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1. Introduction

In many fields such as health or robotics industry, reproducing the human visual system
(HVS) behavior is a widely sought aim. Actually a system able to reproduce even partially
the HVS could be very helpful, on the one hand, for people with vision diseases, and, on the
other hand, for autonomous robots.

Historically, the earliest reports of artificially induced phosphenes were associated with
direct cortical stimulation Tong (2003). Since then devices have been developed that target
ùany different sites along the visual pathway Troyk (2003).These devices can be categorized
according to the site of action along the visual pathway into cortical, sub-cortical, optic nerve
ane retinal prostheses. Although the earliest reports involved cortical stimulation, with the
advancements in surgical techniques and bioengineering, the retinal prosthesis or artificial
retina has become the most advanced visual prosthesis Wyatt (2011).

In this chapter, both applications will be presented after the theoretical context, the state of the
art and motivations. Furthermore, a full system will be described including a servo-motorized
camera (acquisition), specific image processing software and artificial intelligence software for
exploration of complex scenes. This chapter also deals with image analysis and interpretation.

1.1 Human visual sytem

The human visual system is made of different parts: eyes, nerves and brain. In a coarse way,
eyes achieve image acquisition, nerves data transmission and brain data processing (Fig. 1).

The eye (Fig. 2) acquires images through the pupil and visual information is processed
by retina photoreceptors. There exist two kinds of photoreceptors: rods and cones. Rods
are dedicated to light intensity acquisition. They are efficient in scotopic and mesopic
conditions. Cones are specifically sensitive to colors and require a minimal light level
(photopic and mesopic conditions). There are three different types of cones sensitive for
different wavelengths.

Fig. 3a shows the photoreceptors responses and Fig. 3b their distribution accross the retina
from the foveal area (at the center of gaze) to the peripheral area. At the top of Fig. 3b,
small parts of retina are presented with cones in green and rods in pink. This outlines that
the repartition of cones and rods varies on the retina surface according to the distance to the
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2 Will-be-set-by-IN-TECH

Fig. 1. Human visual system

Fig. 2. Human eye

center of gaze. Most of the cones are located in the fovea (retina center) and rods are essentially
present in periphery. Then light energy data are turned into electrochemical energy data to
be carried to the visual cortex through the optic nerves. The two optic nerves converge at a
point called optic chiasm (Fig. 4), where fibers of the nasal side cross to the other brain side,
whereas fibers of the temporal side do not. Then the optic nerves become the optic tracts. The
optic tracts reach the lateral geniculate nucleus (LGN). Here begins the processing of visual
data with back and forth between the LGN and the visual cortex.

1.2 Why a bionic eye?

Blindness affects over 40 millions people around the world. In the medical field, providing
a prosthesis to blind or quasi-blind people is an ambitious task that requires a huge sum of
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Image Analysis for Automatically-Driven Bionic Eye 3

(a) Rods (R) and cones (L, M, S) responses

(b) Rods and cones distribution accross the retina (from
http://improveeyesighttoday.com/improveeyesight-centralization.htm)

Fig. 3. Rods and cones features

knowledge in different fields such as microelectronics, computer vision and image processing
and analysis, but also in the medical field: ophtalmology and neurosciences. Cognitive studies
determining the human behavior when facing a new scene are lead in parallel in order to
validate methods by comparing them to a human observer’s abilities. Several solutions are
offered to plug an electronic device to the visual system (Fig. 4). First of all, retina implants can

5Image Analysis for Automatically-Driven Bionic Eye
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4 Will-be-set-by-IN-TECH

Fig. 4. Human visual system and solutions for electronic device plugins

be plugged either to the retina or to the optic nerve. Such a solution requires image processing
in order to integrate data and make them understandable by the brain. No image analysis is
necessary as data will be processed by the visual cortex itself. But the patient must be free of
pathology at least at the optic nerve, so that data transmission to the brain can be achieved. In
another way, retina implants can directly stimulate the retina photoreceptors. That means that
the retina too must be in working order. Secondly, when either the retina or the optic nerve
is damaged, only cerebral implants can be considered, as they directly stimulate neurons. In
this context, image analysis is required in order to mimick at least the LGN behavior.

