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1. Introduction 

Each year approximately 795,000 people in the United States suffer a new or recurrent 
stroke and it is the third leading cause of death after heart disease and cancer (Lloyd-
Jones et al., 2010). The estimated cost of stroke was $73.7 billion nationwide in 2010, the 
majority of which was related to payments for inpatient care and rehabilitation for 
significant morbidity (hemiparesis, aphasia and loss of independence). Stroke is broadly 
divided into two categories: ischemic and hemorrhagic. The former is related to too little 
blood supplied to the brain, secondary to thrombus or embolus, and the latter results 
from excess blood escaping into the cranial cavity. Ischemic brain injury represents 
conditions including focal ischemia, with subsequent loss of blood flow and nutrients to 
one area of the brain, and global ischemia, as seen in cardiopulmonary arrest and 
resuscitation which, when brief, results specifically in neuronal death in the CA1 region of 
the hippocampus (Pulsinelli, 1985). In either case, decreased cerebral blood flow initiates a 
cascade of ATP depletion, ion gradient disruption, excessive glutamate release, formation 
of reactive oxygen species and increased lactic acidosis that leads to neuronal death 
(Doyle et al., 2008). To date, the only FDA-approved treatment for focal ischemic stroke is 
recombinant tissue plasminogen activator which aims to restore blood flow by 
recanalization of the occluded vessel (The National Institute of Neurological Disorders 
and Stroke rt-PA Stroke Study Group, 1995). In global ischemia, multiple clinical trials 
have demonstrated that therapeutic hypothermia increases survival and improves 
neurologic outcome (Bernard et al., 2002; Sahota and Savitz, 2011; The Hypothermia after 
Cardiac Arrest Study Group, 2002). Though the exact mechanisms remain unclear, effects 
on several different pathways have been observed. In spite of this one treatment modality, 
survival to hospital discharge after cardiac arrest and attempted resuscitation remains a 
dismal 5-18% depending on the cause and rapidity of the response (de Vreede-
Swagemakers et al., 1997; Eckstein et al., 2005). 
To date, more than one hundred potential pharmacological strategies for stroke have failed 

to show improved outcome in phase III trials. As such, the role of central nervous system 

glial cells has recently come under scrutiny as work focused on neurons alone has failed to 

reverse neuronal death in ischemic areas of the brain. Glial cells (microglia, astrocytes and 

oligodendrocytes) constitute over 70% of the total cell population in the CNS and are active 

contributors to neuromodulatory, neurotrophic and neuroimmune events in the brain and 
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spinal cord (Pellerin, 2005; Reichenbach and Wolburg, 2005). Once thought of merely as 

neuronal support cells, astrocytes and microglia, in their physiologic role, dynamically 

control synaptic function and neuronal activity by performing a variety of crucial functions. 

Microglia, the intrinsic macrophages of the CNS, provide immune surveillance against 

invading pathogens or nervous system insults (Aloisi, 2001) while astrocytes regulate 

synaptic glutamate levels, contribute to the blood-brain-barrier and supply neuronal growth 

factors (Liberto et al., 2004). Given their complex involvement in normal CNS function, glial 

cells must be considered in any strategy focused on neuronal preservation after ischemic 

injury. 

Heat shock proteins (HSP) are a phylogenetically conserved group of chaperones that assist 

in ATP-dependent protein folding, translocation across membranes, suppression of protein 

aggregation, presentation of substrates for degradation and modulate a host of other 

intracellular processes (Hartl, 1996). The 70 kDa heat shock protein family (HSP70) is the 

most extensively studied group of chaperones and consists of at least twelve constitutive 

and inducible proteins which aid in a coordinated response to cellular stressors. The most 

important members include: the constitutively expressed primarily cytosolic Hsc70/Hsp73, 

the heat inducible cytosolic form Hsp70/72, the glucose regulated mitochondrial protein 

Grp75/mortalin/mtHsp70 and the endoplasmic reticulum glucose regulated protein 

Grp78/BiP. The HSP70s are structurally comprised of a 44 kDa amino-terminal ATPase 

domain, 18 kDa carboxyl-terminal substrate-binding domain and a more variable 10 kDa 

segment that terminates in the highly conserved EEVD sequence that regulates 

intramolecular interactions and ATPase activity (Freeman et al., 1995). Our laboratory has 

demonstrated that the carboxyl-terminal domain of Hsp72 is sufficient to protect astrocytes 

from oxygen-glucose deprivation and decrease infarct volume after transient middle 

cerebral artery occlusion (MCAO) (Sun et al., 2006b). 

