subsequent rows, a small portion of the laser beam 

reflects from the wall of the channel produced by the previous scan to the bottom of the hole 

in the opposite side of the scanning direction as shown in Fig. 4a. After several scans, the 

reflected beam can ablate a considerable amount of PMMA material at the bottom of the 

hole at the opposite side of the scanning direction which can causes a bending shape in the 

structure (Fig. 4b). 

 

Fig. 4. Ablation of a PMMA hole with CO2 laser. a) Reflection of the laser from the walls of 
an ablated hole. b) The shape of the hole after several scans (Riahi, 2012). 

It is found that the shape of the holes can be controlled by adjusting the scanning 
parameters such as resolution, power and scan speed. Some of the fabricated holes have 
very bent shapes and some are straight. Fig. 5 shows the ablated bending holes for different 
scan parameters.   

 

Fig. 5. The ablated bending holes for different scan parameters (Riahi, 2012). 
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4.2 Ablation of the mixer structure 

To fabricate the mixer, a few straight cones and bending cones are ablated with CO2 laser on 
two different PMMA sheets. One of the PMMA sheets is CO2 laser cut to form a channel 
with two inputs and one output. The structures are then molded with PDMS and one is 
placed upside down on top of the other. Fig. 6. shows the fabricated channels and holes on 
the PMMA sheet and the molded PDMS structure. 

 

Fig. 6. a) Fabricated structures on PMMA sheets. b) The PDMS molds of structures shown in 
part a. The straight and bending cones are clear (Riahi, 2012). 

 

Fig. 7. The fabricated mixer (Riahi, 2012). 
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The molded PDMS structures are then stacked to each other and three steel tubes are 
inserted into the input and output channels and the voids are filled with PDMS to form the 
final mixer structure. The fabricated mixer is shown in Fig. 7. 

5. Fabrication of the structures for optofluidics applications 

Optofluidics refers to a science that uses the optical property of fluids for adjusting, 
measuring the properties of a device. Some examples of such devices are, liquid mirrors 
(Wood, 1909), liquid-crystal displays (Haas, 1983) and liquid lenses (Kuiper & Hendriks, 
2004). 

Several techniques are used to fabricate a tunable lens array (Dong et al, 2006; Jeong et al, 
2004; Xu et al 2009) 

In this section we show how a CO2 laser can be used for fabrication of an optofluidic device, 
liquid micro lens array (Riahi, 2011).  

The liquid microlens array is an array of tunable liquid lenses which can be used for Medical 

stereoendoscopy, Telecommunication, Optical data storage, Photonic imaging, etc.  

Fig. 8. shows the basic structure of the liquid lens array which is presented here. An array of 

the hexagonal holes with about 2mm width each, are first fabricated on a 1mm thick PMMA 

sheet. A thin layer of PDMS with the thickness of about 50 microns is fabricated and placed 

on the array of holes. A 1mm depth reservoir with an inlet and outlet for the fluid is also 

fabricated. The whole of the collection are placed on top of each other.  

 

Fig. 8. The structure of a tunable liquid lens array. 

By introducing a liquid into the reservoir and changing the pressure inside, the curvature 

of the PDMS sheet in place of the holes changes and produces convex lenses as shown in 

Fig. 9. 
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Fig. 9. Mechanism of convex micro lens creation by applying pressure in a water reservoir 
limited by PDMS and PMMA walls. 

As shown in Fig. 10, a commercial CO2 laser engraving system is used for producing the 

patterns on PMMA sheets. This engraving machine is also used for fabrication of the 

reservoir on PMMA sheets. 

 

Fig. 10. The commercial CO2 laser engraving system in production process of an array of 
hexagonal holes on a PMMA sheet. 

Fig. 11 shows the fabricated tunable microlens array with this technique. Fig. 12 also shows 
this microlens array in imaging from a “B” letter.  
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Fig. 11. The fabricated tunable liquid lens array. 

 

Fig. 12. Imaging from the letter “B” with the fabricated liquid lens array. 
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6. Fabrication of a beam profiler using the optical properties of liquids 

In the previous sections we focused on the application of the CO2 laser for fabrication of the 

devices used in microfluidics and optofluidics. In this section we look at the application of a 

fluid device which is used for CO2 laser characterization. We present a device called 

thermally tunable grating (TTG), which can be used as a CO2 laser beam profiler. 