6 Advanced Topics in Neurological Disorders
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Image Analysis for Automatically-Driven Bionic Eye 5

1.3 Why now?

The development of biological implantable devices incorporating microelectronic circuitry
requires advanced fabrication techniques which are now possible. The importance of device
stability stems from the fact that the microelectronics have to function properly within the
relatively harsh environment of the human body. This represents a major challenge in
developing implantable devices with long-term system performance while reducing their
overall size.

Biomedical systems are one example of ultra low power electronics is paramount for multiple
reasons [Sarpeshkar (2010)]. For example, these systems are implanted within the body and
need to be small, light-weighted with minimal dissipation in the tissue that surrounds them.
In order to obtain implantable device, some constraints have to be taken into account such as:

• The size of the device
• The type of the technology (flexible or not) in order to be accepted by the human body
• The circuit consumption in order to optimize the battery life
• The performance circuit

The low power hand reminds us that the power consumption of a system is always defined
by five considerations as shown on Fig.5:

Fig. 5. Low power Hand for low power applications

2. State of the art: Overview

Supplying visual information to blind people is a goal that can be reached in several ways by
more or less efficient means. Classically blind people can use a white cane, a guide-dog or
more sophisticated means. The white cane is perceived as a symbol that warns other people
and make them more careful to blind people. It is also very useful in obstacle detection. A
guide-dog is also of a great help, as it interprets at a dog level the context scene. The dog

7Image Analysis for Automatically-Driven Bionic Eye
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6 Will-be-set-by-IN-TECH

is trained to guide the person in an outdoor environment. It can inform the blind person
and advise of danger through its reactions. In the very last decades, electronics has come to
reinforce the environment perception. On the one hand, several non-invasive systems have
been set up such as GPS for visually impaired [Hub (2006)] that can assist blind people with
orientation and navigation, talking equipment that provides an audio description in a basic
way for thermometers, clocks or calcultors or in a more accurate way for audio-description
that gives a narration of visual aspects of television movies or theater plays, electronic white
canes [Faria (2010)], etc. On the other hand, biomedical devices can be implanted in an
invasive way, that requires surgery and clinical trials. As presented in Fig. 4, such devices
can be plugged at different spots along the visual data processing path. In a general way the
principle is the same for retinal and cerebral implants. Two subsystems are linked, achieving
data acquisition and processing for the first one and electrostimulation for the second one.
A camera (or two for stereovision) is used to acquire visual data. These data are processed
by the acquisition processing box in order to obtain data that are transmitted to the image
processing box via a wired or wireless connection (Fig. 6). Then impulses stimulate cells
where the implant is connected.

Fig. 6. General principle of an implant

2.1 Retina implant

For retinal implants, there exist two different ways to connect the electronic device: directly
to the retina (epiretinal implant) or behind the retina (subretinal implant). Several research
teams work on this subject worldwide. The target diseases mainly are:

• retinitis pigmentosa, which is the leading cause of inherited blindness in the world,
• age-related macular degeneration, which is the leading cause of blindness in the

industrialized world.

2.1.1 Epiretinal implants

The development of an epiretinal prosthesis (Argus Retinal Prosthesis) has been initiated in
the early 1990s at the Doheny Eye Institute and the University of California (USA)[Horsager
(2010)Parikh (2010)]. This prosthesis was implanted in patients at John Hopkins University
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in order to demonstrate proof of principle. The company Second Sight1 was then created in
the late 1990s to develop this prosthesis. The first generation (Argus I) has 16 electrodes and
was implanted in 6 patients between 2002 and 2004. The second generation (Argus II) has 60
electrodes and clinical trials have been planned since 2007. Argus III is still in process and will
have 240 electrodes.

VisionCare Ophtalmic Technologies and the CentralSight Treatment Program [Chun
(2005)Lane (2004)Lane (2006)] has created an implantable miniature telescope in order to
provide central vision to people having degenerated macula diseases. This telescope is
implanted inside the eye behind the iris and projects magnified images on healthy areas of
the central retina.

2.1.2 Subretinal implants

At University of Louvain, a subretinal implant (MIVIP: Microsystem-based Visual Prosthesis)
made of a single electrode has been developped [Archambeau (2004)]. The optic nerve is
directly stimulated by this electrode from electric signals received from an external camera.

