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1. Introduction 

A wide range of techniques have been developed for the preparation of nanomaterials. 

These techniques include physical methods such as mechanical milling (Arbain et al., 2011) 

and inert gas condensation (Pérez-Tijerina et al., 2008), along with chemical methods such as 

chemical reduction (Song et al., 2009), photochemical reduction (Ghosh et al., 2002), 

electrodeposition (Mohanty, 2011), hydrothermal (Hayashi & Hakuta, 2010), and sol-gel 

synthesis (Sonawane & Dongare, 2006). Among all chemical methods the microemulsion has 

been demonstrated as a very versatile and reproducible method that allows to control over 

the nanoparticle size and yields nanoparticles with a narrow size distribution (Lopez-

Quintela, 2003).  

Microemulsions are homogeneous in macroscale and microheterogeneous in nanoscale 

dispersion of two immiscible liquids consisting of nanosized domains of one or both liquids 

in the other, stabilized by an interfacial film of surface active molecules. The essential 

distinction between normal emulsion and microemulsion is their particle size and stability. 

Normal emulsions age by coalescence of droplets and Ostwald ripening. Microemulsions 

are thermodynamically stable, single optically isotropic and usually form spontaneously. 

Microemulsions have ultralow interfacial tension, large interfacial area and capacity to 

solubilize both aqueous and oil-soluble compounds. Depending on the proportion of 

various components and hydrophilic–lypophilic balance (HLB) value of the used surfactant 

microemulsions can be classified as water-in-oil (W/O), oil-in-water (O/W) and 

intermediate bicontinuous structural types that can turn reversibly from one type to the 

other. The dispersed phase consists of monodispersed droplets in the size range of 5 – 

100 nm. The nanodroplet size can be modified by varying concerned parameters, e.g. the 

type of stabilizer, continuous phase, the precursor content dissolved within the 

nanodroplets, and the water content, referred to as molar ratio of water to surfactant (W). In 

addition the stability of the microemulsion can be influenced by addition of salt, 

concentration of reagents, temperature or pressure.  

This chapter focuses on nanoparticles preparation using a microemulsion method, which 
has been employed for the preparation of particles from a diverse variety of materials, 
including metals (Pt, Pd, Ir, Rh, Rh, Au, Ag, Cu) (Capek, 2004), silica and other oxides (Lee 
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et al., 2005; Fu & Qutubuddin, 2001), polymers (Krauel et al., 2005), semiconductors (Pinna 
et al., 2001), superconductors (Kumar et al., 1993) and bimetallic nanoparticles (Pt/Pd, 
Pt/Ru, Pt/Ir, Pt/Rh, Ag/Au, Ag/Cu) with a core-shell or alloy structure (Pal et al., 2007; 
Castillo et al., 2008). Such dynamic colloidal templates are known to produce particles of 
smaller size than those obtained using normal precipitation in aqueous systems. 

2. Preparation of nanoparticles in microemulsion system 

The preparation procedure of metallic nanoparticles in W/O microemulsion commonly 
consists of mixing of two microemulsions containing metal salt and a reducing agent, 
respectively as shown in Fig. 1a. 

 

Fig. 1. Schematic illustration of nanoparticles preparation using microemulsion techniques: 
Particle formation steps. kchem is the rate constant for chemical reaction, kex is the rate constant 
for intermicellar exchange dynamics, kn is the rate constant for nucleation, and kg is the rate 
constant for particle growth 

After mixing two microemulsions, the exchange of reactants between micelles takes place 

during the collisions of water droplets result of Brownian motion, the attractive van der Waals 

forces and repulsive osmotic and elastic forces between reverse micelles. Successful collisions 

lead to coalescence, fusion, and efficient mixing of the reactants. The reaction between 

solubilizates results in the formation of metal nuclei. Bönnemann et al. reported that at the 
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initial stage of the nucleation, metal salt is reduced to give zerovalent metal atoms, which can 

collide with further metal ions, metal atoms, or clusters to form an irreversible seed of stable 

metal nuclei (Bönnemann & Richards, 2001). Growth then occurs around this nucleation point 

where successful collision occurs between a reverse micelle carrying a nucleus and another 

one carrying the product monomers with the arrival of more reactants due to intermicellar 

exchange. The nucleation reaction and particle growth take place within the micelles and the 

size and morphology of as-prepared nanoparticles depend on the size and shape of the 

nanodroplets and the type of the surfactant, whose molecules are attached on the surface of 

the particles to stabilize and protect them against further growth. 

Wongwailikhit et al. prepared iron (III) oxide, Fe2O3 using W/O microemulsion by mixing 

the required amount of H2O in a stock solution of AOT in n-heptane. The solution was left 

overnight, then the concentrated NH2OH and FeCl3 were dropped into the W/O 

microemulsion. Suspension of Fe2O3 was filtered and washed with 95% ethanol and dried at 

300°C for 3 h. They obtained spherical, monodisperse nanoparticles with diameter of about 

50 nm. The particles size was depended on the water content in microemulsion system. The 

increase of particles size was obtained with increasing the water fraction in W/O 

microemulsion (Wongwailikhit & Horwongsakul, 2011). 

Sarkar et al. prepared pure monodispersed zinc oxide nanoparticles of different shapes. 
Microemulsion was composed of cyclohexane, Triton X-100 as surfactant, hexanol as co-
surfactant and aqueous solution of zinc nitrate or ammonium hydroxide/sodium hydroxide 
complex. The molar ratio of TX-100 to hexanol was maintained at 1:4. The microemulsion 
containing ammonium hydroxide/sodium hydroxide was added to microemulsion 
containing zinc nitrate and stirred. The nanoparticles were then separated by centrifuging at 
15,000 rpm for 1 h. The particles were washed with distilled water and alcohol and dried at 
50°C for 12 h (Sarkar et al., 2011). 

