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1. Introduction  

Despite increasing knowledge of the biochemical mechanisms that occur in the brain 
following an ischemic insult and the availability of several diverse animal models of stroke, 
there are still no drugs that can be given to stroke patients soon after the onset of symptoms 
to minimize the subsequent neurological damage. To date, the thrombolytic compound 
recombinant tissue Plasminogen Activator (rt-PA) remains the only approved drug for the 
treatment of stroke. At present, intravenous administration of rt-PA is the only proven 
effective treatment to re-establish cerebral blood flow in the case of acute vessel occlusion, 
but unfortunately, only few patients with acute ischemic stroke are qualified to receive this 
drug. The failure of rt-PA to achieve rapid reperfusion in many patients and its bleeding risk 
have prompted the development of fibrinolytic agents with greater fibrin specificity and 
better risk-benefit profiles, such as tenecteplase or desmoteplase, which are now under 
active investigation. Early restoration of blood flow remains the treatment of choice for 
limiting brain injury following stroke, but a second fundamental goal of intervention is to 
protect neurons by interrupting or slowing the ischemic cascade. Current research is being 
done to develop neuroprotective agents that are able to block amino acid pathways and 
decrease neurotransmitter activity of injured tissue. Drugs blocking voltage-dependent 
calcium channels were effective in stroke rodent models but the results of clinical trials have 
been often discouraging. Overactivation of the N-methyl-D-aspartate receptor (NMDAR) is 
crucial for neuronal death after stroke. Several compounds that interfere with glutamate 
receptor activation have been developed and tested, in particular noncompetitive NMDA 
antagonists. However, their clinical use is limited by intolerable side effects, including some 
psycomimetic symptoms, as these blockers may also impair some key brain functions 
mediated by the same receptor. Accumulating evidence strongly suggests that apoptosis 
contributes to neuronal cell death in stroke injury and currently several caspase inhibitors 
are under investigation, but to date the efficacy of antiapoptotic agents in human stroke 
patients has not yet been tested. Anti-inflammatory approaches to stroke treatment intended 
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to block cell-mediated inflammation with different strategies such as humanized antibodies 
against ICAM-1, inhibitors of interleukin-1 beta or a interleukin-1 receptor antagonist. 
However, there have been no successful clinical trials of these anti-inflammatory agents so 
far.  
The complexity of events in cerebral ischemia and the disappointing results from human 

clinical stroke trials using a single agent suggest that perhaps to treat the stroke a new 

pleiotropic approach is required. In the pharmacological perspective, the evaluation of 

drugs with multiple effects on the ischemic cascade may be more effective in reducing 

infarct size and improving outcome in respect to single target strategy, because the ischemic 

cascade is diverse and it is likely that many different mechanisms of ischemia induced cell 

death occur simultaneously. Therefore, the development of neuroprotective drugs with 

multiple effects on the ischemic cascade is potentially more appealing than drugs acting on 

only one component of the cascade, if the safety profile is reasonable and the preclinical 

assessment package fulfils recent recommendations. Most recent discoveries portray 

Peroxisome Proliferator-Activated Receptors (PPARs) as promising pharmacological targets 

for the treatment of acute ischemic stroke, thanks to their ability to simultaneously interfere 

with several mechanisms that underlie the pathophysiology of brain ischemia, thus leading 

to an interesting protective strategy to counteract the multiple deleterious effects of ischemic 

injury. 

2. PPAR 

Peroxisome Proliferator-Activated Receptors (PPARs) are members of the nuclear hormone 
receptor (NHR) superfamily of ligand-activated transcription factors. There are three PPAR 
subtypes: ǂ, ǃ/ǅ and Ǆ, named also NR1C1, NR1C2 and NR1C3, respectively, according to 
the unified nomenclature of nuclear receptors (Nuclear Receptors Nomenclature 

Committee, 1999). The three isoforms are the products of distinct genes: the human PPAR 

gene was mapped on chromosome 22 in the general region 22q12–q13.1, the PPAR gene is 
located on chromosome 3 at position 3p25, whereas PPARǃ/ǅ has been assigned to 
chromosome 6, at position 6p21.1–p21.2 (Sher, Yi et al. 1993; Greene, Blumberg et al. 1995; 
Yoshikawa, Brkanac et al. 1996). PPARs were originally identified by Isseman and Green 
(Issemann and Green 1990) after screening the rat liver cDNA library with a cDNA sequence 
located in the highly conserved C domain of NHRs. The name PPAR is derived from the fact 

that activation of PPAR, the first member of the PPAR family to be cloned, results in 
peroxisome proliferation in rodent hepatocytes (Desvergne and Wahli 1999). Activation of 

neither PPARǃ/ǅ nor PPAR, however, elicits this response and, interestingly, the 
phenomenon of peroxisome proliferation does not occur in humans. The molecular basis for 

this difference between species is not yet clear. With respect to the PPAR isotype, 
alternative splicing and promoter use results in the formation of two further isoforms: 

PPAR1 and PPAR2. In particular, differential promoter usage and alternate splicing of the 

gene generates three mRNA isoforms. PPAR1 and PPAR3 mRNA both encode the PPAR1 

protein product which is expressed in most tissues, whereas PPAR2 mRNA encodes the 

PPAR2 protein, which contains an additional 28 amino acids at the amino terminus and is 
specific to adipocytes (Gurnell 2003). PPARǃ/ǅ was initially reported as PPARǃ in Xenopus 
laevis and NUC1 in humans (Schmidt, Endo et al. 1992). Subsequently, a similar transcript 
was cloned from mice and termed PPARǅ (Amri, Bonino et al. 1995). Though now 
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recognised as homologues for each other, it was not originally certain whether PPARǃ from 
Xenopus was identical to murine PPARǅ, hence the terminology PPARǃ/ǅ.  
All members of this superfamily share the typical domain organization of nuclear 

receptors (Figure 1). The N-terminal A/B domain contains a ligand-independent 

transactivation function. In the ǂ and  isotypes, the activity of this domain can be 

regulated by Mitogen-Activated Protein Kinase (MAPK) phosphorylation (Hu, Kim et al. 

