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1. Introduction 

This chapter is about the pressing problem of, and our proposed response, to data deluge in 

the analysis of complex systems. We begin by illustrating the problem in certain systems 

engineering examples, primarily focusing on aerospace-related systems but pointing out the 

generality of this problem in other data-intensive design problems (Section 2). Having 

established the need to address this problem, we then propose a solution based on current 

advances in the intersecting fields of neuroscience and computer engineering, increasingly 

being called neural engineering (Section 3). With a proposed solution in mind, we carry out a 

case study in which we utilize certain results and algorithms from neural engineering 

(Section 4). Though this case study gives credible results, we find that we can improve our 

neural-based models of complex systems data from more direct neuroscience experiments 

on expertise (Section 5). Finally, we draw conclusions on the current state of the art for 

leveraging neural engineering results and algorithms on the problem of complex systems 

post-factum data analysis (Section 6).  

2. A problem in systems engineering: Data deluge 

The need to engineer within and for both increasingly complex and sophisticated systems is 

continually growing. In tandem with this problem is the need to analyze ever-increasing 

amounts of data that describe these systems. In short, the post-factum analysis of an 

already-built system is a key step in the analysis and, consequently, the design processes. 

For instance, within the aerospace community, this problem is not unfamiliar. In that field, 

the perennial aim has been to balance the various sub-disciplines (e.g., acoustics, 

aerodynamics, propulsion, structures) to deliver an aircraft or spacecraft that meets a set of 

pre-defined criteria. But with each added sub-system of an aircraft, there is an added degree 

of complexity that is contributed to the design process.  

This phenomenon is not unique to aerospace systems design. More generally, with the 

explosion of remote sensing capabilities in recent years, there has been a deluge of data 

made available about many other complex and intricate systems. But the means to fully 

analyze this data and to extract a useful comprehension of its content can be a challenge.  
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Both of these problems – one being a subset of the other – share a common thread: there is a 
plethora of computation needed to arrive at a design solution. In aircraft design, there is a 
potential deluge of possible designs as new sub-systems are added to the analysis. Similarly, 
in the mining of data from complex systems, there is likewise a deluge of possible data 
interpretations; and no specific interpretation is more ‘correct’ than any other (via the ‘No 
Free Lunch Theorem’, Ho & Pepyne, 2002).  

In the midst of this deluge, it is potentially easier to approach the data holistically and to 
provide a subjective analysis of its content. Not only does this approach allow the data’s full 
scope to be considered, but it also allows comprehension to be communicated rapidly 
because of its approximate – and therefore, simpler – nature. For instance, many systems 
engineering techniques have been devised to simplify the potentially overwhelming aspects 
of a complex system’s analysis. Some examples of these are the analytical hierarchy process 
(Saaty, 2000 and Saaty, 2008), quality function deployment (Chan & Wu, 2002 and Akao, 
1990) and other quasi-quantitative methods of subjective evaluation. While these methods 
have proven to be rapid, their transparency is lacking due to the expert-driven nature of the 
processing schema. For instance, in quality function deployment (QFD), experts in a 
particular discipline create subjective mappings from requirements to characteristics for a 
given product. There is no physics-based model that determines the product’s design. 
Rather, a graded scale is used to map design requirements to characteristics based on a 
subjective assessment done by an expert. Necessarily, in this and other techniques like it, 
there is a crucial role for an expert’s input to such analysis.  

There has also been an opposite response to the data deluge in system analysis: utilize the 
increasingly available computation power to process the excessive amounts of data. In other 
words, rather than resign to the need for subjective analysis (e.g., in QFD) due to the 
problem’s complexity, the availability of greater amounts of computing power in recent 
years has made it possible somewhat to navigate the deluge. For example, this has been the 
mentality behind the approach of multi-disciplinary optimization (Vanderplaats, 2007), 
which is used with great success in aircraft design. In multi-disciplinary optimization 
(MDO), numerical optimization techniques are applied to sets of objective functions whose 
dependent variables must satisfy various constraints (i.e., inequality, equality and side 
constraints). The ultimate aim though is not to yield a design that is optimal in any one 
system, but rather one that is optimal with regard to all systems. Necessarily, such a process 
is computationally quite costly and as the number of variables grows it becomes infeasible.  

Similar examples exist for the analysis of data obtained remotely. For instance, the American 
military increasingly relies on remote sensing for many of its activities (e.g., the MQ-1 
Predator drones, National Commission, 2004). But the exponentially-increasing amounts of 
data leave the analysts “swimming in sensors and drowning in data” (Drew 2010). In other 
words, the analytic tools to comprehend the data are well behind the means to gather it.  