In the late 1980s, Dr. Joseph Rizzo and Professor John Wyatt performed a number
of proof-of-concept epiretinal stimulation trials on blind volunteers before developing a
subretinal stimulator. They co-founded the Boston Retinal Implant Project (BRIP). The
collaboration was initiated between the Massachusetts Eye and Ear Infirmary, Harvard
Medical School and the Massachusetts Institute of Technology. The mission of the Boston
Retinal Implant Project is to develop novel engineering solutions to restore vision and improve
the quality-of-life for patients who are blind from degenerative disease of the retina, for which
there is currently no cure. Early results are actually a reference for this solution. The core
strategy of the Boston Retinal Implant Project 2 is to create novel engineering solutions to
treat blinding diseases that elude other forms of treatment. The specific goal of this study is
to develop an implantable microelectronic prosthesis to restore vision to patients with certain
forms of retinal blindness. The proposed solution provides a special opportunity for visual
rehabilitation with a prosthesis, which can deliver direct electrical stimulation to those cells
that carry visual information.

The Artificial Silicon Retina (ASR)3 is a microchip containing 3500 photodiodes, developed
by Alan and Vincent Chow. Each photodiode detects light and transforms it into electrical
impulses stimulating retinal ganglion cells (Fig. 8).

In France, at the Institut de la Vision, the team of Pr Picaud has developed a subretinal implant
[Djilas (2011)]. They have also set up clinical trials.

As well, in Germany [Zrenner (2008)], a subretinal prosthesis has been developed. A
microphotodiode array (MPDA) acquires incident light information and send it to the chip
located behind the retina. The chip transforms data into electrical signal stimulating the retinal
ganglion cells.

In Japan [Yagi (2005)], a subretinal implant has been designed at Yagi Laboratory4.
Experiments are mainly directed to obtain new biohybrid micro-electrode arrays.

1 2-sight.eu/
2 http://www.bostonretinalimplant.org
3 http://optobionics.com/asrdevice.shtml
4 http://www.io.mei.titech.ac.jp/research/retina/
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(a) Silicon wafer wit flexible polyalide
iridium oxide electrode array

(b) Close up of a flx circuit to which IC
will be attached

Fig. 7. BRIP Solution

Fig. 8. ASR device implanted in the retina

At Stanford University, a visual prosthesis5 (Fig. 9) has been developed [Loudin (2007)].
It includes an optoelectronic system composed of a subretinal photodiode array and an
infrared image projection system. A video camera acquires visual data that are processed and
displayed on video goggles as IR images. Photodiodes in the subretinal implant are activated
when the IR image arrives on retina through natural eye optics. Electric pulses stimulate the
retina cells.

In Australia, the Bionic Vision system6 consists of a camera, attached to a pair of glasses,
which transmits high-frequency radio signals to a microchip implanted in the retina. Electrical
impulses stimulate retinal cells connected to the optic nerve. Such an implant improves the
perception of light.

2.2 Cortex implant

William H. Dobelle initiated a project to develop a cortical implant [Dobelle (2000)], in order
to return partially the vision to volunteer blind people [Ings (2007)]. His experiments began in
the early 1970s with cortical stimulation on 37 sighted volunteers. Then four blind volunteers

5 http://www.stanford.edu/ palanker/lab/retinalpros.html
6 http://bionicvision.org.au/eye
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Image Analysis for Automatically-Driven Bionic Eye 9

Fig. 9. Stanford University visual prosthesis

were implanted with permanent electrode arrays. The first volunteers were operated at
the University of Western Ontario, Canada. A 292 × 512 CCD camera is connected to a
sub-notebook computer in a belt pack. A second microcontroller is also included in the belt
pack and it is dedicated to brain stimulation. The stimulus generator is connected to the
electrodes implanted on the visual cortex through a percutaneous pedestral. With this system
a vision-impaired person is able to count his fingers and recognize basic symbols.

In Canada, the research team of Pr Sawan [Sawan (2008)] at Polystim Neurotechnologies
Laboratory7 has begun clinical trials for an electrode array providing images of 256 pixels
(Fig. 10). Such images are not very accurate but they allow the patient to guess shapes.
Furthermore clinical trials have proved that it was possible to directly stimulate neurons in
the primary visual cortex.