1996). The C domain is the DNA binding domain with its typical two zinc-finger-like 

motifs, as previously described for the steroid receptors, and the D domain is the co-factor 

docking domain (Schwabe, Neuhaus et al. 1990). The E/F domain is the ligand binding 

domain, it contains a ligand-dependent trans-activation function (AF)-2 (Fajas, Auboeuf et 

al. 1997), and is able to interact with transcriptional coactivators such as steroid receptor 

coactivator (SRC)-1 (Onate, Tsai et al. 1995) and CREB-binding protein (CBP) (Amri, 

Bonino et al. 1995).  

 

 

Fig. 1. Schematic representation of the domain organization of human PPAR isoforms.  
The A/B domain contains the Activation Function 1 (AF-1) which has a ligand-independent 
transcriptional activity. The C domain corresponds to the DNA Binding Domain (DBD).  
The D domain is the co-factor docking domain. The E/F domain contains the Ligand 
Binding Domain (LBD) and carries the Activation Function 2 (AF-2), which has a ligand-
dependent transcriptional activity. The human chromosome regions in which disting genes 
encoding for PPAR isoforms are mapped, the percentage of amino acid sequence identity  

(in comparison with PPAR) and the amino acid number of different isoforms are reported 
in the Table. 

The highest PPARǂ expression has been found in the liver and in tissues with high fatty acid 
catabolism, such as the kidney, heart, skeletal muscle, and brown fat (Lefebvre, Chinetti et 
al. 2006). PPARǂ mainly regulates energy homeostasis, activating fatty acid catabolism and 
stimulating gluconeogenesis (Kersten, Seydoux et al. 1999). This increased fatty acid 
oxidation in response to PPARǂ activation with a selective agonist, WY14643, results in 
lower circulating triglyceride levels and reduction of lipid storage in liver, muscle, and 
adipose tissue (Chou, Haluzik et al. 2002), which is associated with improved insulin 
sensitivity (Kim, Haluzik et al. 2003). Consequently, fibrates (fenofibrate, bezafibrate, 
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gemfibrozil), which are synthetic agonists for PPARǂ, are in wide clinical use for the 
treatment of dyslipidaemias. 
PPARǄ is expressed in white and brown adipose tissue, gut, and immune cells (Feige, 
Gelman et al. 2006). It is involved in adipocyte differentiation and lipid storage in white 
adipose tissue (Rosen, Sarraf et al. 1999). Furthermore, PPARǄ is involved in glucose 
metabolism via an improvement of insulin sensitivity (Hevener, He et al. 2003). Therefore, 
synthetic PPARǄ agonists (thiazolidinediones) are in clinical use as insulin sensitizers to 
treat patients with type-2 diabetes.  
PPARǃ/ǅ remained an enigma for almost a decade after its cloning in 1992. It has been 
reported to be ubiquitously expressed in almost every tissue and, in the past, this 
widespread tissue expression has suggested a possible “general housekeeping” role for 
PPARǃ/ǅ (Kliewer, Forman et al. 1994). More recently, the use of transgenic mouse models 
and the availability of high-affinity synthetic ligands has led researchers to a better 
understanding of its physiological role. Specifically, increasing evidence has shown a 
particular role for PPARǃ/ǅ in insulin sensitivity regulation, lipid metabolism and the 
inflammation response. However, in contrast to PPARǂ and Ǆ, PPARǃ/ǅ agonists are not 
yet in clinical use. 

2.1 Endogenous and synthetic PPAR ligands 
Although many fatty acids are capable of activating all three PPAR isoforms, some fatty 

acids are also specific for a particular PPAR isoform. X-ray crystallography studies of 

PPARǃ/ǅ revealed an exceptionally large ligand-binding pocket of approximately 1,300 Ǻ3, 

similar to that of PPARǄ but much larger than the pockets of other nuclear receptors (Xu, 

Lambert et al. 1999). The increased dimension is believed to accommodate the binding of 

various fatty acids or other amphipathic acids to PPARǃ/ǅ via hydrogen bonds and 

hydrophobic interactions. The long-chain polyunsaturated fatty acids and their oxidized 

derivatives, especially eicosanoids such as 8-S-hydroxyeicosatetraenoic acid (8-S-HETE), 

leukotriene B4 (LTB4) and arachidonate monooxygenase metabolite epoxyeicosatrienoic 

acids have been shown to potently activate PPAR with high affinity (Theocharisa, Margeli 

et al. 2003; Feige, Gelman et al. 2006). PPAR can be activated by several prostanoids, such 

as 15-deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2) and 12- and 15-hydroxy-eicosatetraenoic 

acid (12- and 15-HETE), which are derivatives of arachidonic acid synthesized through  

the lipoxygenase pathway, as well as modified oxidised lipids, 9- and 13-

hydroxyoctadecadienoic acids (9- and 13-HODE) (Willson, Brown et al. 2000; Theocharisa, 

Margeli et al. 2003). PPARǃ/ǅ agonists include linoleic acid, oleic acid, arachidonic acid and 

eicosapentaenoic acid (EPA), which have been shown to co-crystallize within the ligand 

binding domain of this nuclear receptor (Xu, Lambert et al. 1999). A number of eicosanoids, 

including prostaglandin (PG)A1 and PGD2, and carbaprostacyclin, a semi-synthetic 

prostaglandin, have micromolar affinities for PPARǃ/ǅ (Forman, Chen et al. 1997). Recently, 

cows milk, ice cream, butter, and yoghurt were described as activators of PPARǃ/ǅ in 

reporter assays, but a specific common compound was not identified (Suhara, Koide et al. 