Such an analysis problem is an inherent precursor to engineering a complex system. For 
instance, it exists in the case where the system has been human-constructed from many parts 
(e.g., an aircraft). And it also exists when the system is not human-constructed, i.e., in nature. It 
is this latter situation that is of the most interest to us now though because, in reality, it is a 
superset of the first: whether man-made or not, it is a difficult engineering analysis problem to 
figure out how complex systems work. In particular, although the human-constructed parts 
may behave in predictable ways in many situations, there are always new interactions arising 
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between component sub-systems that reveal a previously unknown system-level behavior. 
Therefore, while reductionist approaches to system construction can be successful in most 
cases, we have still not obtained the hoped for deterministic prediction of behavior. 

Instead, it seems that a degree of uncertainty is inherent in the analysis and consequently 
the engineering of all systems. This does not mean that we throw the previously successful 
reductionist approaches to the wind though. But for the analysis and engineering of those 
systems for which such approaches are impossible (e.g., not accurately quantifiable, not 
modelled within computational constraints), the only mechanism for design choices thus far 
has been the aforementioned systems engineering techniques (QFD, AHP, MDO, etc.). A 
new approach is needed. 

3. A new path for handling data deluge in analysis: Neural engineering 

As a result of this problem, we suggest here to consider the breadth of results and 
techniques emerging from neural engineering to bolster systems analysis for engineering 
purposes. In particular, instead of relying on an inconsistent mapping made by human 
experts to design analysis (e.g., as in QFD), why not understand some cognitive elements to 
expertise and, in turn, apply that comprehension to both systems analysis and 
manipulation? Of course, these are both monumental tasks to perform, considering not only 
the breadth of cognitive abilities that comprise expertise but also determining how to 
implement them in real engineering contexts.  

Despite the seemingly daunting nature of these endeavors, certain elements of expert 
decision-making, human situational awareness and cortical biology can inform some of the 
details as to how we can understand and, in turn fine tune, the ways by which we as 
engineers collect observations and integrate them into a cohesive analysis; such an analysis 
is then the foundation of ensuing engineering choices. Nowhere is this need as great as it is 
in the analysis of complex and large-scale systems. Therefore, a true test as to the utility of 
neural engineering for systems purposes would be to implement these ideas within a 
complex or large-scale analysis and engineering task. In this chapter, we will demonstrate a 
simulated use of such an application.  

As a demonstration, we discuss the application of neural engineering to the analysis of 
Iraq’s stability during 2003-2008. This application was never used in a real context, however 
we frame the problem within the context of its utility to a decision-maker whose actions 
influence the outcome of such a system. In other words, he/she must analyze and then 
manipulate this system. Our assumption is that the decision-maker only has access to a 
stream of data that measures certain conditions related to Iraq’s stability. More importantly, 
we assume that there is no possibility of developing an analytic model to describe the time-
evolution of Iraq during these years. Rather, we cast aside that futile aim and attempt to 
glean useful patterns directly from the data. As part of this demonstration paraphrase 
(seeing as the full-blown analysis comprises a Ph.D. thesis and several papers), we 
emphasize the importance of learning algorithms to do so. Specifically, we consider 
algorithms based off of some anatomical and behavioral features of the human cortex. Built-
in to the rationale behind using these algorithms is the assumption that many of the 
cognitive faculties comprising the development and use of expertise reside in the cortex.  

Building off of the hope (and shortcomings) provided by the Iraq example, we then review 
some of the latest developments in neural engineering that have possible applications in the 
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analysis of other large-scale systems. As we will see, it is important to maintain an awareness 
of how the biological hardware (e.g., a neuronal network) “computes” its analysis of complex, 
time-evolving, often self-conflicting and/or occluded data. We will offer the results of an 
experiment from audio cognition in which expertise of subjects is tracked directly from neural 
data. Finally, we will then consider how these insights would then translate back to the actual 
solid-state computations done in modern computers to drive systems engineering analysis. 

4. Case study of neural engineering-assisted analysis: Iraq war, 2003-2008 

The focus of this case study is to create a computational situational awareness (SA) usable 
by the Department of Defense to gauge Iraq’s stability during 2003-2008. Situational 
awareness is a term from psychology used to describe elemental steps of an expert’s mental 
processes (Endsley, 1995). In other words, situational awareness is the description of the 
cognitive processes involved in an expert’s analysis of a situation. So if we can design an 
appropriate computational SA for the Iraq context then it is equivalent to developing a 
means to analyze that context for driving it to a desired state – in other words, to engineer it.  

As a theoretical construct, SA was developed to analyze the decision-making processes of 
aircraft pilots, yet its general usage has extended into many other areas in which expertise 
are employed by a human controller. In general, an SA can be particular to a given scenario 
or context. For example, pilots have SA for flying airplanes, pianists have SA for playing 
music, etc. In our case study, the SA of interest applies to the stability of Iraq during the war 
from 2003-2008, which henceforth will be called the ‘Iraq context’.  