Fig. 10. Principle of Polystim Laboratory visual prosthesis

7 http://www.polystim.ca
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3. Bionic eye

Such a system has to mimick several abilities of the human visual system in order to make
visual information available for blind people. The system is made of a camera acquiring
images, an electronical device processing data and a mechanical system that drives the
camera. Outputs can be provided on cerebral implants, in other words, electrodes matrices
plugged to the primary visual cortex. When discovering a new scene the human eye processes
by saccades and the gaze is successively focused at different points of interest. The sequence
of focusing points enables to scan the scene in an optimized way according to the interest
degree. The interest degree is a very complex criterion to estimate because it depends on the
context and on the nature of elements included in the scene. Geometrical features of objects
as well as color or structure are important in the interest estimation (Fig. 11). For example, a
tree (b) is of a great interest in a urban landscape whereas a bench (a) is a salient information
in a contryside scene. In the first case, the lack of geometrical particularities and the color
difference make the tree interesting. In the second case the structure and the geometrical
features of the bench make it interesting in comparison to trees or meadows.

Several steps are carried out successively or in parallel to process data and drive the camera.
First of all a detection of points of interest is achieved on a regular image, in other words,
on an image usually provided by a camera. One of the points best-scoring with the detector
is chosen as the first focusing point. Then the image is re- sampled in a radial way in order
to obtain a foveated image. The resulting image is blurred according to the distance to the
focusing point [Larson (2009)]. Then a detection of points of interest is achieved on the
foveated image in order to determine the second focusing point. These two steps are repeated
as many times as necessary to discover the whole scene (Fig. 12). This gives the computed
sequence of points of interest. In parallel a human observer faces the primary image while
an eye- tracker follows his eye movements in order to determine the observer sequence of
points of interest, when exploring the scene by saccades [Hernandez (2008)]. Afterwards the
two sequences will have to be compared in order to quantify and qualify the computer vision
process, in terms of position and order.

4. Circuit and system approach

4.1 Principle and objective

The proposed solution is based on Pr. Sawan research [Coulombe (2007)Sawan (2008)]. The
implementation is a visual prosthesis implanted into the human cortex. In the first case, the
principle of this application consists in stimulating the visual cortex by implanting a silicium
micro-chip on a network of electrodes made of biocompatible materials [Kim (2010)Piedade
(2005)] and in which each electrode injects a stimulating electrical current in order to provoke
a series of luminous points to appear (an array of pixels) in the field of vision of the sightless
person [Piedade (2005)]. This system is composed of two distinct parts:

• The implant lodged in the visual cortex wirelessly receives dedicated data and associated
energy from the external controller. This electro-stimulator generates the electrical stimuli
and oversees the changing microelectrode/biological tissue interface,

• The battery-operated outer control includes a micro-camera which captures the image as
well as a processor and a command generator. They process the imaging data in order to:
1. select and translate the captured images,
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(a) Bench in a park

(b) Tree in a town

Fig. 11. Image context and points of interest
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Fig. 12. Scene exploration process

2. generate and manage the electrical stimulation process
3. oversee the implant.
The topology is based on the schematic of Fig. 13.

An analog signal captured by the camera provides information to the DSP (Digital Signal
Processor) component. The image is transmitted by using the FPGA which realizes the first
Image Pre-processing. A DAM (Direct Access Memory) is placed at the input of the DSP card
in order to transfer the preprocessing image to the SDRAM. The DSP realizes then the image
processing in order to reproduce the eye behavior and a part of the cortex operation. The LCD
screen is added in order to achieve debug of the image processing. In the final version, this last
one will be removed. The FPGA drives two motors in two axes directions (horizontal, vertical)
in order to reproduce the eye movements. We will know focus on the different components of

Fig. 13. Schematic principle of bionic eye

this bionic eye topology.