2009). 

With respect to the synthetic ligands, fibrates (e.g. fenofibrate, clofibrate), which are 

hypolipidaemic drugs, are well-known ligands for PPAR (Willson, Brown et al. 2000). 
Fibrates are capable of activating PPARǂ at pharmacological doses leading to increased 
expression of lipid metabolizing enzymes that effectively lower serum lipid levels in 
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humans. In contrast to the well-documented therapeutic effect, there is also evidence of liver 
toxicity induced by activation of PPARǂ, mainly hepatocarcinogenesis. The most serious 
safety risk associated with fibrates, although rare, is myopathy and rhabdomyolysis. Studies 
suggest that the mechanism of myotoxicity through fibrates is not entirely clear, because 
complex and multifactorial mechanisms are involved, including genetic predisposition, 
pharmacokinetics, drug interactions, and dose. It is of interest to note that increased 
expression of lipoprotein lipase, which is a known PPARǂ target gene, in skeletal muscle 
leads to severe myopathy in mice. 

The most widely used PPAR agonists belong to the thiazolidinedione (TZD) or glitazone class 
of anti-diabetic drugs used in the treatment of type-2 diabetes. Troglitazone, the first TZD 
approved for this use, was withdrawn from the market in March 2000 following the 
emergence of a serious hepatotoxicity in some patients. Since troglitazone induces CYP3A4, it 
has been hypothesized that potentially toxic quinones derived from CYP3A4-dependent 
metabolism could cause liver damage (Yamamoto, Yamazaki et al. 2002). Rosiglitazone and 
pioglitazone are the only available thiazolidinediones in North America, but meta-analyses of 
randomised controlled trials have suggested an increased risk of ischaemic cardiovascular 
events with rosiglitazone (Nissen and Wolski ; Singh, Loke et al. 2007). In contrast, meta-
analysis of trials of pioglitazone indicates the possibility of an ischaemic cardiovascular benefit 
(Lincoff, Wolski et al. 2007). Robust evidence also shows that both drugs increase the risk of 
congestive heart failure and fractures, but whether any meaningful difference exists in the 
magnitude of risk between the two thiazolidinediones is not known (Singh, Loke et al. 2007; 
Loke, Singh et al. 2009). The European Medicines Agency has recommended the suspension of 
marketing authorisation for rosiglitazone, whereas the US Food and Drug Administration has 
allowed the continued marketing of rosiglitazone with additional restrictions. 
On the contrary, there are no PPARǃ/ǅ drugs in clinical use yet. However several selective 

PPARǃ/ǅ ligands have been recently designed, including GW0742, GW2433, GW9578, L-

783483, L-165041, or GW501516 (Berger, Leibowitz et al. 1999; Lim and Dey 2000; Martens, 

Visseren et al. 2002). As yet only one selective PPARǃ/ǅ antagonist has been described 

GSK0660. In skeletal muscle myoblast cells in culture, GSK0660 inhibited GW0742 induction 

of established PPARǃ/ǅ target genes (carnitine palmitoyltransferase 1A, angiopoietin-like 4 

protein and pyruvate dehydrogenase kinase-4)(Shearer, Steger et al. 2008).  

2.2 Molecular mechanisms of PPAR activation  
There are at least three primary mechanisms by which PPARs can regulate biological 

functions: transcriptional transactivation, transcriptional transrepression and ligand-

independent transrepression (Figure 2). 

2.2.1 Mechanism of transcriptional transactivation 
PPARs function as heterodimers with their obligatory partner the Retinoid X Receptor 
(RXR). Like other NHRs, the PPAR/RXR heterodimer most likely recruits co-factor 
complexes - either co-activators or co-repressors - that modulate its transcriptional activity 
(Shi, Hon et al. 2002). The PPAR/RXR heterodimer then binds to sequence specific PPAR 
Response Elements (PPREs), located in the 5’-flanking region of target genes, thereby acting 
as a transcriptional regulator (Palmer, Hsu et al. 1995). The PPRE consists of two direct 
repeats of the consensus sequence AGGTCA separated by a single nucleotide, which 
constitutes a DR-1 motif. PPAR binds 5’ of RXR on the DR-1 motif and the 5’-flanking  
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Fig. 2. Molecular mechanisms of PPAR activation. After ligand binding, PPAR undergoes 
conformational changes, which lead to recruitment of Retinoid X Receptor (RXR)  and 
coactivators. The resultant heterodimer binds to specific DNA response elements called 
PPAR response elements, causing target gene transcription (Transactivation). A second 
mechanism (Transrepression) involves interfering with other transcription-factor pathways 
by negatively regulating the expression of pro-inflammatory genes. Lastly, PPAR may 
repress the transcription of direct target genes in the absence of ligands (ligand-independent 
Transrepression) recruiting corepressor complexes that mediate active repression.  

sequence conveys the selectivity of binding between different PPAR isotypes (Juge-Aubry, 

Pernin et al. 1997). In the absence of a ligand, to prevent PPAR/RXR binding to DNA, high-

affinity complexes are formed between the inactive PPAR/RXR heterodimers and co-

repressor molecules, such as nuclear receptor co-repressor or silencing mediator for retinoic 

receptors. In response to ligand binding, PPAR undergoes a conformational change, leading 

to release of auxiliary proteins and co-repressors and recruitment of co-activators that 

contain histone acetylase activity. Acetylation of histones by co-activators bound to the 

ligand-PPAR complex leads to nucleosome remodelling, allowing for recruitment of RNA 

polymerase II causing target gene transcription. The search for PPAR target genes with 

identified PPREs has led to the identification of several genes involved in lipid metabolism, 

oxidative stress and inflammatory response, as widely documented in the literature.  