Li et al. prepared nanometer-sized titania particles by chemical reactions between TiCl4 
solution and ammonia in microemulsion systems. In order to prepare W/O microemulsions, 
a cyclohexane was used as the oil phase and a mixture of poly (oxyethylene)5 nonyle phenol 
ether (NP5, chemical purity) and poly (oxyethylene)9 nonyle phenol ether with weight ratio 
1:1 as the nonionic surfactant (NP5-NP9). Two microemulsion systems were prepared, 
containing a 0.5 M titanium tetrachloride (TiCl4) aqueous solution and a 2.0 M ammonia as 
the aqueous phase, respectively. The oil phase, surfactant, and aqueous phase were mixed in 
an appropriate proportion in a beaker at 13°C in a water bath to form the microemulsion. 
Appropriate amounts of microemulsion I containing 0.5 M TiCl4 aqueous solution and 
microemulsion II containing 2.0 M ammonia were mixed together, leading to the formation 
of insoluble titania particles. The precipitates were centrifuged, washed by the use of 
acetone, followed by vacuum drying for two hours. TiO2 particles prepared in these systems 
had average size of about 5 nm and a narrow size distribution. TEM, DTA—TGA, and 
Raman spectroscopy studies indicate that their phase transition behavior is close to that of 
the dry gel prepared by the sol-gel method (Li & Wang, 1999). 

Another method to prepare nanoparticles is from a single microemulsion as shown in Fig. 
1B and 1C. One of the reactants usually a precursor of metal nanoparticles is solubilised 
inside reverse micelles and the second reactant (often a reducing agent) added directly to 

www.intechopen.com



 
Microemulsions – An Introduction to Properties and Applications 

 

232 

the microemulsion system. For the nanoparticles formed in single microemulsions the 
mechanism is based on intramicellar nucleation and growth and particle aggregation.  

This method was applied for the first time by Boutonnet et al. in 1982 for preparation of Pt, 
Rh, Pd and Ir nanoparticles in W/O microemulsion. Metallic nanoparticles were formed in 
single microemulsions using hexadecyltrimethylammonium bromide (CTAB) or 
pentaethyleneglycole dodecyl ether (PEGDE) as a stabilizer. The precursors composed of 
water-soluble metal salts and hydrogen gas, bubbled through the microemulsion, or 
hydrazine, were added directly to the microemulsion, as the reducing agent (Boutonnet et 
al., 1982). 

Husein et al. described that intramicellar nucleation and growth dominate when high 

reactant occupancy numbers are coupled with rigid surfactant layer, while intermicellar 

nucleation and growth dominate at low occupancy numbers and less rigid surfactant layers. 

At intermediate values of occupancy the number and surfactant layer rigidity, both 

intramicellar and intermicellar nucleation and growth contribute to the final particle size 

and polydispersity (Husein & Nassar, 2008). 

Sanchez-Dominguez et al. prepared Pt, Pd and Rh nanoparticles by an oil-in-water 

microemulsion reaction method. The microemulsion containing metal precursor (Pt-COD, 

Pd-AAc, Rh-COCl) was prepared by mixing appropriate amounts of surfactant, 

cosurfactant(s), oil phase and deionized water. The used systems: water/ Tween 80/Span 

20/1,2-hexanodiol/ethyl oleate (System A); water/Brij 96V/butyl-S-lactate (System B) and 

water/Synperonic 10/5/isooctane (System C). Then to the solutions, under vigorous 

stirring at 25°C, a small amount of an aqueous solution of sodium borohydride was added 

(Sanchez-Dominguez et al., 2009). 

3. Effects of the parameters on the formation of nanoparticles in 
microemulsion 

The formation of nanoparticles in the microemulsion system is a strong function of the 
intermicellar exchange, which is denoted by the intermicellar exchange rate coefficient 
(kex) and affected by many factors such as: the type of continuous phase, the precursor 
content dissolved within the nanodroplets, and the water content, referred to as molar 
ratio of water to surfactant (W). The high exchange rate between the micelles yields large 
numbers of nanoparticles with a relatively small diameter. On the contrary, slow 
exchange of materials between the micelles leads to formation of a few numbers of nuclei 
and results in larger final particle size. 

Bagwe & Khilar studied the influence of smaller particle size. The micellar exchange rates 

increase as the chain length of the oil increases from 106 M−1s−1 for cyclohexane and 107 for 

n-heptane to 108 M−1s−1 for decane. Silver nanoparticles decrease as the chain length of the 

oil increases from 5.4 nm for cyclohexane and 6 nm for decane to 22 nm for n-heptane. Less 

bulky solvent molecules with lower molecular volumes, such as n-heptane or cyclohexane, 

can penetrate more easily in the surfactant layer, resulting in additional interfacial area and 

interfacial rigidity. In addition the plasmon absorption peak shifts toward longer 

wavelengths (red shift) as the particle size increases and the chain length of the oil decreases 

from decane to n-heptane to cyclohexane (Bagwe & Khilar, 2000). 
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Mori et al. reported that the particle size produced in the cyclohexane is slightly smaller 
than that in the octane system, although the difference in microemulsion sizes is large at the 
same molar ratio water to surfactant (W). The change in the growth depends on the chain 
length of the solvent molecules. With increasing of the chain length, the alkane molecules 
become increasingly coiled and their penetration in the surfactant layer becomes difficult. 
Thus, the interaction between the surfactant and solvent molecules decreases with an 
increase in the chain length of the alkane molecules. As a result, the micellar exchange rate 
increases with the chain length. On the other hand, short chain alkane and cyclohexane 
molecules can easily penetrate the surfactant layer to generate additional interfacial rigidity. 
Thus, the micellar exchange rate would decrease, which further affects the formation of 
silver atoms (Mori et al., 2001). 

Petit et al. also reported that larger silver particles were formed in isooctane, bulkier with a 

larger molecular volume solvent than in cyclohexane (Petit et al., 1993). 

The second studied parameter which can influence the nanoparticle size and shape is the 
type of the surfactants and the addition of the co-surfactants. The surfactants consist of two 
main entities, a hydrophilic head group and a hydrophobic (or lypophilic) tail group, which 
form soft aggregates in solvents and are held together by van der Waals and ionic forces. 
The surfactant acts as a stabilizing agent, effectively dispersing the obtained nanoparticles in 
the solution, providing sites for the particle nucleation and preventing aggregation of the 
nanoparticles. In W/O microemulsions surfactants form reverse micelles, nano-sized water 
pools dispersed within the bulk organic solvent which act as nanoreactors for the chemical 
reduction of the metallic precursors and metallic nanoparticle preparation. 