Extensive work using overexpression and knockout of HSP70 family members has 
highlighted integral cytoprotective, anti-apoptotic and immune regulatory roles for these 
proteins. Induction of Hsp70/72 by heat stress or targeted overexpression in multiple 
experimental disease models including stroke (Rajdev et al., 2000), sepsis (Ryan et al., 1992), 
renal injury (Jo et al., 2006) and acute lung injury (Villar et al., 1994) demonstrated decreased 
organ injury and enhanced survival. Lee et al. (2001) showed that while hsp70.1 knockout 
mice have a normal baseline phenotype; cerebral infarct volume was 30% larger and 
mortality was higher than in wild type littermates after focal ischemia. In addition, using a 
combined hsp70.1/3 knockout (the two genes are separated by only 8kb on chromosome 17 
and show 99% homology), Lee et al. (2004) later determined that cytochrome c release into 
the cytosol and levels of activated caspase-3 were increased after MCAO suggesting that 
Hsp 70/72 plays a role in preventing initiation of apoptosis after injury. The hsp70.1/3 
knockout also exhibited an enhanced inflammatory response to cecal perforation and 
ligation (an animal model of acute respiratory distress syndrome/sepsis) as evidenced by 

increased NF-B activation, TNF- and IL-6 expression and lung injury highlighting a role 
in controlling immune function in injury states (Singleton and Wischmeyer, 2006). In this 
same model, Weiss et al. (2002) demonstrated that targeted overexpression of Hsp70 in rat 
lung significantly attenuated interstitial and alveolar edema, protein exudation and 
dramatically decreased neutrophil accumulation leading to improvement of acute 
respiratory distress syndrome. 
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Overall, this chapter seeks to review the importance of astrocytes and microglia in the post-
ischemic inflammatory response and the role of heat shock proteins in modulating 
inflammation and outcome after cerebral ischemia. 

2. Microglia: Immune cells of the CNS 

Microglia are monocyte-derived CNS tissue macrophages that are phenotypically adapted 
to the neural environment. As such, they are characterized by minimal phagocytic activity 
and low expression of the macrophage-specific antigen, CD45 (Kreutzberg, 1996) which may 
be used to differentiate resident microglia from infiltrating macrophages (Babcock et al., 
2003). Microglia constitutively and inducibly express a variety of immune-related receptors 
on their surface including cytokine, chemokine, prostaglandin, pattern recognition and 
complement receptors (Aloisi, 2001). In addition, microglia can function as antigen 
presenting cells, and through CD40 on their membranes can form an “immunological 
synapse” with CD40L-expressing T-cells recruited centrally (Gerritse et al., 1996). As a 
result, microglia can respond to diverse stresses by performing innate immune functions 
such as phagocytosis, and can release potentially beneficial factors such as glial-derived 
neurotrophic factor (GDNF). 
Microglia can release a host of factors to protect the CNS; however, when activated after 
ischemia by necrotic cell debris and other substances, they can produce free radicals, 
proinflammatory cytokines (IL-1ǃ, TNFǂ, IL-6 and interferon-Ǆ), reactive oxygen species, 
matrix metalloproteinases and glutamate in an aberrant fashion (Lucin and Wyss-Coray, 
2009; Yenari et al., 2010). Such compounds are instrumental in the subsequent activation of 
astrocytes (see below), induction of cell adhesion molecules and T-lymphocyte recruitment 
into the CNS following various injuries (Liu and Hong, 2003; Sweitzer et al., 2002). Several 
studies have been performed testing inhibition of microglial activation as a strategy to 
protect neurons following ischemic injury. Transgenic mice lacking the pattern recognition 
receptor TLR4 (Hyakkoku et al., 2010), mice overexpressing the anti-inflammatory cytokine 
IL-10 (De Bilbao et al., 2009) and treatment with a neutralizing antibody against TNF-alpha 
(Barone et al., 1997), all resulted in suppressed microglial activation and significantly 
decreased infarct size following focal cerebral ischemia. Taken together, these studies 
suggest that inhibition of the post-ischemia inflammatory response is a viable option for 
stroke treatment. Although microglia quickly respond to ischemia by producing 
proinflammatory cytokines (Yenari et al., 2010), proliferating (Denes et al., 2007) and 
exhibiting an altered cell morphology (Tanaka et al., 2003), only a small percentage (1-8%) of 
the microglia in the corpus callosum and lesion penumbra, and no microglia in the lesion 
core, express Hsp72 early after focal ischemia (Soriano et al., 1994). This indicates that a 
robust increase in Hsp72 protein expression is not a normal aspect of the post-ischemic 
microglial phenotype.  
Interestingly, the majority of inflammatory mediators produced by microglia after stroke are 

produced by NFB pathway activation (Yenari et al., 2010). Hsp72 has been implicated in 

modulation of inflammation by suppressing NFB through multiple interactions. Previous 

work has shown that Hsp72 directly binds to the NFB:IB complex, thus preventing IB 

phosphorylation and subsequent NFB activation (Feinstein et al., 1996; Zheng et al., 2008). 