2.2.2 Mechanism of transcriptional transrepression 
PPARs can also negatively regulate gene expression in a ligand-dependent manner by 

inhibiting the activities of other transcription factors, such as Activated Protein-1 (AP-1), 

Nuclear Factor-κB (NF-κB) and Nuclear Factor of Activated T cells (NFAT) (ligand-

dependent transrepression). In contrast to transcriptional activation, which usually involves 

the binding of PPARs to specific response elements in the promoter or enhancer regions of 
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target genes, transrepression does not involve binding to typical receptor specific response 

elements (Pascual and Glass 2006). Several lines of evidence suggest that PPARs may exert 

anti-inflammatory effects by negatively regulating the expression of pro-inflammatory 

genes. To date, several mechanisms have been suggested to account for this activity, but 

despite intensive investigation, unifying principles remain to be elucidated.  

Firstly, competition for limited amounts of essential, shared transcriptional co-activators 
may play a role in transrepression. The activated PPAR/RXR heterodimer reduces the 
availability of co-activators required for gene induction by other transcriptional factors. 
Thus, without distinct co-factors, transcription factors cannot cause gene expression.  
Secondly, PPAR/RXR complexes may cause a functional inhibition by directly binding to 
transcription factors, preventing them from inducing gene transcription or inducing the 
expression of inhibitory proteins, such as the protein inhibitor of kappa B (IκB)ǂ, which 
sequesters the NF-κB subunits in the cytoplasm and consequently reduces their DNA 
binding activity (Delerive, Martin-Nizard et al. 1999).   
Thirdly, PPAR/RXR heterodimers may also inhibit phosphorylation and activation of 

several members of the MAPK family. In general very little is known about the molecular 

mechanisms by which PPARs and their ligands modulate kinase activities.  

Recent studies have suggested another mechanism based on co-repressor-dependent 

transrepression by PPARs. Evidence has been presented in which PPARǃ/ǅ controls the 

inflammatory status of macrophages based on its association with the transcriptional 

repressor BCL-6 (Lee, Chawla et al. 2003). Free BCL-6 suppresses the expression of multiple 

proinflammatory cytokines and chemokines. PPARǃ/ǅ, but not PPARǂ and PPAR, exhibits 

BCL-6 binding ability (Barish, Atkins et al. 2008; Takata, Liu et al. 2008). In the absence of a 

ligand, PPARǃ/ǅ sequesters BCL-6 from inflammatory response genes. In contrast, in the 

presence of a ligand, PPARǃ/ǅ releases the repressor, which now distributes to NF-κB-

dependent promoters and exerts anti-inflammatory effects by repressing transcription from 

these genes.  

2.2.3 Mechanism of ligand-independent transrepression 
PPARs may repress the transcription of direct target genes in the absence of ligands (ligand-
independent repression). PPARs bind to response elements in the absence of any ligand and 
recruit co-repressor complexes that mediate active repression. The co-repressors are capable 
of fully repressing PPAR-mediated transactivation induced either by ligands or by cAMP-
regulated signalling pathways. This suggests co-repressors as general antagonists of the 
various stimuli inducing PPAR-mediated transactivation. Co-repressors can display 
different ligand selectivity: the nuclear receptor co-repressor NCoR interacted strongly with 
the ligand-binding domain of PPARǃ/ǅ, whereas interactions with the ligand-binding 

domains of PPAR and PPAR were significantly weaker (Krogsdam, Nielsen et al. 2002). 

Very recently, a team of Harvard Medical School researchers has shown that PPAR is 
phosphorylated at Ser273 by cyclin dependent kinase 5 (CDK5) during obesity which results 
in deregulation of a subset of genes; including a number of key metabolic regulators, such as 
adipsin, the first fat cell-selective gene whose expression is altered in obesity and 
adiponectin, a central regulator of insulin sensitivity in vivo (Choi, Banks et al.). Ser273 

phosphorylation did not alter the chromatin occupancy of PPAR, suggesting that other 
mechanisms, such as differential recruitment of co-regulators, may cause these differences 

in target gene expression. PPAR ligands inhibited Ser273 phosphorylation and reversed 
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associated changes in gene expression. Critically, the extent to which PPAR ligands inhibit 

CDK5-mediated phosphorylation of PPAR is not correlated with the extent to which they 
exert PPAR agonism, suggesting that these compounds have two distinct and separable 
activities. Whether or not similar mechanisms of receptor phosphorylation lead to changes 
in gene expression also in the other two PPAR isoforms -ǂ and ǃ/ǅ is a very important 
question, so far not yet addressed. 

3. PPAR in the brain 

All three PPAR isotypes are co-expressed in the nervous system during late rat 
embryogenesis. Their expression peaks in the central nervous system at mid-gestation. 
Whereas PPARǃ/ǅ remains highly expressed in this tissue, the expression of PPARǂ and 
PPARǄ decreases postnatally in the brain (Braissant, Foufelle et al. 1996). While PPARǃ/ǅ 
has been found in neurons of numerous brain areas of adult rodents, PPARǂ and PPARǄ 
have been localized to more restricted areas of the brain (Moreno, Farioli-Vecchioli et al. 
2004). The localization of PPARs has also been investigated in purified cultures of neural 
cells. PPARǃ/ǅ is expressed in immature oligodendrocytes where its activation promotes 
differentiation, myelin maturation and turnover. The PPARǄ isotype is the dominant 
isoform in microglia. Astrocytes possess all three PPAR isotypes, although to different 
degrees depending on the brain area and animal age (Cristiano, Bernardo et al. 2001). The 
role of PPARs in the CNS is mainly related to lipid metabolism; however, these receptors 
have been implicated in neural cell differentiation and death as well as in inflammation and 
neurodegeneration. The expression of PPARǄ in the brain has been extensively studied in 
relation to inflammation and neurodegeneration. PPARǂ has been suggested to be involved 
in acetylcholine metabolism, excitatory amino acid neurotransmission and oxidative stress 
defence. PPARǃ/ǅ seems to play a critical role in regulating myelinogenesis and 
differentiation of cells within the CNS (Peters, Lee et al. 2000). 