For the most surfactant-mediated synthesis, the connection between morphology of the 

surfactant aggregates and the resulting particle structure is more complex (than simply 

relating the average size and shape of the micelles to the size and shape of the precipitated 

particles). These molecular-level variables are subject to change with macroscopically 
manipulated experimental conditions, as shown in Table 1.  

Macroscopic parameters Nano-sized parameters 

Identity of included chemical species Static, size and shape of micelles 
Microemulsion composition Aggregation number 

Water-to-surfactant molar ratio 
Dynamic interaction, rates and types of 
merging and dissociation of micelles 

pH Distribution of charged entities around 
dispersed particles Ionic strength 

Dissolved species concentrations 
Surfactant film curvature and head-group 
spacing 

Method and rate of introduction of species Effective Coulumb repulsion potential 
Temperature and pressure  
Aging time Van der Waals, hydrogen and 

hydrophobic interactions Method and rate of stirring 
Homogenous or heterogeneous nucleation Screening length  

Table 1. Macroscopic and nanoscopic variables in the microemulsion-assisted and particularly 
reverse-micellar preparation method of nanoparticles (Uskokovic & Drofenik, 2007) 
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Usually, many surfactants can be used to form microemulsion, including cationic surfactants 
such as cetyltrimethylammonium bromide (CTAB), anionic surfactants such as bis(2-
ethylhexyl)sulfosuccinate (AOT), sodium dodecyl benzene sulfonate (SDBS) and lauryl 
sodium sulfate (SDS), and nonionic surfactants such as Triton X-100 and sorbitan monooleate 
Span 80, nonylphenyl ether (NP-5) or polyoxyethylene (9) nonylphenyl ether (NP-9). 

The most commonly used surfactant for the formation of reverse micelles is the sodium bis(2-
ethylhexyl) sulfosuccinate, also known as Aerosol-OT or AOT, seen in Fig. 2. AOT is a twin 
tailed, anionic surfactant with a sulfosuccinate head group stabilized as a salt by a sodium 
cation. The AOT molecule has an inverted conical shaped structure and has proven to be an 
effective emulsifier, thus finding a wide range of applications as well as numerous intensive 
studies. The surfactant layer acts as steric stabilizer to inhibit the aggregation of nanoparticles 
formed. The microemulsion formed by AOT is made up of three kinds of components AOT, 
water, alkane (without addition of co-surfactants). In this system, micelles consist of a 
hydrophilic core compartmentalised by the hydrophilic head group of the AOT, forming a 
“water-pool” characterized by the molar ratio of water to surfactant (W= [H2O]/[AOT]) and 
with the hydrophobic alkyl tails extending into the nonpolar continuous phase solvent. 

 

Fig. 2. Model of surfactant molecule bis(2-ethylhexyl)sulfosuccinate (AOT) 

AOT microemulsion has extensively been applied for preparation of metallic nanoparticles (Pt, 
Pd, Cu, Ag, Au, Ni, Zn), metal sulfides (CdS, ZnS) and metal oxides (TiO2, SiO2). The resultant 
particles have high stability, small particle size, and good monodispersity. Due to its higher 
solubility in organic phase AOT helps to extract metal cations from the aqueous to reverse 
micellar phase. In addition the particles formed in AOT microemulsion have relatively strong 
electrostatic interactions with the negatively charged head polar group of AOT molecules, 
which comes into being a protective effect against aggregation (Zhang et al., 2007). 

In the first papers by Lisiecki & Pileni on the preparation of metallic nanoparticles, it was 
demonstrated that both the bulk solvent and W value have an effect on the preparation of 
copper and silver nanoparticles in the AOT microemulsion system (Lisiecki & Pileni, 1995).  

Table 2 gives a brief summary of various parameters which influence on the size and shape 
of nanoparticles prepared using the microemulsion method. By going through Table 2, one 
can observe that AOT has been reported to be the most suitable surfactant for silver 
nanoparticles preparation, and water-to-surfactant ratio is a crucial parameter in setting up 
the final size of the obtained nanoparticles. 
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Zhang et al. (Zhang et al., 2007; Zhang et al., 2006) reported that silver nanoparticles 
prepared in AOT microemulsion have a smaller average size and narrower size distribution 
compared to the particles prepared using cationic or nonionic surfactant in the microemulsion 
system (Zhang et al., 2007). In addition, due to the adsorption of AOT molecules onto the 
particles, the resultant sol can be preserved for a long time without precipitation and it easily 
transfers the obtained nanoparticles into nonpolar solvents (Zhang et al., 2006). 

TX-100 (Triton X-100) another commonly used surfactant for preparation of nanoparticles in 
W/O microemulsion has extensively been applied for preparation of monodisperse gold, 
nickel, copper, and semiconductors nanoparticles such as titanium dioxide and silica but as 
performed reseraches have shown this surfactant is not sufficient for stabilization of silver 
nanoparticles in the microemulsion system. This nonionic surfactant reveals strong solvent 
dependence for the formation of reverse micelles. Because of the presence of long 
polyoxyethylene group the polar interior of the reverse micellar aggregate would be of 
different nature; it is also expected that the TX-100 system would show a different phase 
behavior compared to AOT molecules. 

Spirin et al. compared stability of the gold colloids prepared in W/O microemulsion system. 
They found that gold nanoparticles formed in water/Triton X-100/hexane microemulsions 
were much smaller than those obtained in AOT-based microemulsion system. It was 
suggested, that for nonionic surfactant TX-100 gold nanoparticles were formed in the micelle 
shell rather than in the water pool. In the shell, the gold clusters were stabilized by 
oxyethylene groups of TX-100 molecules. In addition 0.1 M 1-hexanol used as a co-surfactant 
in water/TX-100/cyclohexane system, could decrease the particle size (Spirin et al., 2005). 
For gold nanoparticles obtained in reverse micelles of the water/AOT/cyclohexane system, 
particles could grow through intermicellar exchange followed by agglomeration. The 
exchange rate for AOT-based microemulsion is higher than for nonionic TX-100-based 
microemulsion. Therefore, the collision probability between particles in AOT-stabilized 
microemulsion can be higher, and as a consequence, gold particles can agglomerate easier 
than in nonionic TX-100 microemulsion. 