Thermally tunable grating is a family of the gratings which some of their specifications can 

be adjusted by the user. The tuning ability of a diffractive grating can be divided into two 

categories: first, gratings in which the diffractive angle can be tuned, and second, gratings in 

which the intensity of diffraction orders can be modulated which are called grating light 

valves (GLV). Electrostatic actuation is one of the methods used in MEMS based grating 

light valves system (Trisnadi et al, 2004). In this grating light valve system, tiny suspended 

ribbons are put together to form a specular surface. Electrostatic actuation lowers some of 

the ribbons, and a diffractive grating is formed. Electric field actuation has also been used to 

actuate an electro-optically controlled liquid crystal based GLV (Chen et al, 1995). 

But in TTG device, thermal method is used for actuation of a grating which contains a liquid 

in it’s grooves. Increasing temperature, changes the refractive index of the liquid and 

consequently the diffraction efficiency of the grating (Riahi et al, 2008).  

6.1 Principle of the method 

As shown in Fig. 13a, we suppose that the grooves of a transparent binary grating with 

refractive index n1 are filled with another transparent material with refractive index n2. 

Assume that a laser beam with wavelength λ is incident on this grating. If the period of the 

grating is large enough compared to the wavelength of light, the rays that pass through the 

n1 and n2 materials will have phases φ1 and φ2, respectively and the phase difference Δφ= 

φ1- φ2 as shown in Fig. 13b.  

By changing Δφ, the intensity of the diffraction orders is changed as shown in Fig. 13c,d,e. It 

can be shown that the intensity of the first order of diffraction can be calculated as follow 

(Riahi et al, 2009): 

 2
max ( )

2
I I Sin

ϕ∆
=      (2) 

It is clear now that if n1 or n2 are changed, the intensity of the first order of diffraction 

changes sinusoidally (Fig. 13f). 

6.2 Fabrication method  

Standard lithography technique is used for fabrication of the binary grating on a glass 

substrate (n=1.52). As shown in Fig 14, the grooves are then filled with nitrobenzene and a 

thin glass sheet with 250 microns thickness is placed on it. The high boiling point (T= 210:8 

°C), low specific heat capacity (1:51 J/gK), and high dn/dT (−4:6 × 10−4 K−1 at 626.58 at T= 

288 K) [36] make nitrobenzene suitable for this work. The refractive index of nitrobenzene is 

1.546 at 656:28nm at 293:15 K.  
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Fig. 13. (a) Square-well grating with n1 and n2 for the refractive indices of the land and the 
groove. (b)Wavefront of an incoming ray immediately after passing through the grating. (c), 
(d), (e) Simulation results of diffraction from the grating shown in (a) for γ = 0, γ = π=2, and 
γ = π, respectively. On the vertical axes, the maximum intensity has been normalized to 
unity. (f) Results of simulation of the intensity of the 1st order of diffraction versus phase 
difference (Riahi et al, 2008). 
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The diffraction pattern and intensity of the first order of diffraction versus temperature has 

been presented in Fig. 15. 

6.3 Measurement of the beam profile of a CO2 laser 

By changing the temperature, the intensity of the 1st order of diffraction is changed. The 

temperature of the TTG changes upon radiation by a CO2 laser beam. Radiation of a CO2 

laser beam on a substrate warms it up and produces a temperature profile on the surface of 

the substrate. The temperature profile depends on the intensity profile of the laser beam. For 

example, if the laser profile is circular Gaussian, the temperature profile on the surface will 

be circular Gaussian in ideal case. Now if another visible laser is expanded and diffracted 

from the surface of the grating, the laser will be diffracted in different amounts from 

different parts of the grating, containing information on the temperature profile on the 

grating. 

The setup shown in Fig. 16 is used to measure the beam profile of a CO2 laser. In this setup, 

a CO2 laser and a 658nm diode laser are made collinear with each other using a ZnSe 

window, and finally both lasers are irradiated on a 4mm × 4mm TTG device. The diode 

laser is expanded to about 3 cm diameter to cover the 4mm × 4mm TTG device with 

uniform intensity. The CO2 laser is passed through a shutter so that the irradiation time 

can be controlled. Immediately after the CO2 laser pulse, the CCD camera takes a picture 

from diffracted diode laser by a 4f imaging system using the 1st order of diffraction. It 

takes about 1 min for the device to get cool enough to repeat the experiment.  The heat 

gun shown in Fig. 16. is used to keep the working area between point A and B as specified 

in Fig. 15d. 