To develop this SA computationally, we implement a method that is summarized by the 
information flow of Fig. 1.  

 

Fig. 1. Method for building/maintaining computational SA with HTM 
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This method maps the neurally-inspired machine learning algorithms to be used here 
(Hierarchical Temporal Memory, or HTM, see Section 3.2.1 for details, George & Hawkins, 
2009 and George, 2008) to the three levels of SA first hypothesized by Endsley (Endsley, 
1995). These three levels are Level 1 (perception of relevant elements), Level 2 
(comprehension of those elements) and Level 3 (prediction). Here, we focus on Levels 1 and 
2, since they are a necessary antecedent to Level 3. In particular, we present here a way to 
implement Levels 1 and 2 for this problem via data preprocessing and HTM 
training/testing.  

4.1 Why use such a high-level representation of mental processes? 

While this approach enhances awareness of trends in the data of the Iraq context, it also 

mimics the basic tenets of what constitutes SA in actual decision-makers. In particular, 

Endsley and others have shown that the selection of a goal is crucial to SA formation. In 

other words, the collection of data, its analysis and the engineering goal are all inextricable 

in forming SA. Here, we assume the criteria for success established by the U.S. Department 

of Defense: to bring Iraq to political, economic and social stability between 2003-2008 

(United States House of Representatives, 2005). Consequently, we rely on data related to 

these aspects of the Iraq context, so that not only do we enhance a decision-maker’s own SA 

of the Iraq context but we also create one – albeit, a rudimentary one – with a computer. By 

starting from such a high-level representation of expert mental processes, we can then 

specialize the computational tools used to find problem-relevant patterns in the data. 

4.2 Deploying these processes computationally 

Once the collection of data is focused onto problem-relevant elements, the analysis of that 

data becomes a learning problem. By conceiving of the expert’s assessment of data as a 

learning problem (due to Endsley), we are in a position to mimic some of these processes 

computationally.  

However, there is a question to consider before doing so: What is the right answer? In 

particular, no matter what machine learning approach is used, it is difficult to validate the 

SA learned about this context, since we do not know the right answer a priori. In other 

words, we do not know if our assessment of Iraq’s stability is ‘correct’. Although this is 

possible in other learning problems, such as invariant visual pattern recognition (i.e., the 

pattern is either object A or object B), we cannot do this here.  

So to verify the accuracy of the computational SA formed in this context, another method 

will be introduced that has influence from system dynamics: we call it extreme-case 

bounding. This method has assumptions built into it that creates fictitious extreme cases of 

stability, either extremely unstable or extremely stable. With these fictitious bounds used for 

HTM network training/testing (e.g., extreme dystopia or utopia based on the data), some 

insight into the actual progression of events in Iraq during 2003-2008 can be obtained. 

Needless to say, this method is not perfect and it is somewhat arbitrary because we 

arbitrarily select a peg against which to measure Iraq’s stability. Nevertheless, it provides an 

intriguing foothold in an avenue of computational SA that has thus far been difficult to 

probe concretely.  
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4.2.1 The final computational piece: A neurally-inspired machine learning algorithm 

Thus far, Hierarchical Temporal Memory (HTM) algorithms have been mentioned as a way 
to execute the various stages of SA accounted by Endsley and have been adapted into Fig. 1. 
However, we have not yet discussed why these algorithms in particular are of interest. In 
what follows, we will argue that the hierarchical storage of spatio-temporal data and the 
way by which temporally adjacent data points are related to each other lend well to steps of 
SA laid out in Fig. 1. To make these points clear, Fig. 1 includes learning and inference steps 
involved in HTM training and testing as well.  

An HTM attempts to mimic two crucial aspects of cortical function and anatomy. These are 

particularly of use for determining better ways to handle highly-varied data, so their potential 

utility in forming SA are apparent. First, these algorithms rely on the temporal adjacency of 

observed events when storing spatial patterns. The anatomical inspiration for this procedure 

comes from observations of cortical function. In particular, there are numerous cell groups and 

types in the cortex that have been identified as ‘sequence detectors’ (e.g., PPA, Broca’s Area, 

FFA). Secondly, and in relation to the first aspect, the algorithms store these sequences in a 

hierarchical arrangement across both space and time. The result of this division of spacetime is 

that local regions’ spatio-temporal patterns are first encoded from which more global regions’ 

patterns are then encoded, etc. The anatomical inspiration for this compartmentalization of 

information comes directly from the different hierarchical functional areas observed in the 

human cortex (e.g., visual cortex, audio cortex, etc.).  