Hong et al. investigated the effect of concentration of surfactants and the hydrophilic group 
chain length of surfactant on the physical properties of nanosized TiO2 particles. Non-ionic 
surfactants - Brij 52 (polyoxyethylene glycol hexadecyl ether polyethylene 2-cetyl ether), Brij 56 
(polyoxyethylene glycol hexadecyl ether polyethylene 10-cetyl ether), Brij 58 (polyoxyethylene 
glycol hexadecyl ether polyethylene 20 cetyl ether) were employed in this work. For the Brij 
series, head group size increases from Brij 52 to Brij 58 (average number of oxyethylene groups 
increases from 2 to 20), but with a constant tail length (average number of hydrophobic 
carbons is 16). They have found that the photocatalytic activity and also the size of the particles 
increased with an increase of hydrophilic group chain length (Hong et al., 2003). 

Solanki et al. studied the effects of reaction parameters, including water-to-surfactant ratio 
(W), type of continuous oil phase in water/AOT/cyclohexane microemulsion system. They 
found that silver nanoparticles were smaller and narrower in the size distribution at lower 
water content than that obtained at higher W value. When W values increased from 5 to 8 
the particle size increased from 4–9 nm to 50–58 nm (Solanki et al., 2010). 

Chen et al. prepared platinum ultrafine particles by the reduction of H2PtCl6 with hydrazine 
in AOT/isooctane microemulsion system. They have found that the hydrodynamic 
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diameters of reverse micelles measured by DLS increased with the increase of W values. 
When the aqueous phase was the solution of 0.1 M H2PtCl6 or 1.0 M hydrazine, it was 
observed that the reverse micellar sizes were smaller than those obtained using water as the 
aqueous. It could be attributed to the fact that the dissociation of H2PtCl6 or hydrazine in 
solution caused the increase of ionic strength, which reduced the repulsion between the 
head groups of ionic surfactant and led to the formation of smaller reverse micelles (Chen et 
al., 1999). The formation rate was faster at larger W values. This could be attributed to the 
fact that the number of nuclei formed in aqueous phase increased as the W value increased 
at constant AOT and H2PtCl6 concentrations, leading to the increase in the formation rate. 

Inaba et al. prepared titanium dioxide nanoparticles in microemulsion system composed of 
water, Triton X-100 and isooctane. The TiO2 nanoparticles showed monodispersity, a large 
surface area and high degrees of crystallinity and thermostability. The particle size of TiO2 was 
controlled by changing the water content of the reverse micellar solution (Inaba et al., 2006). 

We have earlier investigated the effect of various surfactants on silver and gold nanoparticle 
size deposited on TiO2 surface using the microemulsion system. We have found that the 
primary gold particles size was dependent on the type of the surfactant (anionic AOT, 
nonionic TX100 or nonionic Span 80) and reducing agent (N2H4, NaBH4), which was used 
for stabilization and reduction of gold ions in the microemulsion system. For nonionic 
surfactant Triton X-100 or Span 80 smaller gold nanoparticles with the diameter of about 
20 nm were obtained. Our results proved that the size of gold is the key-factor for high level 
activity under visible-light irradiation. When anionic AOT (sodium bis-2-ethylhexyl-
sulfosuccinate) was used, the size of gold nanoparticles averaged 70 nm and it was 
beneficial related to higher photocatalytic activity observed for larger gold nanoparticles 
deposited on titania surface. We have also found that the decrease of water to surfactant 
molar ratio (W) from 6 to 3 during preparation in water/AOT/cyclohexane system resulted 
in the decrease in gold particle size from 68 to 38 nm. The decrease in W value favored the 
formation of smaller water droplets and led to the decrease in the average gold particles 
size. Titania size added during precipitation of noble metal nanoparticles can also slightly 
influence the size of gold in the microemulsion method. Due to the presence of hydroxyl 
groups on the TiO2 surface, TiO2 possesses highly hydrophilic properties which influence 
micelles water pools properties. The smaller titania particles were used, the smaller metal 
particles were obtained in W/O microemulsion system. It is expected that smaller particles 
with higher specific surface area exert more influence on the surface tension of micelle shell 
than larger TiO2 nanoparticles. We have also found that gold particles obtained in the air 
atmosphere were large and polydisperse due to oxidized for [Au(OH)4]− formation. 
Therefore, the obtained Au-TiO2 photocatalysts prepared in the air atmosphere revealed 
lower photocatalytic activity in visible region compared to the samples obtained in argon or 
nitrogen atmosphere (Zielińska-Jurek et al., 2011). 

Ganguli et al. discussed the effect of various surfactants on the morphology of 
nanomaterials. They reported that cationic surfactants lead to anisotropy and preparation of 
nanorods of several divalent metal carboxylates. They explained that an isotropic growth 
occurs when using the non-ionic surfactant TX-100 leading to spherical nanoparticles of 
(~5 nm). On changing the non-ionic surfactant from TX-100 to Tergitol, larger cubes of size 
of about 50 nm were formed. They explained that the positively charged surfactants 
assemble on the surface of the negatively charged nickel oxalate and thus favor the 
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anisotropic growth (rods). In the absence of such positively charged surfactants, an isotropic 
growth leads to spheres and nanocubes. Thus the choice of the surfactant becomes critical to 
the size, shape and stability of the nanoparticles obtained in microemulsion (Ganguli et al., 
2010). In a mixed cationic–anionic surfactant solution, such as the synergism, the formation 
of a worm-like micelle is favored, which directs the growth of the one-dimensional 
nanostructure (Petit et al., 1993). 

Another important factor which determines size and shape of nanoparticles is the addition 
of electrolytes. Generally addition of salt influences the degree of dissociation of emulsifier, 
the solubility of emulsifier in the aqueous phase and the micelle aggregation number. In the 
interesting review on preparation of silver nanoparticles Zhang et al. summarized that the 
presence of electrolyte is favorable for the formation of silver nanowires (Zhang et al., 2007).  