4.2 Camera component

With the development of the mobile phone, the CMOS camera became more compact, lower
powered, with higher resolution and quicker frame rate. As for biomedical systems, the
constraints tend to be the same, this solution retained our attention. Indeed, for example,
Omnivision has created a 14 megapixel CMOS camera with a frame rate of 60 fps for a 1080p
frame and a package of 9 mm × 7 mm. In this project, we have retained a choice of a 1.3
megapixel camera at a frame rate of 15 fps for mainly two reasons: the package who is easy

14 Advanced Topics in Neurological Disorders

www.intechopen.com



Image Analysis for Automatically-Driven Bionic Eye 13

to implement and the large number of different outputs thanks to the internal registers of the
camera. The registers allow us to output a lot of standard resolutions (SXVGA, VGA, QVGA
etcÉ), the output formats (RGB or YUV) and the frame rate (15 fps or 7.5 fps). These registers
are initialized by the I2C controller of the DSP. This allows a dynamic configuration of the
camera by the DSP. The camera outputs are 8 bits parallel data that allow a datastream up to
0, 3 Gb/s with 3 control signals (horizontal, vertical and pixel clocks). For the prototype we
output at a VGA resolution in RGB 565 at 15 fps.

In order to reproduce of the eye movement, two analog servo motors have been used
(horizontal and vertical) mounted on a steel frame and controlled by the FPGA.

4.3 FPGA (Field-Programmable Gate Array) component

The FPGA realizes two processes in parallel. The first one consists in controlling the servo
motor. The FPGA transforms an angle in pulse width with a refresh rate of 50 Hz (Fig. 13).
The angle is incremented or decremented by two pulse updates during the signal of a new
frame (Fig. 15). For 15 fps a pulse is 2 degrees for a use at the maximal speed of the servo
motor (0.15s @ 60ą).

Fig. 14. Time affectation of the pulse width

Fig. 15. New frame: increment/decrement signal

The second process is the image preprocessing. This process consists of the transformation
of 16 bits by pixel image with 2 clocks by pixel into 24 bits by pixel image with one clock by

15Image Analysis for Automatically-Driven Bionic Eye
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pixel. For this, we divide the pixel clock by two and we interpolate the pixel color with 5 or 6
bits to a pixel color with 8 bits.

4.4 DSP (Digital Signal Processor) component

For a full embedded product, we need a core that can run a heavy load due to the image
processing in real-time. This is why we focus our attention on a DSP solution and precisely
on the DSP with an integrated ARM core by Texas Instrument, in fact the OpenCV library8

is not optimized for DSP core (the mainline development of openCV effort targets the x86
architecture) but it has been successfully ported to the ARM platforms9. Nevertheless, several
algorithms require floating-point computation and the DSP is the most suitable core for this
thanks to the native floating point unit (Fig. 16).

Fig. 16. Operation time execution

Moreover, the parallelism due to the dual-core adds more velocity to the image processing
(Fig. 17). And finally, we use pipeline architecture for an efficient use of the CPU thanks to the
multiple controller included in the DSP. The first controller used is the direct memory access
controller that allows to record the frame from the FPGA to a ping-pong buffer without the
use of the CPU. The ping-pong buffer allows to record the second frame to a different address.
This enables to work on the first frame during the record of the second frame without the
problem of the double use of a file.

Fig. 17. Dual Core operation time execution

The second controller used is the SDRAM controller that controls two external 256 Mb
SDRAM. The controller manages the priority of the use of the SDRAM, the refresh of the
SDRAM and the signals control. The third controller used is the LCD controller that allows
to display the frame at the end of the image processing in order to verify the result and
presentation of the product. This architecture offers a use of the CPU exclusively dedicated to
the image processing (Fig. 18).

8 www.opencv.com
9 www.ti.com
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Fig. 18. Image processing

4.5 Electronic prototype

A prototype has been realized, as shown in Fig. 19. As introducted before, this prototype is
based on : (i) a camera (ii) a FPGA card, (iii) a DSP card and (iv) a LCD screen.

Its associated size is 20*14*2cm. This size is due to the use of a development card. We choose
respectively for the FPGA and DSP cards a Xilinx10 Virtex 5 XC5VLX50 and a spectrum11

digital evm omap l137. But on these two cards (FPGA, DSP), we just need the FPGA, DSP,
memories and I/O ports. Indeed, the objective is to validate the software image processing.
The LCD screen on the left of Fig19 is added to see the resulting image. This last one will not be
present on the final product. For the test of the project, we choose a TFT sharp LQ043T3DX02.