 

Fig. 14. Fabrication of the TTG device: (a) the grooves of the grating are filled with 
nitrobenzene and (b) a supporting glass is placed on the device (Riahi et al, 2008). 
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Fig. 15. Diffraction order intensities at different temperatures: (a) T = 77 °C, (b) T = 108 °C, 
and (c) T = 140 °C. The maximum intensity is normalized to unity. (d) Experimental result of 
the intensity of the 1st order of diffraction versus temperature. The maximum intensity is 
normalized to unity (Riahi et al, 2008). 

 

Fig. 16. Setup used for measurement of the temperature profile of the CO2 laser (Riahi et al, 
2008). 

The Image produced on the CCD camera and measured beam profile of the CO2 laser is 
shown in Fig. 17. 
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Fig. 17. (a) Image produced on the CCD camera. (b) 3D intensity profile of “a” will be the 
same as the beam profile of the CO2 laser (Riahi et al, 2008). 

The followings are some errors presented in this experiment.   

- additional temperature Gradient on the Thermally Tunable Grating because of the 
environmental errors 

- Thickness of the Supporting Glass 
- Aberrations of the Grating 
- Expansion of the Grating 
- Beam Profile of the Diode Laser 

Some of these errors are so small to affect the beam profile, but some of them might be 
important and have to be corrected. 

7. Real time measurement of the CO2 laser beam profile utilizing TTG 

In method we presented in the previous section, after each measurement, time had to be 
taken for the grating to cool down and get ready for another measurement. This can be a big 
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problem for real time measurement. In this part, a thermally tunable grating with fast 
response time is presented, which makes the real time measurements feasible (Riahi & 
Latifi, 2011). 

The principle of this method is the same as what was mentioned in the previous section 

except that the device becomes a reflective instead of transitive and a thin supporting glass 

in the device is replaced by a double side polished silicon wafer. The silicon wafer plays the 

role of a reflector at 532 nm (40% of reflection) and also as an optical window for the CO2 

laser. But the most important characteristic of the silicon is it’s high thermal diffusivity. The 

thermal diffusivity of silicon is 0.95Siα = (cm^/sec). It has to be mentioned that the thermal 

diffusivity of copper which is used as a very good heat sink is 1.1cuα =  (cm^2/sec) which is 

just a bit more than for silicon. 

However, silicon can plays a role of a heat sink during the measurements and maked the 
real time measurements feasible. 

 

Fig. 18. Schematic setup for real time measurement of the CO2 laser beam profile (Riahi & 
Latifi, 2011) 

To measure the beam profile of a CO2 laser, a setup as shown in Fig. 18 was used. In this 

setup, a CO2 laser beam incident on the grating device from the silicon side is absorbed in 

the grating structure and warms it up. A 532 nm laser is expanded and irradiates the 

grating, from the glass side. After passing through the grating, the visible light reflects back 

from the silicon slab and is directed to a 4f imaging system. A high pass spatial filter is used 

to keep the first order of diffraction for imaging.  

The response time of this system can be measured.  For this reason the same setup as in Fig. 

18 is used, except that a chopper is placed in front of the CO2 laser and a fast photo-detector 

is used instead of the CCD camera. By chopping the CO2 laser beam, the signal of the photo-

detector was monitored by an oscilloscope. As seen in Fig. 19, the response time of this 

device is about 10 milliseconds. 
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Fig. 19. Detected signals from photo-diode when CO2 laser is chopped off and on 

8. Conclusion 

In this chapter, the relation between CO2 laser and fluid applications was presented. First, 
application of a CO2 laser for fabrication of microfluidic and optofluidic structures on 
PMMA polymer was presented. Then application of a fluidic device for measurement of a 
characteristic of a CO2 laser was discussed.  

Application of the CO2 laser for microfluidic fabrication is a simple and low cost method 
which can be performed by a commercial CO2 laser engraving system. This method makes 
the final products very cheap which are suitable for single use applications. 

Also it seems that the application of the CO2 laser in microfluidics shows a good potential 
for fabrication of some complicated structures even 3D structures for future works. 
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