Chiang et al. reported that addition of 2.5 M of NaCl in the water pool of reverse micelles in 
water-AOT-isooctane microemulsion induces a marked change in the particle shape with 
appearance of cylinders, trigons and cubics (Chiang et al., 2004). They have also found that 
the control of the final Au nanoparticle size and shape was related to the molar ratio of the 
reduction agent to the precursor and the sequence of the addition of metal salt into the 
mixed reverse micelles. A decrease in the molar ratio of the reduction agent to the precursor 
and direct injection of precursor to mixed reverse micelles containing the reduction agent 
resulted in the formation of anisotropic gold nanoparticles, such as cylinders and trigons 
(Chiang et al., 2004). 

Jang et al. reported that the diameter of polypyrrole nanotubes were affected by different 
microemulsion parameters such as, the weight ratio of aqueous FeCl3 solution/AOT, type of 
nonpolar solvent, and reaction temperature. Polypyrrole nanotubes were formed through 
chemical oxidation polymerization in microemulsion consist of 74.0 wt % of hexane, 22.4 wt 
% of AOT and 3.6 wt % of aqueous FeCl3 solution at 15°C, as shown in Fig. 3. It was found 
that an aqueous FeCl3 solution determines the formation of rod-shaped AOT micelles by 
decreasing the second critical micelle concentration responsible for structural transitions of 
spherical micelles and increasing the ionic strength of the solvent. The average diameter of 
polypyrrole nanotubes was approximately 94 nm and their length was more than 2 µm 
(Jang & Yoon, 2005).  

 

Fig. 3. TEM image and schematic route for the preparation of polypyrrole nanotubes in 
W/O microemulsion (Jang & Yoon, 2003) 
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Table 2. Survey of recent publications on metal/metal oxide particles prepared using 
microemulsion method. 

4. Bimetallic, core-shell nanoparticles and alloys 

Bimetallic composite nanoparticles, composed of two different metal elements, are of greater 

interest than monometallic nanoparticles from both scientific and technological point of 

view. The structure of bimetallic nanoparticles is defined by the distribution modes of the 

two elements and can be oriented in random alloy, alloy with an intermetallic compound, 

cluster-in-cluster and core–shell structures. The bimetallic nanoparticles have unique 

catalytic, electronic, and optical properties distinct from those of the corresponding metallic 

particles. The structure of bimetallic combinations depends on the preparation conditions, 

miscibility, and kinetics of the reduction of metal ions.  
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Silver and gold have almost identical lattice constants (0.408 for Au and 0.409 for Ag) and 

are completely miscible over the entire composition range, which leads to a strong 

tendency toward alloy formation. Hence single-phase alloys can be achieved with any 

desired composition and the absorption spectra of alloy nanoparticles exhibit only one 

surface plasmon band, whose absorption maximum depends on the alloy composition. 

The optical properties of metal nanoparticles depend on surface plasmon resonance. The 

origin of surface plasmon resonance in noble metal nanoparticles is the free conduction 

electrons in the metal surface (d electrons in silver and gold). The mean free path of the 

electrons in the gold and silver is 50 nm. Therefore, for the particles smaller than 50 nm, 

no scattering is expected from the bulk. Hence all the spectral properties are the function 

of the surface and not of bulk. According to Mie theory the total extinction coefficient of 

small metallic particles is the summation of all electronic and magnetic multipole 

oscillations, contributing to the absorption and scattering of the interacting 

electromagnetic field. Now for the particles much smaller than the wavelength of the 

absorbing light only the dipole term is assumed to contribute to the absorption. The 

electric field of the incoming electromagnetic radiation induces the formation of a dipole 

in the nanoparticles. A restoring force in the nanoparticles tries to compensate for this, 

resulting in a unique resonance wavelength. Alloy nanoparticles have received a special 

attention due to the possibility of tuning their optical and electronic properties over a 

broad range by simply varying the alloy composition. The characteristics of the bimetallic 

nanoparticles are listed in Table 3.  

Xia et al. obtained well-dispersed Ag/Ni core-shell nanoparticles using reduction of silver 
nitrate and nickel nitrate with sodium borohydride in water-in-oil (W/O) microemulsions of 
water/polyoxyethylene (4) nonylphenol (OP-4) and polyoxyethylene (7) nonylphenol (OP-
7)/n-heptane. To prepare Ag/Ni nanoparticles the required amount of sodium hydroxide 
aqueous solution was added to the mixture of nickel nitrate and silver nitrate (in a molar 
ratio of 2:1) aqueous solutions to form fine precipitates of Ag2O and Ni(OH)2. Ammonia 
solution was added drop by drop to this mixture until the precipitates completely dissolved 
to form [Ag(NH3)2]+ and [Ni(NH3)6]2+, then pure water was added. Next, under continuous 
mechanical stirring, OP-4, n-heptane, OP-7 was added, into the above [Ag(NH3)2]+ and 
[Ni(NH3)6]2+solution, and remained for 30 min in water-bath at 25°C. The second 
microemulsion was prepared in a similar way, except that metal precursor was replaced by 
sodium borohydride aqueous solution. The first microemulsion was added dropwise into 
the second one, and left for 1 h in water-bath at 25°C under continuous mechanical stirring. 
The products were washed several times with water and anhydrous ethanol, and then dried 
under vacuum at room temperature for 4 h (Xia et al., 2010). 