So, the objective size for the final product is first of all a large reduction by removing the
obsolete parts of these two cards (80%) and then by using integrated circuit solution. The
support technology will be standard 0.35µm CMOS technology which provides low current
leakage [Flandre (2011)] and so consumption reduction.

An other advantage of using this technology is the possibility to develop on the same wafer
analog and digital circuits. In this case, it is possible to realize powerful functions with low
consumption and size.

Fig. 19. Bionic Eye prototype

5. Image processing and analysis

The two main steps in HVS data processing that will be mimicked are focus of attention and
detection of points of interest. Focus of attention enables to direct gaze at a particular point.
In this way, the image around the focusing point is very clear (central vision) and becomes
more and more blurred when the distance to the focusing point increases (peripheral vision).

10 www.xilinx.com
11 www.spectrumdigital.com
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Detection of points of interest is the stage where a sequence of focusing points is determined
in order to explore a scene.

5.1 Focus of attention

As a matter of fact, the role played by cones in diurnal vision is preponderant. Cones are
much less numerous than rods in most parts of the retina, but greatly outnumber rods in the
fovea. Furthermore cones are arranged in a concentric way inside the human retina [Marr
(1982)]. In this way focus of attention may be modelized by representing cones in the fovea
area and its surroundings. The general principle is the following. Firstly a focusing point is
chosen as the fovea center (gaze center) and a foveal radius is defined as the radius of the
central cell. Secondly an isotropic progression of concentric circles determines the blurring
factor according to the distance to the focusing point. Thirdly integration sets are defined
to represent cones and an integration method is selected in order to gather data over the
integration set to obtain a single value. Integration methods can be chosen amongst averaging,
median filtering, morphological filtering such as dilation, erosion, closing, opening, and so on.
Then re-sampled data are stored in a rectangular image in polar coordinates. This gives the
encoded image. This image is a compressed version of the original image, but the compression
ratio varies according to the distance to the focusing point. The following step can be the
reconstruction of the image from the encoded image. This step is not systematically achieved
as there is no need of duplicating data to process them [Robert-Inacio (2010)]. When necessary
it works by determining for each point of the reconstructed image the integration sets it
belongs to. Then the dual method of the integration process is used to obtain the reconstructed
value. When using directly the encoded image instead of the original or the reconstructed
images, customized processing algorithms must be set up in order to take into account that
data are arranged in a polar way. In this case a full pavement of the image is defined with
hexagonal cells [Robert (1999)]. The hexagons are chosen so that they do not overlap each
others and so that they are as regular as possible. A radius sequence is also defined as follows:

This hexagonal pavement is as close as possible to the biological cone distribution in the
fovea. Furthermore data are taken into account only once in the encoded image because of
non-overlapping.

Fig. 21 illustrates the type of results provided by previous methods on an image of the Kodak
database12 (Fig. 21). Firstly Fig. 21 shows the encoded image (on the right) for a foveal
radius of 25 pixels and with hexagonal cells. The focusing point is chosen at (414, 228), ie: at
the central flower heart. Secondly the reconstructed image is given after re-sampling of the
original image. In the following, the hexagonal pavement is chosen to define foveated images
as it is the closest one to the cone distribution in the fovea.

5.2 Detection of points of interest

The detection of points of interest is achieved by using the Harris detector [Harris (1988)].
Fig. 22 shows the images with the detected points of interest. Points of interest detected as
corners are highlighted in red whereas those detected as edges are in green. Fig. 22 illustrates
the Harris method when using a regular image (a), in other words, an image sampled in a
rectangular way, and a foveated image (b).

12 http://r0k.us/graphics/kodak/
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Fig. 20. Hexagonal cell distribution.

5.3 Sequence of points of interest

Short sequences of points of interest are studied: the first one has been computed and the
second one is the result observed on a set of 7 people. Fig. 23 shows the sequences of points of
interest on the original image of Fig. 21a and Table 1 gives the point coordinates. Sequences
are made of points numbered from 1 to 4. The observer sequence in white goes from the
pink flower heart to the bottom left plant, whereas the computed sequence in cyan goes from
the pink flower heart to the end of the branch. Another difference concerns the point in the
red flower. The observers chose to look at the flower heart whereas the detector focused at the
border between the petal and the leaf. This is explained by the visual cortex behavior. Actually
the detector is attracted by color differences whereas the human visual system is also sensitive
to geometrical features such as symmetry. In this case the petals around the heart are quite
arranged in a symmetrical way aroud the flower heart. That is why the observers chose to
gaze at this point. In this example the computed sequence is determined without computing
again a new foveated image for each point of interest, but by considering each significant point
from the foveated image with the central point as focusing point. Furthermore for equivalent
points of interest the distance between two consecutive points is chosen as great as possible
in order to cover a maximal area of the scene with a minimal number of eye movements.