Ran et al. (2004) further demonstrated that Hsp72 binds directly to IB kinase- (IKK-), an 

essential regulatory component of the IKK complex, blocking activation of IB and release of 
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NFB. Mice overexpressing Hsp72 have decreased infarcts compared to their wild-type 

counterparts, along with attenuated microglial activation and TNF- production (Rajdev et 
al., 2000; Zheng et al., 2008). Microglia isolated from these mice showed decreased toxicity 

towards cultured astrocytes, accompanied by decreased NFB signaling. Thus, the use of 

heat shock proteins to inhibit NFB signaling in microglia may be an effective treatment for 
stroke by inhibiting a plethora of downstream factors that ultimately lead to further glial cell 
activation and neuronal cell death.  

3. Astrocytes: Multiple roles in physiology & pathophysiology 

Historically, astrocytes were considered to be passive elements in the CNS and 
neurotransmitter receptor expression was believed to be solely a characteristic of neurons. 
To the contrary, astrocytes express a variety of receptors on their surface, including 
metabotropic glutamate receptors, GABA receptors, adenosine receptors and the mu, delta 
and kappa opioid receptors, among others (Kettenmann and Steinhauser, 2005). In addition, 
these cells express a variety of ion channels on their surface, including Ca2+ channels. These 
are important because astrocytes are thought to function as part of a syncytia linked by 
connexins in order to transfer information in the form of ATP and Ca2+ (Kielian, 2008). In a 
model of ischemia, Cotrina et al. (1998) demonstrated that gap junctions remain open after 
oxygen-glucose deprivation (OGD) and may contribute to infarct evolution through direct 
astrocytic intercellular communication.  
Astrocytes derive from the neuroectoderm and express a series of “marker antigens” during 
development such as the cytoskeletal protein vimentin and nestin (Eliasson et al., 1999) and 
the fatty acid binding protein brain lipid binding protein (Schmid et al., 2006). Once they 
reach their adult phenotype, other proteins are expressed including Aldh1L1 and glial 
fibrillary acidic protein (GFAP) (Cahoy et al., 2008). This intermediate filament is commonly 
considered to be astrocyte-specific, though it may also be found on reactive choroid plexus 
epithelium cells and neuronal precursor cells (Reichenbach and Wolburg, 2005) and there 
are also astrocyte populations that are GFAP negative (Kimelberg, 2004). GFAP functions as 
a structural protein and enhancement of GFAP remains the mainstay for demonstrating 
astrocytic reactivity in the CNS (Eng et al., 2000), however, it is important to note that only 
15% of the total astrocyte cell volume is labeled with GFAP (Bushong et al., 2002). 
Remarkably, GFAP knockout mice do not exhibit an altered phenotype at baseline; 
however, after trauma, astrocyte hypertrophy is suppressed, scar formation is less organized 
and healing is slowed (Pekny et al., 1995; Pekny and Pekna, 2004). In further work using a 
lesion model of the entorhinal cortex, Wilhelmsson et al. (2004) demonstrated that double 
GFAP-/- Vim-/- mice display increased neuronal loss in the dentate gyrus at day 4 post-
injury but enhanced synaptic regeneration at day 10. These data suggest a two-part response 
of reactive astrocytes to CNS injury: beneficial for neuronal survival in the initial post-injury 
period and detrimental to CNS regeneration in the recovery phase (Pekny and Nilsson, 
2005).  