Ahmed et al. obtained bimetallic Cu/Ni nanoparticles using CTAB (cetyltrimethyl 

ammoniumbromide) as the surfactant, 1-butanol as the co-surfactant and isooctane as the oil 

phase and hydrazine/NaOH as the precipitating agents followed by the reduction in 

hydrogen atmosphere. They prepared four microemulsions with different aqueous phases 

containing Cu(NO3)2· 3H2O, Ni(NO3)2· 6H2O, N2H4· H2O and NaOH. Microemulsions A 

and B were created by mixing two solutions, A- containing metal precursors, B – reducing 

agents. The obtained green precipitate was washed with 1:1 chloroform/methanol mixture 

and dried in the air, then heated to 500°C for 5 h. (CuNi). They had also prepared CuNi3 and 

Cu3Ni nanoparticles using the same method (Ahmed et al., 2008). 
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Ag/Ni 
nanoparticles 

To prepare Ag/Ni nanoparticles the required 
amount of sodium hydroxide aqueous solution was 
added to the mixture of nickel nitrate and silver 
nitrate (in a molar ratio of 2:1) aqueous solutions to 
form fine precipitates of Ag2O and Ni(OH)2. 
Ammonia solution was added drop by drop to this 
mixture until the precipitates completely dissolved 
to form [Ag(NH3)2]+ and [Ni(NH3)6]2+, then pure 
water was added. Ag/Ni bimetallic nanoparticles 
were prepared by dropwise addition 
microemulsion containing metal precursors in 
water cores into the microemulsion containing the 
reducing agent (NaBH4) 

AgNO3 
Ni(NO3)2 

NaBH4 

50-100 nm core-shell structure 
and spherical shape 
 
The gold shells formed on these 
Ni cores were driven by the 
spontaneous reaction between the 
Ni atoms on the surface of the Ni 
nanoparticles and subsequently 
added Au3+ ions 

Ag/Au 
nanoparticles 

Ag/Au nanoparticles were prepared by the 
microemulsion method using Triton X-100 as a 
surfactant, cyclohexane as oil phase and 1-hexanol 
as a co-surfactant. Reverse micelle systems 
containing a reducing agent and a metal compound 
solution were mixed under stirring.  

AgNO3 
HAuCl4 

NaBH4 
20-30 nm 
undefined shape 

Ni/Au 
nanoparticles 

NiCl2 aqueous solution to Brij30 and n-octane 
solution. The second microemulsion containing 
NaBH4 with the proportions identical to those in 
the first one was then added dropwise. The 
reaction was pertained under argon atmosphere. 
The gold shells formed on these Ni cores were 
driven by the spontaneous reaction between the Ni 
atoms on the surface of the Ni nanoparticles and 
subsequently added Au3+ ions. The reverse 
microemulsion solution containing HAuCl4 was 
added drop by drop to the earlier prepared 
microemulsion containing Ni2+. 

NiCl2 

AuCl4 
NaBH4 8 nm core-shell structure 
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Ag/Au core-
shell bimetallic 
clusters 

0.8 mL of NaBH4 and 5 mL of citric acid was added 
to AgNO3 solution. A solution of 0.4 mM Ag+ and 
0.1–0.4 mM AuCl4- was prepared by dissolving the 
corresponding salt in water. The reaction mixture 

was stirred for 15 min at 100�C, then gold metal salt 
solution was added to the solution of Ag 
nanoparticles. Eventually, heating was stopped and 
stirring continued for 10 min 

AgNO3 

HAuCl4 
NaBH4 

3-4 nm core-shell bimetallic 
clusters 
the absorption spectra of 
bimetallic nanoparticles 
suggested the formation of 
core–shell structure 

Ag/Au alloy 
nanoparticles 

Ag–Au alloy nanoparticles were obtained by 
reduction HAuCl4 and AgNO3 with NaBH4 in the 
presence of sodium citrate at room temperature. 
Five 125 mL flasks were filled with 100 ml of 
deionized water and 50 ml of 0.01 M sodium citrate. 
Varying mole fractions of 26 mM HAuCl4 and 
58 mM AgNO3 were added to each solution for a 
total metal salt concentration of 0.005 mM. 

AgNO3 

HAuCl4 
NaBH4 

10 nm Ag–Au alloy nanoparticles 
optical absorption spectra reveal 
that the nanoparticles have been 
prepared for alloy structure 
nanoparticles 

Ag/Au 
nanoparticles 

W/O microemulsion solutions hydrazine/ 
HAuCl4/AgNO3 
Solutions containing HAuCl4 and AgNO3  were 
obtained by mixing the W/O microemulsion 
solution containing HAuCl4 and that containing 
AgNO3. The preparation of bimetallic  nanoparticles 
was achieved by mixing equal volumes of two W/O 
microemulsion solutions at the same molar ratio of 
water to Aerosol OT (v0) and concentration of 
Aerosol OT, one containing an aqueous solution of 
metal salts and the other containing an aqueous 
solution of hydrazine 

HAuCl4 
AgNO3 

hydrazine 

particle size analysis indicated 
that the resultant bimetallic 
nanoparticles were 
monodisperse and had a mean 
diameter of 4 – 22 nm, 
increasing with an increase in 
the W=([H2O]/[AOT]) value 
and Ag content 
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Ag/Au alloy 
nanoparticles 

For the preparation of Ag–Au alloy nanoparticles 
AgNO3 solution (0.01 M), HAuCl4 solution (0.01 M) 
and 10% (v/v) polyacrylamide were used. To the 
polyacrylamide solution equal volumes of AgNO3, 
HAuCl4, hydrazine hydrate and tri-sodium citrate 
(3% of polyacrylamide volume) were added and the 
reaction was carried out under microwave for 
1 min.. 

HAuCl4 
AgNO3 

hydrazine 

histograms show that the 
particles obtained through these 
methods are in the range of 5–

50 nm 
change in the colour of the 

solution indicates the formation 
of alloy nanoparticles with

different composition 

Ag(Au) 
bimetallic core–
shell 
nanoparticles 

I – different amount of HAuCl4 was added to 
water, 5 µl of 0.1M CTAB was added to each 
solution. After that, different amount of 0.1 M 
ascorbic acid were added to solutions. At last, 
500 µl of Ag colloids was added to the three 
solutions. 
II – 10 µl of 6 mM HAuCl4 and 5 µl of 0.1M 
CTAB were added to water, and the three 
solutions called D, E and F. 3 µl of 0.1 M ascorbic 
acid was added to each solution. Ag colloids 
were added to the solutions D, E and F. 