Table 1 gives the distance between two equivalent points from the two sequences. This
distance varies from 8 to 32.249 with an average value of 18.214. This means that computed
points are not so far from those of the observers. But the algorithm determining the sequence
must be refined in order to prevent errors on point order.

19Image Analysis for Automatically-Driven Bionic Eye
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Fig. 21. Focus of attention on a particular image: from the original image to the reconstructed
image, passing by the encoded image (foveated image)

Point Regular Point Foveated
Number Detection Number Detection Distance

1 (191, 106) 1 (194, 114) 8.544
2 (279, 196) 2 (275, 164) 32.249
3 (99, 118) 4 (109, 103) 18.028
4 (24, 214) 3 (38, 215) 14.036

Table 1. Distances between points of interest.

6. Applications

There exist two great families of applications: on the one hand, applications in the biomedical
and health field, and on the other hand, applications in robotics.

In the biomedical field, a system such as the bionic eye can be very helpful at different tasks:

• light perception,
• color perception,
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(a) On a regular image (b) On a foveated image

Fig. 22. Detection of points of interest

(a) Observers’ sequence (b) Computed sequence

Fig. 23. Sequences of points of interest

• contextual environment perception,
• reading,
• pattern recognition,
• face recognition,
• autonomous moving,
• etc.

These different tasks are achieved very easily for sighted people, but they can be impossible
for visually impaired people. For example, color perception cannot be operated by touch, by
hearing, by the taste or smell. It is a pure visual sensation, unreachable to blind people. That
is why the bionic eye must be able to replace the human visual system for such tasks.

In robotics, such a system able to explore an unknown scene by itself can be of a great help
for autonomous robots. For example AUV (Autonomous Underwater Vehicles) can be even
more autonomous by being able to decide by themselves what path to follow. Actually, by
mimicking detection of points of interest, the bionic eye can determine obstacle position and
then it can compute a path avoiding them. Furthermore, application fields are numerous:
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• in archaeology and exploration in environments inaccessible to humans,
• in environmental protection and monitoring,
• in ship hull and infrastructure inspection,
• in infrastructure inspection of nuclear power plants,
• in military applications,
• etc.

Each time it is impossible for humans to reach a place, the bionic eye can be used to make
decision or help making decision in order to drive a robot.

7. Conclusion

In this chapter, the bionic eye principle has been presented in order to demonstrate how
powerful such a system is. Different approaches can be considered to stimulate either the
retina or the primary visual cortex, but all the presented systems use a separate system
for image acquisition. Images are then processed and data are turned into electrical pulses
stimulating either retinal cells or cortical neurons.

The originality of our system lays in the fact that images are not only processed but analyzed
in order to determine a sequence of focusing points. This sequence allows to explore
automatically a complex scene. This principle is directly inspired by the human visual system
behavior. Furthermore foveated images are used instead of classical images (sampled at a
constant step in two orthogonal directions). In this way, every image processing algorithm
even basic has to be redefined to fit to foveated images.

In particular, an algorithm for detection of points of interest on foveated images has been set
up in order to determine sequences of points of interest. These sequences are compared to
those obtained from a human observer by eye-tracking in order to validate the computational
process. A comparison between detection of points of interest on regular images and foveated
images has also been made. Results show that detection on foveated images is more efficient
because it suppresses noise that is far enough from the focusing point while detecting as well
significant points of interest. This is particularly interesting as the amount of data to process
is greatly decreased by the radial re-sampling step.

In future works the two sequences of points of interest must be compared more accurately and
their differences analyzed. Furthermore the computed sequence is the basis for the animation
of the bionic eye in order to discover dynamically the new scene. Such a process assumes that
the bionic eye is servo-controlled in several directions.
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