4. PPARs and cerebral ischemia 

4.1 Experimental data on the effects of PPAR ligands in ischemic stroke  
Although the relevance of animal models to the development of therapies for acute stroke 
has been often questioned, evidence demonstrates that animal models of stroke do have 
clinical relevance and are useful in the development of drugs that attenuate the ischemic 
damage. The characteristics of brain injury depends on the severity and the duration of 
cerebral blood flow reduction but it can be significantly exacerbated by the following phase 
of reperfusion; for this reason several animal models of the so-called “cerebral 
ischemia/reperfusion injury (IRI)” have been developed, demonstrating that often 
reperfusion after a long ischemic period may cause a larger infarct than that associated with 
permanent vessel occlusion. In general, the role of neuroprotective agents is to interfere with 
one or more of the mechanisms involved in the “IRI cascade” and thereby limit the resultant 
tissue damage. It seem reasonable to assume that drugs that work on a specific biochemical 
mechanism must be given at the time that the mechanism is active, mainly during ischemia 
and/or reperfusion. Accordingly, in general, two different experimental paradigms can be 
identified: prophylactic administration, aimed to evaluate drug effects on stroke prevention, 
and therapeutic administration, when the drug is administered during reperfusion to test its 
potential beneficial effects on IRI after stroke had occurred. A role for PPARs in reducing IRI  
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has been first established in animal models of acute myocardial infarction (Yue Tl, Chen et 
al. 2001). More recently, good evidence supporting the beneficial role of PPAR in stroke has 
been provided by several in vivo experimental models of cerebral IRI, evaluating the effects 
of both prophylactic and therapeutic administration of PPAR agonists. It has been 
demonstrated that a 14-day preventive treatment with fenofibrate reduced susceptibility to 
stroke in apolipoprotein E-deficient mice as well as decreased cerebral infarct volume in 
wild-type littermates (Deplanque, Gele et al. 2003). The authors demonstrated that 
fenofibrate administration was associated with a decrease in cerebral oxidative stress 
depending on the increase in activity of several anti-oxidant enzymes and with a reduced 
expression of adhesion molecules. In another study, it was confirmed that two different 
PPARǂ agonists, fenofibrate and WY14643, provided similar brain protection when 
administered 3 or 7 days, respectively, before the induction of cerebral ischemia (Inoue, 
Jiang et al. 2003). More recently, we have found that PPARǂ agonists may also reduce 
cerebral I/R injury when administered just before ischemia or during reperfusion (Collino, 
Aragno et al. 2006). We showed that the potential neuroprotective effects of PPARǂ agonists 
is manifested by modulation of protein S100B levels in the rat CNS. S100B is a calcium-
binding protein, mainly expressed in the brain and recent preclinical and clinical studies 
indicate that increased S100B levels is a reliable indicator of infarct size in acute ischemic 
stroke (Buyukuysal 2005; Foerch, Singer et al. 2005). Pre-treatment of rats with the selective 

PPAR agonist, WY14643, prior to cerebral ischemia causes a marked reduction of S100B 
levels in the rat hippocampus. This protective effect is reversed by administration of the 

PPAR antagonist, MK886, thus confirming the involvement of PPAR activation in 
neuroprotection. Similarly, fenofibrate pretreatment for 14 days significantly reduced the 
cerebral infarct volume in an experimental model of Middle Cerebral Artery Occlusion 
(MCAO), although its withdrawal 3 days before induction of cerebral ischemia decreased 
the neuroprotective effect (Ouk, Laprais et al. 2009). Also prophylactic administration of 
gemfibrozil resulted in reduction of infarct size 24 h after MCAO and increased cortical 
blood flow in the ischemic hemisphere (Guo, Wang et al. 2009). However, the principal 
focus of studies of PPAR agonists has been on agonists of the PPARǄ isoform. Emerging 

studies have reported the protective effects of PPAR agonist administration in animal 
models of cerebral IRI (Sundararajan, Gamboa et al. 2005; Collino, Aragno et al. 2006; 
Allahtavakoli, Shabanzadeh et al. 2007) and in models of permanent ischemia (Sayan-
Ozacmak, Ozacmak et al.; Zhang, Xu et al.). The effect of delayed post ischemia 
administration of a PPARǄ agonist, rosiglitazone, has been recently evaluated, 
demonstrating that post-treatment with rosiglitazone, 24 h after stroke induction, may 
reduce ischemic injury, improve neurological outcome, and prevent neutrophilia, thus 
supporting an extended therapeutic window for the treatment of ischemic stroke 