HAuCl4 

AgNO3 
ascorbic 

acid 

20-50 nm 
Ag(Au) bimetallic core–shell 

nanoparticles 
the amount of AuCl4- had an 

effect on the shape of 
nanoparticles 
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Based on the use of W/O microemulsions we have proposed a novel method for 
preparation of the photocatalysts obtained by gold nanoparticles deposition or gold and 
silver (bimetallic nanocomposites) deposition on the TiO2 surface.  

Ag/Au-modified titanium dioxide nanoparticles were prepared by adding silver precursor 
into water/AOT/cyclohexane microemulsion containing gold precursor in water cores. The 
water content was controlled by fixing the molar ratio of water to the surfactant (W) at 4. 
Stirring was carried out for 1 h under argon and then gold and silver ions were reduced by 
dropwise addition of microemulsion containing a reducing agent. The addition of NaBH4 or 
N2H4 to HAuCl4 solution, changed the color from yellow to pinkish red for smaller 
nanoparticles with the diameter of about 10 nm and grey for larger nanoparticles with the 
diameter of about 100 nm, respectively. Finally, Ag/Au-TiO2 nanoparticles were prepared by 
adding TiO2 precursor titanium tetraisopropoxide (TIP) or powdered into the microemulsion 
containing gold nanoparticles in water cores. Precipitated Ag/Au/TiO2 nanoparticles were 
centrifuged (2000 rpm for 5 min), washed with ethanol, acetone and water to remove the 
remaining surfactant, dried at 80°C for 48 h and calcinated at 450°C for 2 h.  

We have found that bimetallic nanoparticles deposited on titania surface enhanced their 
photocatalytic activity in visible region. The photodegradation rate of model organic pollutant 

(0.21 mM phenol aqueous solution) under visible light equaled to 0.46 and 1.30 mol dm−3 
min−1 for TiO2 nanoparticles modified by 1.5 mol% of Au or 4.5 mol% of Ag introduced into 
microemulsion system, respectively. The introduction of the same amount of both silver and 

gold precursor resulted in the increase of phenol degradation rate up to 3.57 mol dm−3 min−1. 
Higher silver amount was more beneficial to the photocatalytic activity of the obtained 
Ag/Au-TiO2 nanoparticles than higher gold amount (Zielińska-Jurek, 2011). 

In order to obtain Ag/Cu-TiO2 nanoparticles two microemulsions were prepared by mixing 
the aqueous solution of metal ions (Ag+, Cu2+) and N2H4·H2O into the 0.2 M 
AOT/cyclohexane solution (Zielińska-Jurek, 2010). Cu or Ag/Cu bimetallic nanoparticles 
were prepared by dropwise addition microemulsion containing the reducing agent 
(hydrazine) into the microemulsion containing metal precursor in water cores as was shown 
in Fig. 4. The molar ratio of hydrazine and silver nitrate or copper nitrate was held constant 
at the value of 3. Water content was controlled by fixing the molar ratio of water to 
surfactant (W) at 2. Then TiO2 precursor titanium tetraisopropoxide (0.2 M TIP) was added 
into the microemulsion containing metal nanoparticles. The concentration of metal 
precursors, which varied from 0.1 to 6.5 mol%, was related to the concentration of TIP in the 
microemulsion system. During the precipitation nitrogen was bubbled continuously 
through the solution. 

The Ag/Cu-TiO2 precipitated particles were separated, washed with ethanol and deionized 
water several times to remove the organic contaminants and the surfactant. The particles 
were dried at 80°C for 48 h and were then calcinated at 450°C for 2 h. It was found that the 
obtained nanocomposites contained highly and uniformly dispersed Ag/Cu nanoparticles 
on the TiO2 surface. The maximum in the photocatalytic activity under visible light was 
observed for the sample containing 0.5 mol % of Cu and 1.5 mol% of Ag. 

The rate of phenol decomposition average was 2.41 mol dm−3 min−1 and was higher than 
for Ag/Cu-TiO2 containing 1.5 mol% of Cu and 0.5 mol% of Ag. It indicates that the 
presence of silver was more beneficial for visible light activation of TiO2 doped 
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photocatalysts than a higher copper amount. The Au/Cu-TiO2 nanoparticles revealed lower 
photocatalytic activity compared to Ag/Cu-TiO2 photocatalysts containing the same metal 
amount loading on TiO2 surface The photocatalysts modified with silver revealed higher 
antimicrobial activity than pure TiO2 obtained in the microemulsion system or the samples 
containing only copper nanoparticles deposited on TiO2 surface. It indicated that silver 
possesses higher antimicrobial activity than copper nanoparticles prepared in the 
microemulsion system. The best antimicrobial activity revealed Ag/Cu- TiO2 with the 
highest silver amount average 6.5 mol% and the sample Ag/Cu-TiO2 containing 1.5 mol% of 
Ag and 0.5 mol% of Cu, which exhibited also the highest efficiency of phenol degradation 
under visible light. 

 

Fig. 4. Mechanism of the preparation method of Ag/Cu modified titanium dioxide 
nanoparticles in W/O microemulsion (Zielińska-Jurek, 2010) 

5. Challenges in nanoparticles preparation using microemulsion as a 
template 

It has been shown that microemulsion as a liquid structure having a high surface area can be 
used as chemical nanoreactors to obtain a wide range of nanoparticles of different chemical 
nature, size and shape. However, recovery of the nanoparticles and their separation from 
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the microemulsion system, as well as the recovery and recycling of the organic solvents 
remains a challenge. Conventional separation techniques such as ultracentrifugation, 
solvent evaporation, addition of a suitable solvent to cause phase separation or precipitation 
(ethanol, acetone, water) have been applied to recover nanoparticles from the W/O 
microemulsion system. 

An interesting approach is the addition of CO2 as an antisolvent, since it provides an 

inexpensive, benign, nontoxic means to efficiently control the nanoparticles stability. 

Supercritical carbon dioxide exhibits a dielectric constant even lower than most organic 

solvents and can be used as non-toxic continuous phase in W/O microemulsions (Hutton, 

1998). Jonhston et al. have found that an ammonium carboxylate perfluoropolyether (PFPE) 

surfactant can be used for stabilization of microemulsions in supercritical CO2 (Jonhston et 

al., 1996). The PFPE-based microemulsion using supercritical CO2 as continous phase were 

subsequently used as nanoreactors for preparation of nanoparticles. Holmes et al. prepared 

CdS nanoparticles in PFPE-scCO2 microemulsion at 45°C and 345 bar. The particle size was 

about 1.8 nm depending on the water to surfactant molar ratio (W) (Holmes et al., 1999). 