Since an HTM is implemented on a computer, it is perhaps useful to consider a mathematical 

description of HTM. For starters, a trained HTM is in fact a Bayesian inference network. In 

particular, it is a network of nodes, each of which solving the same problem: learning spatio-

temporal sequences. On a network-level, the goal behind the algorithms is to learn a schema 

( S ) that describes data related to a given problem. That problem exists locally for each node in 

a vector space ( iv ) and, upon grouping all nodes, exists on a global level that concerns all data 

related to the problem (V ). Considering the local version of the problem, each vector ( kx ) in 

iv  is an observation of an aspect of a given complex phenomenon at the thk  time step. The 

HTM node’s goal then is to create q  Markov-chains to which any one of the vectors in iv  can 

be assigned. For compression purposes, it is highly desirable that q k . By collecting sets of 

observations in this way, each node’s Markov-chain ( qm ) corresponds to some spatio-

temporal high-level feature of the local complex phenomenon. Consequently, the set of all M  

Markov-chains constitutes a schema ( S ) of the global phenomenon. In other words, S  is a 

reduction of the phenomenon witnessed in each node’s vector space, iv . In particular, by 

using HTM, the aim is to use learning mechanisms akin to certain aspects of neural coding to 

develop a schema, i.e., a situational awareness of the data (V ).  

4.3 Implementation for the Iraq context 

For the Iraq context, the phenomenon is the Iraq War during 2003-2008. The goal of the 

HTM then is to create a schema ( IraqS ) that is a suitable description of the Iraq context. This 

schema is based on what kind of data is used to describe the Iraq War ( IraqV ). Recalling that 

the analysis and collection of data are inextricably linked in forming SA, and due to the DoD 

goal of achieving political, economic and security stability, we have chosen metrics of these 
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aspects of Iraq stability to track during 2003-2008. In the following sub-sections, we show 

what specific data is used (part of forming Level 1 SA) and how that data is ‚comprehended’ 

using a trained HTM for inference (Level 2 SA).  

4.3.1 Level 1 SA: Data preparation 

Entering the information flow of Fig. 1, the first task (represented by an oval) is to prepare 
the data. Before doing so, we must address the Boolean question (represented by a triangle) 
about whether data is available. For the Iraq context, we actually have data. But some effort 
is needed to prepare this data into standard form.  

There are four issues we must confront in doing so. First, the primary source (United States 
Department of Defense, 2005, 2006, 2007, 2008, and O’Hanlon & Campbell, 2008) from which 
the data is extracted contains many blanks in the data, depending on how many metrics are 
used. So a set of metrics must be selected from the actual data that exhibits a minimal 
number of blanks.  

Second, the primary source has not prepared the data in a temporally structured format 
suitable for HTM learning. Dileep George pioneered work on HTM algorithms and he gives 
guidelines for generalizing their usage in other domains. In particular, George writes, “if 
there is no temporal structure in the data, application of an HTM to that data need not give 
any generalization advantage.” So the data must be arranged in this fashion if HTM is to be 
of use. Specifically, observations at specific time intervals should follow one another.  

Third, the relative magnitudes of the chosen metrics will be necessary to consider. 
Consequently, a transformation of the data may be necessary before training/testing.  

Fourth and finally, one of the metrics we use to describe the Iraq context is only known 
within given bounds at each time step. Consequently, we must select a technique to get only 
one value at each time step, rather than a range.  

Considering all of these points, it is possible to pick a subset of metrics from the primary 
source that we can use to describe the Iraq context in a data-driven fashion related to our 
goal of tracking stability. These selected metrics are shown in Table 1 with identifying 
numbers next to each of them.  

Metric Units Metric #

Iraqi_Civilian_Fatalities persons 1

Multiple_Fatality_Bombings persons 2

US_Troop_Fatalities persons 3

Improvised_Explosive_Device_US_Troop_Deaths persons 4

Car_Bomb_US_Troop_Deaths persons 5

Mortar_and_Rocket_US_Troop_Deaths persons 6

Rocket_Propelled_Grenade_US_Troop_Deaths persons 7

Helicopter_Loss_US_Troop_Deaths persons 8

Other_Hostile_Fire_US_Troop_Deaths persons 9

Total_US_Troop_Deaths persons 10

Attacks_on_Iraqi_Infrastructure_and_Personnel incidents 11

Coalition_Troop_Strength persons 12

Crude_Oil_Production millions of barrels per day 13

Crude_Oil_Export millions of barrels per day 14

Nationwide_Electricity Megawatts 15

Nationwide_Unemployment_Rate % 16  

Table 1. Sixteen metrics to describe Iraq context 
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While it is possible to select fewer metrics, a drop off in performance was seen when this 
was done. We have shown this in other works (Sherwin & Mavris, 2011 and Sherwin, 2010). 
We believe that this occurs because the degree of stability in an operational theater already 
lacks a clear definition amongst stakeholders. Consequently, the more metrics that are 
incorporated into the analysis, the more complete the description of stability will be. 
Inversely, the fewer metrics that are incorporated, the more narrow the description will be. 
Here, we stopped at sixteen because this number approaches the upper limit of what was 
publically available, although more metrics may make the analysis that much more rich.  