(Allahtavakoli, Moloudi et al. 2009). Recent experimental data confirmed that PPAR 
agonists are protective at clinically relevant doses, independent of any effects on systemic 
blood pressure or cerebral blood flow and, most notably, the timing of reperfusion relative 

to drug administration, may significantly influence the ability of PPAR agonists to reduce 
infarction volume and improve neurologic function following ischemic injury (Gamboa, 
Blankenship et al.). The relevance of PPARǄ as an endogenous protective factor was also 
shown by the fact that treatment with a PPARǄ antagonist increased infarct size (Victor, 
Wanderi et al. 2006). Moreover, it was demonstrated that in primary cortical neurons of 
PPARǄ KO mice exposed to ischemia there was a reduced expression of numerous key gene 
products (including superoxide dismutase-1, catalase, and glutathione S-transferase) along 
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with an increased damage.  PPARǄ mRNA is up-regulated in ischemic brain, especially in 
the peri-infarct area. Increased PPARǄ mRNA was detected in the infarcted brain as early as 
6 h following focal ischemia (Ou, Zhao et al. 2006), and PPARǄ immunopositive neurons 
were detected between 4 h and 14 days, whereas in neurons and microglia only transiently 
at 12 h in the post-ischemic brain (Zhao, Patzer et al. 2005; Victor, Wanderi et al. 2006). The 
beneficial role of PPARǃ/ǅ in stroke has been demonstrated by two different studies in 
which PPARǃ/ǅ knockout mice subjected to cerebral IRI showed significantly larger infarct 
size than wild-type littermates (Pialat, Cho et al. 2007). This finding is confirmed by another 
study demonstrating that intracerebroventricular administration of high affinity PPARǃ/ǅ 
agonists such as L-165041 and GW501516 significantly decreased the infarct volume at 24 h 
of reperfusion after cerebral ischemia in rats (Iwashita, Muramatsu et al. 2007).  

4.2 Clinical evidence of beneficial effects of PPAR ligands in ischemic stroke 
Although various PPAR agonists applied before the onset of ischemia can effectively protect 

the brain in animal models of acute IRI, these treatments are seldom possible in the clinical 

setting of stroke because patients with stroke present after onset of the ischemic attack. 

Neuroprotective interventions applied after the onset of ischemia would thus seem to have 

greater clinical potential. Although some preclinical data provide evidence that 

administration of PPAR agonists during reperfusion decreases cerebral IRI, to date, there are 

no clinical data on the therapeutic efficacy of PPAR agonists administration after the onset 

of the ischemic event. Nevertheless, it must be noted that there may be subgroups of 

patients at high risk for stroke that could benefit from taking neuroprotective agents as 

prophylactic treatment. As already mentioned, pioglitazone and rosiglitazone (the TZD 

class of PPAR agonists) have proven to be beneficial in type-2 diabetes mellitus patients. 

Diabetics are at an increased risk of stroke incidence and stroke causes more damage in 

diabetics compared to normoglycemic individuals. For this reason, such patients might 

benefit from taking an antidiabetic medication with neuroprotective properties, which 

might lessen the incidence and/or the severity of acute ischemic stroke. However, it’s 

important to assess whether the potential benefits of taking an oral neuroprotective drug 

chronically outweighs the risks, including potential side effects. The use of a PPAR agonist, 

specifically pioglitazone, as a preventive approach to ischemic brain injury has been recently 

addressed by two large clinical trials: the Prospective Pioglitazone Clinical Trial in 

Macrovascular Events (PROactive) and the Insulin Resistance Intervention after Stroke Trial 

(IRIS trial). The PROactive study has demonstrated that pioglitazone significantly reduces 

the combined risk of heart attacks, strokes and death by 16% in high risk patients with type-

2 diabetes (Dormandy, Charbonnel et al. 2005).  Enhanced functional recovery was also 

reported in a small group of stroke patients with type-2 diabetes treated with pioglitazone 

(Lee, Olson et al. 2006). However, it remain unclear whether the suggested beneficial effects 

of pioglitazone are mediated by insulin sensitization or by additional observed reductions in 

risk factors, such as hyperthension and dyslipidemia. This question and that related to the 

potential beneficial effects of pioglitazone in non-diabetic patients with stroke will be 

addressed by the IRIS trial, a randomized, double-blind, placebo-controlled trial on more 

than 3000 non-diabetic subjects who are insulin resistant and have had a recent transient 

ischemic attack or ischemic stroke. The IRIS study (ClinicalTrials.gov Identifier: 

NCT00091949) began on February 2005 and it is still recruiting patients. Interestingly, high 
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plasma levels of 15d-PGJ2 (the natural ligand for PPAR) have been associated with good 

neurological outcome and smaller infarct volume in patients with an acute atherothrombotic 

stroke (Blanco, Moro et al. 2005). Moreover, a recent report suggests that the Pro12Ala 

polymorphism of PPARǄ2 is associated with a reduced risk for ischemic stroke (Lee, Olson 

et al. 2006), further supporting the importance of PPARs in cerebral ischemia. Nevertheless, 

as TZDs are hampered by adverse effects related to increased weight gain, fluid overload, 

and congestive heart failure, the risks associated with chronic TZD administration needs to 

be better elucidated. 

Abnormal levels of serum lipids, including triglycerides, low density lipoprotein (LDL) and 

high density lipoprotein (HDL), are regarded as other important risk factors for 

cerebrovascular disease, including stroke. The association between hypercholesterolemia 

and stroke has become more apparent because of data from prospective cohort studies that 

show higher risks of ischemic stroke with increasing levels of total cholesterol in both men 

and women. Increased HDL cholesterol levels have a protective effect against the occurrence 

of ischemic stroke and elevated triglyceride levels have also been reported as a risk factor 

for stroke. Overall, elevated total cholesterol confers an approximately two-fold relative 

increase in stroke risk for men and women. As fibrates are used as lipid-lowering agents, it 

has been supposed that these PPARǂ agonists could also protect the brain against noxious 

biological reactions induced by cerebral IRI. A recent systematic meta-analysis of 

randomized clinical trials shows that fibrates do not significantly reduce the odds of stroke 

(Saha, Kizhakepunnur et al. 2007). However, data from large trials specifically investigating 

the role of fibrates in stroke event reduction are needed to conclusively elucidate their 

potential neuroprotective role. For instance, a large clinical trial, named Action to Control 

Cardiovascular Risk in Diabetes (ACCORD) is currently testing the ability of fenofibrate to 

decrease stroke incidence in high-risk patients with type-2 diabetes (ACCORD study group 

2007).  