Dong et al. prepared CuS nanoparticles by mixing two separate water in carbon dioxide 
microemulsions stabilized using sodium salt of bis(2,2,3,3,4,4,5,5-octafluoro-1-pentyl)-2-
sulfosuccinate (AOT). The size of copper sulfide nanoparticles ranged from 4 to 6 nm 
(Dong et al., 2002). Wu et al. obtained TiO2 nanoparticles from its precursor titanium (IV) 
isopropoxide (TTIP) by a combination of supercritical fluid microemulsion and 
supercritical-drying techniques, in which TTIP hydrolized in reverse micelles (H2O being 
surrounded by CO2) formed by surfactant Zonyl FSJ using a medium of supercritical 
carbon dioxide. TiO2 particles prepared in these systems have average size of about 2-
7 nm (Wu et al., 2008). Ohde et al. reported that nanometer-sized silver and copper metal 
particles can be prepared by chemical reduction of Ag+ and Cu2+ ions dissolved in the 
water core of water in supercritical fluid carbon dioxide microemulsion. Sodium 
cyanoborohydride and N,N,N‘,N‘-tetramethyl-p-phenylenediamine were used as reducing 
agents for preparation of metal nanoparticles in the microemulsion. They found that 
diffusion and distribution of the oxidized form of the reducing agent between the micellar 
core and supercritical CO2 appeared to be the rate-determining step for the formation of 
silver nanoparticles in this system.  

Meziani et al. prepared silver nanoparticles in the Rapid Expansion of a Supercritical 
Solution into a Liquid SOLVent (RESOLV). Perfluorinated surfactant-stabilized water-in-
CO2 microemulsion was used to dissolve silver salt for the rapid expansion. An aqueous 
AgNO3 solution was added to the syringe pump followed by the addition of PFPE-NH4 to 
result in a W value of 10. After loading of CO2 to the pressure of 2500 psia, the mixture in 
the syringe pump was equilibrated with stirring for 2 h. The rapid expansion was carried 
out at 4000 psia and 35°C through a 50-micron fused silica capillary nozzle into a room-
temperature aqueous solution of NaBH4. The room-temperature receiving solution also 
contained PVP polymer (5 mg/mL) as a protection agent for the formed nanoparticles. 
Sodium hydroxide (NaOH) was used to adjust the basicity of the room-temperature 
receiving solution. TEM images yielded average sizes of 3.1 nm (size distribution standard 
deviation 0.8 nm) for the Ag nanoparticles in the supernatant and 10 nm (size distribution 
standard deviation 2 nm) for the Ag nanoparticles in the precipitate (Meziani et al., 2005). 
Drawbacks of this technique are: the cost of using compressed CO2, a significant limitation 

www.intechopen.com



 
Microemulsions – An Introduction to Properties and Applications 

 

246 

of using scCO2 as continuous phase in microemulsion, low solubility of most solutes in neat 
supercritical CO2. Therefore, different co-surfactants (1-pentanol, 2-propanol) are often used 
to improve the solubility for hydrophilic components. 

Another interesting approach is the use of photo-destructible surfactants as an attractive 
alternative to commonly used surfactants (AOT, TX-100, CTAB, SDS, NP-9, etc.) for 
stabilization of nanoparticles in W/O microemulsion. A recent development in this field is 
the work of Eastoe, which demonstrated that photodestructible surfactants can be used to 
induce destabilization and phase separation in microemulsions. They studied the surface 
properties and UV-driven destruction of surfactant sodium 4-hexylphenylazosulfonate 
(Eastoe, 2006). 

Vesperinal et al. obtained gold nanoparticles in water-in-oil –microemulsion with the 

addition of a photodestructible surfactant hexylphenylazosulfonate (C6PAS). They used UV 

light to induce destabilization of the microemulsion and flocculation of nanoparticles. The 

changes in dispersion stability occur owing to UV-induced breakdown of the hydrophilic 

hexylphenylazosulfonate into insoluble hydrophobic photoproducts (hexylbenzene and 4-

hexylphenol). They observed that in the photo-induced flocculate gold particle shapes were 

irregular and the particle sizes were in the range 15–120 nm (Vesperinal et al., 2007). By 

formulation of an appropriate mixture containing the photolyzable surfactant (sodium 

hexylphenylazosulfonate, C6PAS) and inert surfactants Salabat et al. 

photoflocculated/separated silica nanoparticles obtained in the organic solvent. During 

photodestruction of C6PAS non-surface-active oil-soluble hexylbenzene, and weakly 

surface-active hexylphenol (as well as sodium sulfur salts) were obtained. In this regard, it is 

an important goal for advanced projects to prepare size-controlled chemically clean 

nanoparticles with narrow size distribution (Salabat et al., 2007). 

6. Conclusions 

A large number of different nanomaterials have been prepared in water-in-oil 
microemulsions. The generated particle sizes can be controlled by the nanodroplet size of 
the inner phase of the microemulsion. The size of the particles can be controlled by:  

 surfactant/co-surfactant type, 

 solvent type, 

 concentration of the reagents, 

 ionic additives, 

 water/surfactant molar ratio. 

Among various preparation of nanoparticles methods, the use of microemulsion is an 

effective route for yielding a wide range of monodisperse nanoparticles of different size and 

shape. We have shown that the microemulsion method is preferable since it allows studying 

noble metal nanoparticles of different sizes deposited on the same titania material. Our 

results proved that the size of gold is the key-factor for high level activity under visible-light 

irradiation. However, titania material also plays a crucial role in obtaining material with 

high activity and the degree of influence of gold size on photoactivity (Zielińska-Jurek et al., 

2010). The recovery of nanoparticles and their separation from the reaction medium is still a 

key step when using microemulsion system for preparation of nanocomposites. 
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