Finally, to give the HTM a baseline for stability and instability, artificial data generated from 
a rudimentary system dynamics was created based on the selected metrics. For instance, in 
this model (for stability, for instance), the number of troop deaths due to car bombs fell off 
to zero over time (roughly the same 60 months of time for which actual data exists). 
Alternatively, in this model, (for instability, e.g.), the nationwide electricity would flatten 
out to zero. In general, metrics associated with stable or unstable situations would 
monotonically be driven to an extreme maximum or minimum over the course of 60 
months, starting from a real data point. In other words, we use extreme-cases to bound the 
reality observed in actuality – and this reality is more of a complex mix of certain features of 
instability and/or stability along different avenues (such as politically, socially, or 
economically).  

4.3.2 Level 2 SA: HTM-aided comprehension of the data 

With the ability to generate data for both progressively stable and unstable situations, as 

well as the actual time series of data on the Iraq context, it is possible to attempt HTM as an 

unsupervised machine learning mechanism. Recall, an HTM is a network trained is built to 

find a schema, S , that describes the Iraq context. This is based on each vector observed in 

each node’s local vector space, iv , all of which considered together constitute V . To aid the 

spatio-temporal grouping, these vectors are first grouped with K-means clustering before 

temporal adjacency is learned and grouped into the network’s Marko-chains, M . These 

Markov-chains are then used to perform evidence-based Bayesian inference on novel data. 

With HTM, the aim now is to fuse the data and to extract possibly implicit meaning from it 

pertinent to the Iraq context. We emphasize the unsupervised nature of the learning here 

because our goal is to extract implicit meaning and not to impose our possibly biased 

judgments. Furthermore, we attempt to extract this meaning from a system that is not 

ergodic (i.e., there is no end-state), not separable into components (hence, model-able) and 

not completely observable (i.e., uncertain data describes the system).  

It has been found to be more effective to first train the HTM on the extreme-case data and 

then to test its inference capabilities on the actual data (Sherwin & Mavris, 2011). Therefore, 

we implement this approach so that the HTM can learn from the extreme-case boundaries 

and then use them to classify the reality in between.1 

The evaluation of this computational SA is not entirely straightforward and so additional 
techniques were employed to probe the SA formed about the Iraq context. These studies will 

                                                 
1 The former method has been tried and has proven unsuccessful (Sherwin, 2010). 
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not be reviewed in too much depth now, but a summary of them is important for our 
purposes.  

For starters, we do not know if too many or too few metrics are being used here to describe 
the Iraq context. Therefore, studies were done to see what effects there are from reducing 
the number of metrics used to train and infer with the network. It was found that fewer 
metrics reduce the semantic richness of the data, thereby causing certain volatile metrics to 
dominate the learning and subsequent inference.  

Also, we examined the degree to which information is hierarchically stored in intermediate 
levels of the networks. We found that, true to the promise of HTM, this was the case. 
Finally, we considered alternative ways of feeding the data into the networks to see what 
effects – if any – there are on the simulated SA.  

Why would we use these techniques in particular though? For instance, what purpose could 
there be in probing the hierarchical storage of information in an HTM? It is necessary to 
recall that our purpose in using HTM for computational SA has been its declared ability to 
condense information into hierarchies of both space and time. For the Iraq context, we test 
hierarchical storage directly because it is not clear what the top-level node’s output should 
be, as it might be for simpler recognition tasks (e.g., invariant visual pattern recognition, 
George & Hawkins, 2009, and George, 2008). One possible outcome of this analysis is that it 
might in turn help us to identify what aspects of the Iraq context are not well observed. This 
would then provide the beginnings of a feedback mechanism with Level 1 SA to search for 
more data.  

In fact, in the course of this research, it was one possible feedback mechanism between 
Levels 1 & 2 SA that informed us to improve our extreme-case model. This resulted in the 
monotonic extreme-case models used below. Necessarily, this is not the only possible 
feedback mechanism, but as we will see, it helps to strengthen the credibility of the Level 2 
SA formed here computationally. If we use data for training that becomes monotonically 
extreme from a realistic starting condition then we would expect an HTM network to learn 
to recognize clear progressions towards stability/instability.  