5. Molecular mechanisms of beneficial effects of PPARs against cerebral 
ischemia 

Cerebral IRI is known to induce generation of ROS, as well as the expression of cytokines, 
adhesion molecules and enzymes involved in the inflammatory response, and is known to 
be regulated  by oxygen- or redox-sensitive mechanisms. Recent studies have confirmed the 
pivotal role of both oxidative stress and inflammatory response in the pathogenesis of acute 
ischemic stroke. Through various mechanisms PPARs can regulate both inflammatory and 
oxidative pathways and PPAR agonist-induced neuroprotection seems to be specific for 
injuries in which inflammation or free radical generation are the main causes of cell damage. 
For instance, PPARǂ activation can induce expression and activation of antioxidant 
enzymes, such as superoxide dismutase (SOD) and glutathione peroxidase (GSH). We have 
demonstrated that administration of a highly selective PPARǂ agonist, WY14643, 30 min 
prior to IRI, decreased ROS production and lipid peroxidation in rats subjected to IRI and, at 
the same time, offered protection against GSH depletion (Collino, Aragno et al. 2006). 
Similar results on oxidative stress modulation have been reported when another PPARǂ 
agonist, fenofibrate, was tested in a mouse model of middle cerebral artery occlusion 

(Deplanque, Gele et al. 2003). Interestingly, PPAR KO mice have been found to exhibit 
significant increases in oxidative stress and lipid peroxidation much earlier in their life than 
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wild-type littermates (Poynter and Daynes 1998). The PPAR-induced protective effect on 
oxidative stress could be related to a direct effect on antioxidant enzyme expression, as the 
catalase and SOD gene promoters contain the PPRE. In fact, rats that have been treated with 
a diet containing PPARǂ ligands, WY14643 or fenofibrate, have demonstrated an enhanced 
expression of antioxidant enzymes such as SOD and catalase (Toyama, Nakamura et al. 
2004). Based on gene expression microarray experiments, Coleman and colleagues 
(Coleman, Prabhu et al. 2007) have demonstrated that PPARǃ/ǅ activation increased mRNA 
for aldheyde dehydrogenase and glutathione-S-transferase, thus protecting the cell from 
oxidative damage. In normotensive and hypertensive animals treated with rosiglitazone, 
ischemic hemispheres showed increased catalase and Cu/Zn-SOD activity in the peri-infarct 
region (Tureyen, Kapadia et al. 2007) and the level of Cu/Zn-SOD was demonstrated to 
increase in the ischemic cortex of animals treated with pioglitazone for 4 days prior to focal 
cerebral ischemia (Shimazu, Inoue et al. 2005). As we have recently shown, treatment of rats 
with either pioglitazone or rosiglitazone before occlusion of the common carotid artery 
decreased the production of ROS and nitrite, decreased lipid peroxidation and reversed the 
depleted stores of glutathione in the hippocampus (Collino, Aragno et al. 2006). These 
findings are supported by data from an in vitro model demonstrating that pre-treatment 
with PPARǄ agonists protected an immortalized mouse hippocampal cell line against 
oxidative stress induced by glutamate or hydrogen peroxide (Aoun, Watson et al. 2003). 
Moreover, PPARǄ agonists attenuate the expression of iNOS in inflammatory cells, which is 
an important source of nitric oxide (NO). NO may react with ROS to produce peroxynitrites, 
with deleterious effects on neuronal survival. Thus, iNOS inhibition may represent a further 
mechanism for neuroprotection by PPAR agonists. Mitochondria are the major source of 
ROS, which are mainly generated at complexes I and III of the respiratory chain. There is 
now evidence indicating that rosiglitazone and pioglitazone exert direct and rapid effects on 
mitochondrial respiration, inhibiting complex I and complex III activity (Brunmair, Lest et 
al. 2004). As PPARǄ agonists partially disrupt the mitochondrial respiratory chain, both 
electron transport and superoxide anion generation are affected. Moreover, a novel 
mitochondrial target protein for PPARǄ agonists (“mitoNEET”) has recently been identified 
(Colca, McDonald et al. 2004). MitoNEET was found associated with components of 
complex III, suggesting how binding of PPARǄ agonists to mitoNEET could selectively 
block different mitochondrial targets. The ability of PPARǄ agonists to influence 
mitochondrial function might contribute to their inhibitory effects on ROS generation that is 
evoked by IRI. 
Another mechanism through which PPAR agonists may provide neuroprotection is by 

down-regulating the inflammatory response associated with IRI. Depending on the affected 

tissue and which PPAR isoforms are involved, PPAR agonists can differently modulate the 

intensity, duration and consequences of inflammatory events. For instance, ischemia-

induced COX-2 overexpression is prevented by PPAR agonists but not by PPARǂ agonists 

(Sundararajan, Gamboa et al. 2005; Collino, Aragno et al. 2006; Collino, Aragno et al. 2006). 

Activation of PPARǄ attenuates the expression of matrix metalloproteinase (MMP)-9 and 

various inflammatory cytokines in ischemic brain tissue (Pereira, Hurtado et al. 2005). 