We employ an evolutionary approach to network design here and modify a network used in 
an HTM demonstration example (see Numenta, 2008).2 In order to exploit the HTM 
network’s temporal learning algorithms, we modify the network parameters to 
accommodate how the metrics’ values change in time. The complete network parameters 
employed for this computational Level 2 SA can be seen in another work (see appendix C.9 
in Sherwin, 2010).3 

From training the network, we can survey the resulting schema created by the network. As 
for all HTM nodes, this is described in terms of coincidence patterns (i.e., distinct spatial 
patterns) that form the schema’s Markov-chains. Here, we find that there are sixty-one 

                                                 
2 All analysis has been done with Vitamin D Toolkit 1.3.0 as a graphical user interface to NuPIC 1.6.1, 
which is run on Python 2.5.2. It should be noted that slightly different results are obtained if networks 
are created, trained and tested directly in NuPIC. See appendix D in Sherwin, 2010 for more 
information on this topic.  
3 Even though this work says that these parameters are for a progressively trained network, they are the 
same ones used for the monotonically trained one.  
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coincidence patterns (C3,1) and fifty-nine Markov-chains (G3,1) in the top-level node.4 The 
coincidence patterns are the result of the K-means clustering in this top-level node, while the 
Markov-chains are the result of first-order transition probabilities between these coincidence 
patterns. This is a standard calculation for each of the nodes in an HTM network (see 
George & Hawkins, 2009).  

After proper training, an HTM network is most valuable as an inference tool, so now we 
evaluate its performance. We will start plaintively by looking at inference on the training 
data, moving onto novel data later.  

When we perform inference on the monotonic training data, we see a clear progression of 

Markov-chains as instability increases, but stability is still not clear. We can see this by 

following the probability over Markov-chains  t rg  of the top-level node, given the 

bottom-up evidence (–et) at each t. In particular, we examine the maximum of this 

distribution (  max t rg   ) to see what stability state is most likely. What we find is that the 

progression indicated by  max t rg    is g0, g1, g2, ..., g58. Since we know the data is 

monotonic towards instability, we can reasonably claim that the Markov-chain labels are 

monotonic towards instability as well. For example, the bottom-up evidence when g45 is 

most likely in the top level indicates a situation that is less stable than when g5 is most 

likely.  

Having trained the network to recognize progressions in instability, it would be useful now 
to test this ability on novel data. In particular, we feed into the network real data of the Iraq 
context. When we look for instability gradations in the actual data, we see some interesting 
results (Fig. 2). In Fig. 2, as in similar figures to follow, each row is a time point. The first, 
second, third, etc. columns indicate the groups (i.e., Markov-chains) that are most likely, 
second most likely, third most likely, etc., given the bottom-up evidence. The significance of 
this ordering of group numbers at each time point is that we can quantitatively say how 

unstable Iraq is at each of them. Note throughout that time points t  [0, 60] correspond to 
each month from May 2003 to April 2008. In particular, at t = 11, 12, the entire probability 
distribution over top-level Markov-chains shifts towards higher number Markov-chains. At 
t = 11, g25, g24, g23 are in the top three (see Fig. 2).  

At t = 18, the probability distribution shifts as well, indicating g12, g13, g14 in the top three. 
In light of our results from inference on the monotonic-extreme-case instability data, it 
would seem that the Iraq context is increasingly unstable during these months. 
Furthermore, the actual data during these months indicates this in comparison to those 
months that come before them.  

Let us expand our purview to those time points leading up to and coming out of t  [41,49], 

another region of heightened instability according to the network. If we consider the top 

seven Markov-chains of the top-level for t  [36,60] then we see something quite interesting. 

For t  [36,41], the distribution shifts increasingly towards g12, g13, g14, g15, g16, g17, g18. 

Also, we can see the demotion of g0 over these time steps (Fig. 3), indicating increasing 

instability. 

                                                 
4 Here and throughout the remainder of the paper, we follow George’s notation for HTM theory 
(George & Hawkins, 2009 and George, 2008).  
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Fig. 2. Instability recognition of real data 

 

Fig. 3. Probability Distribution Shifts Towards Higher-Number Markov-chains 

Then for t  [41,49], these seven Markov-chains are the most likely, given the bottom-up 
evidence (Fig. 4).  
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Fig. 4. Complete Shift Towards Markov-chains Indicating Instability 

As we know from the actual data, there were peaks in violence and other attacks, sagging 

economic metrics, etc. during this time. But there were also metric trends that favored 

stability. Consequently, this conflicting data makes it difficult to characterize the stability 

level during this time period. But here we see the probability distribution shift for the entire 

time period towards these mid-grade instable states.  

The situation in the Iraq context changes though with time. For t  [50,51], the probability 

distribution begins to shift back. Finally, for t  [52,60], g0, g1, g2, g3 are the top four most 

likely Markov-chains (see Fig. 5).  

Even though this does not indicate stability, it does indicate a dramatic drop in instability, 

according to how we trained the network. So we see here how the monotonic training data 

has provided a peg against which to categorize evidence that trends towards instability. But 

what about stability recognition? 

As mentioned earlier, direct stability recognition is less clear, even with the monotonic 
training data. Rather, we can only infer stability recognition with the network. Why is this 
so? If we consider the types of metrics used here then we notice that only four of them 
increase with stability. So, as a more stable situation is reached, the remaining twelve 
metrics drop close to zero. Consequently, the bottom-up evidence does not provide enough 
magnitude to propagate through the network. All the change comes from the four metrics 
that increase with stability. In the current permutation of the data, one of them is in the 
receptive field of the third node in level one (N1,3) and the other four are in the field of N1,4. 
The entire left receptive field (covered by N1,1 and N1,2) therefore produces blank 
recognition. This is because there is simply not enough bottom-up evidence coming up 
through this side of the network. So we are not able to determine gradations of stability 

www.intechopen.com



 
Leveraging Neural Engineering in the Post-Factum Analysis of Complex Systems 

 

177 

because the utility function of these metrics can be assumed to be inversely proportional to 
stability. Consequently, as stability is reached, the magnitude of –et goes to zero. In future 
implementations, it might be possible to alleviate this problem by transforming the data by 
an inverse or offsetting the zero. We have not done this though because we have devised an 
approach to recognize degrees of instability in real data, as judged against the extreme-case 
baseline. Furthermore, these results imply stability recognition due to the monotonic utility 
function of stability/instability. 

 

Fig. 5. Complete Shift Back Towards Markov-chains Indicating Less Instability 

4.4 Consequences of the Iraq context implementation 

We should be very clear at the outset: the schema formed with the HTM-based 
computational SA created here is not how a human brain of an expert decision-maker 
would function. Rather, it is an alternative analysis of the data at hand that can be used by a 
decision-maker in such a scenario. The key element to its utility though is the fact that the 
computational SA functions in analogous ways to some neuro-anatomical processes, such as 
coincidence detection and spatio-temporal pattern condensation into a flexible schema. In 
particular, the HTM-based SA learns from its experiences to infer about uncertain and novel 
situations. To be implemented on a computer, it does so with the aforementioned 
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hierarchical and temporal breakdown of its ‘experiences’ (in the form of spatio-temporal 
vectors).  

Furthermore, this is not a perfect implementation of neural engineering to analyze complex 

systems. But as the preceding sections demonstrate, it provides a quantifiable analysis of a 

system that is otherwise left in the hands of subjective analyses whose justifications are 

missing or obfuscating. Perhaps with better insight into human expert’s mental processes 

the results would have stronger impact in systems engineering analysis.  

5. Recent neuroscientific results on expertise 

It should be clear from the preceding implementation of computational SA that the 
following is true: 

1. Situational awareness (SA) is a nebulous term used to define an equally nebulous 
ability of humans 

2. The machine learning-based approximation of this process with HTM is imperfect 
3. More details on neural markers of expertise would inform any future computerizations 

of human mental processes 

Considering these points in succession, it is clear that a refined perspective on human-borne 

expertise can add tremendous value to our first attempt of forming SA computationally. In 

particular, we aim to highlight some recent advances in the neuroscience of expertise that 

can ultimately be of use in how we analyze and design complex systems in engineering.  

5.1 What happens when you poke an expert’s brain? 

The most insightful way to examine an expert’s brain is to subject him/her to stimuli that 

violate their expertise-borne predictions. This experimental paradigm has seen tremendous 

success in tracking the neural markers of unexpected stimuli (most notably in analysis of the 

P300, a positivity that emerges around 300ms after a repeatedly unexpected stimulus is 

observed). By tracking neural signatures like the P300 and others, it is possible to see how a 

human brain – experienced in a certain stimulus domain – responds to errant stimuli.  

Although research in many modalities have been done (e.g., functional magnetic resonance 
imaging (fMRI) and magnetoencephalography (MEG)), we focus here on 
electroencephalography (EEG) measurements of neural data. We do this for two reasons: 1) 
single-trial classification of neural data from EEG is generally more robust than it is from 
fMRI (and not very developed for MEG), 2) EEG neural data has a much higher temporal 
resolution than fMRI (and slightly higher than MEG), making it an ideal candidate for more 
immediate integration into systems engineering problems.  

5.1.2 A simple experiment in error-detection 

To illustrate the kinds of neural processes observable with EEG systems, we will summarize 

some experimental work on expectation violation. While this experiment may seem 

removed in the specific sense from analyzing expertise for the purposes of systems 

engineering analysis, the abstract concept at the heart of this experiment could not be more 

on target. In particular, subjects are asked to listen to an audio stimulus with which they are 
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quite familiar. In this case, American popular songs, such as „Eye of the Tiger“ or „Sweet 

Home Alabama,“ are used because the subjects all have strong prior expectations for the 

course of these songs once they start listening to them. In other words, they are experts at 

how these songs unfold. In this experiment, we analyze the subject’s expertise about these 

audio stimuli.  