PPAR is constitutively expressed in macrophages and microglial cells and the systemic 

treatment of rodents with rosiglitazone reduces the infiltration of these cells into peri-infarct 

brain regions. Both chronic and acute administration of PPAR agonists has been 

demonstrated to prevent cerebral IRI-induced expression of vascular cell adhesion 
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molecule-1 (VCAM-1) and ICAM-1 in two independent studies (Deplanque, Gele et al. 2003; 

Collino, Aragno et al. 2006). In the brain, the decreased expression of these adhesion 

molecules might contribute to inhibit the infiltration of the brain ischemic area by 

neutrophils. Studies addressing the molecular mechanisms of these anti-inflammatory 

actions demonstrated that the involvement of PPARs in the control of IRI-induced 

inflammation is mediated mainly through their transrepression capabilities. PPARs can 

suppress the activities of many distinct families of transcription factors. The range of 

transcription factors affected and the mechanisms involved may be different for each PPAR 

isotype, although a common mechanism of PPARǂ and PPAR neuroprotection  appears to 

involve inhibition of p38 MAPK activation and NF-κB nuclear translocation. A recent study 

confirms that PPAR activation prevents the post-ischemic cerebral expression of pro-

inflammatory transcription factors, such as Egr1, C/EBP and NF-κB, possibly by decreasing 

DNA binding (Tureyen, Kapadia et al. 2007). The inhibitory protein IκBǂ, which is an 

indicator of NF-κB transcriptional activity, is remarkably increased in the brain of rats that 

underwent cerebral ischemia and completely blocked by rosiglitazone and 15d-PGJ2 

administration, thus further confirming that both endogenous and synthetic PPAR ligands 

inhibit NF-κB signalling (Pereira, Hurtado et al. 2006). Similarly, p38 MAPK and NF-κB 

activation by cerebral IRI has been demonstrated to be inhibited by pre-treatment with the 

PPARǂ agonist WY14643 or the PPAR agonist pioglitazone. However, as MAPK and NF-

κB are functionally interconnected and do not act independently, we cannot rule out the 

possibility that PPARs affect NF-κB activation by interfering with the MAPK signalling 

cascade or vice versa.  

The generation of ROS is known to be associated with the induction of apoptosis and, in 

neurons, inhibition of cell death is an important factor to prevent during IRI. PPAR 

activation may decrease the IRI-induced activation of apoptotic pathways depending on the 

increase in activity and expression of numerous anti-oxidant enzymes. Moreover, by their 

anti-inflammatory action on microglia and astrocytes, PPAR agonists prevent the release of 

neurotoxic agents, which induce neuronal apoptosis. PPAR agonists may attenuate 

ischemia-induced reactive oxygen species and subsequently alleviate the post-ischemic 

degradation of Bcl-2, Bcl-xl, and Akt, by increasing SOD/catalase and decreasing 

nicotinamide adenine dinucleotide phosphate oxidase levels (Fong, Tsai et al.). Chu and 

colleagues (Chu, Lee et al. 2006) have demonstrated that rosiglitazone-fed rats had better 

neurological scores and reduced number of TUNEL-positive cells following transient focal 

ischemia. Interestingly, these authors also reported an increased vasculature in the 

rosiglitazone-treated group with increased number of endothelial cells positive for BrdU, 

suggesting there may be enhanced angiogenesis following PPAR activation. 

Administration of a selective PPAR agonist (L-796449) 10 min prior to permanent cerebral 

artery occlusion, resulted in decreased apoptosis, measured as reduction of caspase-3 

activity (Pereira, Hurtado et al. 2005). Another study confirmed inhibition on caspase-3 

activity by both exogenous and endogenous PPAR agonists, rosiglitazone and 15d-PGJ2, in 

the ischemic cortex (Lin, Cheung et al. 2006). The same authors observed that rosiglitazone 

and 15d-PGJ2 exhibit a concentration-dependent paradoxical effect on cytotoxicity, when 

tested in an in vitro model of hydrogen peroxide induced neuronal apoptosis. The drugs 

induced pro-apoptotic effects when used at concentrations higher that 5 µmol/L but protect 

neurons from necrosis and apoptosis at concentrations lower than 1 µmol/L. The reason for 
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this paradoxical action is unclear and further studies are needed to better clarify the effects 

of PPARs in IRI induced-apoptosis and necrosis. 

Recently published data suggest that an increased uptake of cerebral extracellular glutamate 
levels after ischemia may represent an additional mechanism for the neuroprotection 

exerted by PPAR activation (Romera, Hurtado et al. 2007). Both in vivo and in vitro 
experiments showed that rosiglitazone administration increased the expression of the 
GLT1/EAAT2 glutamate transporter in the brain, thus preventing the extracellular 
glutamate levels from rising to neurotoxic values. 

6. Conclusion  

Although clinical data are limited, a wide array of evidence obtained in animal models now 
shows that PPAR activation may be a rational and effective strategy against ischemic brain 
damage. The beneficial effects of PPAR agonists in experimental models of stroke are 
mediated by different mechanisms, as expected based on their pleiotropic pharmacological 
profile. The neuroprotective actions appear to be mainly related to the reduction in 
oxidative damage as well as anti-inflammatory and anti-apoptotic effects. These results have 

been essentially obtained with PPARǂ and PPAR agonists, while the PPARǃ/ǅ pathway 
remains largely unexplored, despite a significant interest in this target. Selective activation 
of different isoforms of PPARs may account for the difference in molecular pathways 
underlying neuroprotection and these different features still remain far from being 
completely understood. In conclusion, currently available management protocols for 
patients with stroke may benefit from the use of PPAR agonists that target detrimental 
processes associated with IRI. However, several critical issues still need to be resolved. For 
instance, well-structured clinical trials aimed at evaluating the effects of PPAR ligands on 
stroke recovery are needed before firm conclusions are drawn about their therapeutic 
efficacy. A more stringent approach regarding the concentration range of PPAR agonists, 
especially within the CNS, and the duration of exposure should be applied. Also acceptable 
water solubility with satisfactory blood-brain barrier penetrability is an important aspect of 
PPAR agonists that needs to be optimized. 
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