The aim of this experiment is to alter the song in such a way that the following 

occurrences are true: 1) a subject with normal hearing should be able to discern the 

alteration, 2) the subject should be able to reorient his/her expectations after the alteration 

has taken place. The latter condition is a requirement if multiple alterations are to be 

performed within one hearing of the song. To balance these two requirements, it was 

chosen that the song’s key should be altered either up or down by a semi-tone at various 

points in the recording.  

After analyzing the neural data with learning algorithms based on logistic regression 

classification (Parra et al., 2002 and Parra et al., 2005), it is found that we can distinguish 

from neural data alone when the subject perceived an alteration and when he/she did not, 

regardless of where they were in the song. In other words, we are able to distinguish times 

in the experiment when the subject’s expertise (and associated predictions) were at a conflict 

with the data (i.e., the audio stimuli) in front of him/her. An example of this phenomenon 

can be seen in Fig. 6. 

 

Fig. 6. Individual subject and subject-average discriminations of expertise violation 

What this plot shows is the classification performance in blue (measured by Az, or the area 

under the receiver-operator characteristic curve, see Green & Swets, 1966) vs. the time when 

this classification is performed relative to when the alteration happened (in the case of the 

alteration) or did not happen (in the case of the corresponding condition in a control 

listening). The alteration is shown in the dotted-black line. The green and red solid lines in 

the left figure indicate the 99% and 95% confidence lines. In the right figure, the subject-

averaged significance lines are differentiated from the individual lines (because they are 

computed differently) by being dashed. The red-dashed line is the 95% and the black-

dashed line is the 99% significance line. Finally, the dashed-green line is the 5%-standard 

deviation from the averaging. As the average plot shows, similar plots exist for other 

subjects in the experiment than the one shown on the left.  
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This experiment shows that there is a measurable neural process happening when an expert 

witnesses something unexpected. In particular, just as with HTM, the key component to 

deciphering the incoming phenomenon (here, it is audio, AudioV ) is the subject’s schema 

( AudioS ) and how it predicts the evolution of AudioV  in time. In other words, we are playing 

with the subjects’ Level 3 SA (i.e., prediction). If this result is to be used in the analysis of 

complex systems then it must involve a dynamic system. Luckily, this challenge in complex 

system analysis is actually a boon for an expert’s assessment of a phenomenon, V . 

5.2 What does this mean for systems engineering? 

As described earlier, systems engineering is a complex process that is largely driven by 
expert insight into a range of problems. But we see both from the computational SA 
demonstration and one result (of many related others) from neuroscience that a new way to 
think about expertise is developing. Furthermore, both results depend on a temporal 
evolution of data as a means by which SA is created, either computationally or by a human.  

It may be possible to integrate this understanding technologically with the needs of systems 
engineering today. For instance, why not handle the data deluge with an approach that 
couples the speedy perception of cortical circuitry to the vast computational power of 
modern computers? This is already being done in remote sensing in the form of cortically-
coupled computer vision (Sajda, 2010). Similar versions of this problem exist in aircraft 
analysis and design, as described earlier. As we become more familiar with the insights on 
expertise provided by neuroscience, it could only be a matter of time before neural 
engineering is a needed integrative enabler of analyzing and manipulating increasingly 
complex and dynamic systems.  

6. Conclusion 

The systems engineering task is only getting more difficult. As systems become more 
complex and demands for reliability increase, there is a growing need – already being met in 
certain ways – to build appropriate analytic tools to engineer within this context. But 
systems engineers are increasingly required to analyze an already existing system before the 
design process begins. In other words, post-factum analysis is a key aspect to the systems 
engineering process. Consequently, subject matter expertise becomes a key enabler for the 
design process. However, the elusive nature of expertise remains an intractable aspect to 
that process. Here, we have shown a computational approach built on insights into expertise 
and how it was used in a decision-making context. In other words, we showed how the 
analysis of the provided data enabled justifiable conclusions on an otherwise unpredictable 
and already established complex system (e.g., the Iraq War, 2003-2008). However, we 
noticed some shortcomings in this approach and so turned our focus to more basic 
neuroscience questions about what neural processes occur as expertise is used. In particular, 
we discussed one recent experiment as an example of current work going in the neural 
markers of expertise. Since such markers are stimulus driven, in particular, the expert reacts 
to data being either in line with expectations or not, we forecasted a potential role for neural 
engineering in the analysis, and consequent design, of complex systems. Not only does this 
need exist but such an approach would also complement the current techniques used in this 
endeavor.  
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