3.1 Role in the blood-brain barrier 

Astrocytes play an integral role in the structure of the blood-brain barrier (BBB), which 
limits the entry of circulating elements into the nervous system. Though recent data 
suggests that pericytes, not astrocytes, are required for the formation of the BBB during 
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development (Daneman et al., 2010), ablation of astrocytes in the process of CNS restoration 
leads to failure of blood-brain barrier repair, an enhanced infiltration of leukocytes and 
subsequent excitotoxic neuronal death (Bush et al., 1999). In addition, astrocytes have been 
postulated to mediate functional hyperemia, the coupling of neuronal activity with 
increased cerebral blood flow, via changes in intracellular calcium in astrocytic endfeet 
leading to release of vasoactive substances (cyclooxygenase, adenosine) and modulation of 
adjacent arterioles (Iadecola and Nedergaard, 2007; Takano et al., 2006). It is estimated that 
56% of rat cortical synapses are ensheathed by astrocyte domains (Chao et al., 2002) and an 
individual astrocyte occupies an exclusive, non-overlapping territory; each interfacing with 
the vasculature and thousands of synapses suggesting a complex process of synaptic 
integration (Bushong et al., 2004). Indeed, mice lacking GFAP exhibit increased infarct 
following ischemia, possibly due to blood-brain barrier and cerebral blood flow dysfunction 
(Nawashiro et al., 2000). The implication is that following ischemia, astrocytes are poised to 
influence penumbral blood flow and provision of neuronal nutrients in a coordinated 
fashion. 

3.2 Astrocytes and ischemic injury 

While it was established over a hundred years ago that neurons of the CA1 region of the 
hippocampus are selectively vulnerable to forebrain ischemia (Pulsinelli, 1985); evidence for 
injury to astrocytes has been more recent (Petito et al., 1998). The two main types of 
astrocytes found in the CNS are protoplasmic astrocytes found in the gray matter and 
fibrous astrocytes found in the white matter. This is important because astrocytes isolated 
from different brain regions exhibit varying sensitivity to oxygen-glucose deprivation 
(OGD) with striatal cells most vulnerable followed by hippocampal and cortical astrocytes 
(Xu et al., 2001). In vivo, using the middle cerebral artery occlusion (MCAO) model of focal 
ischemia, Lukaszevicz et al. (2002) demonstrated selective degeneration of protoplasmic 
cortical astrocytes with associated breakdown of the blood brain barrier. Yu et al. (1989) first 
demonstrated that cultured astrocytes are sensitive to hypoxia, exhibiting swelling and 80% 
suppression of glutamate uptake after 12-24 hours of oxygen deprivation. Using in situ 
hybridization and immunohistochemistry, Liu et al. (1999) demonstrated an early decline in 
mRNA and protein for GFAP in the ischemic core after middle cerebral artery occlusion 
(MCAO) with a corresponding increase in astrocyte markers in the penumbra, both of which 
temporally preceded neuronal death. In agreement, Zhao et al. (2003) showed early loss of 
GFAP after traumatic brain injury. Early in vitro work determined that co-culture of neurons 
with astrocytes protected them from OGD; specifically, when cultured alone and exposed to 
4 hour of OGD only 5% of neurons survived compared to 75% survival in mixed cultures 
(Vibulsreth et al., 1987). Neurons co-cultured with astrocytes have also been shown to 
survive exposure to 100-fold higher concentrations of glutamate (Rosenberg and Aizenman, 
1989). Taken together, these studies suggest that therapeutics aimed at maintaining 
astrocyte viability and function may protect neurons from ischemic injury.  

3.3 Astrocytes as regulators of synaptic glutamate 

Another key function of astrocytes is the control of extracellular glutamate homeostasis 
through sodium-dependent uptake via the excitatory amino acid transporters (EAATs) 
(Danbolt, 2001). The glutamate-aspartate transporter (GLAST/EAAT1) and the glutamate 
transporter-1 (GLT-1/EAAT2) are primarily localized in astrocytes. GLT-1 is the most 
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studied astrocyte transporter and is suggested to be responsible for over 90% of synaptic 
glutamate clearance (Tanaka et al., 1997). Dysregulation of synaptic glutamate clearance by 
these transporters has been implicated in many disease processes (Gegelashvili and 
Schousboe, 1997; Maragakis and Rothstein, 2001; Rothstein et al., 1996). For example, 
glutamate levels have been shown to increase 50 times from baseline after ischemia and 
glutamate efflux from astrocytes has been suggested to occur by reversal of glutamate 
transport (Mitani et al., 1994; Seki et al., 1999). Transient MCAO leads to downregulation of 
GLT-1 which precedes neuronal death and antisense knockdown of GLT-1 exacerbates 
neuronal death in the same model (Rao et al., 2001a; Rao et al., 2001b; Rao et al., 2000). 
Furthermore, using pre-treatment with ceftriaxone, a known inducer of GLT-1, Chu et al. 
(2007) demonstrated a dose-dependent decrease in infarct volume and levels of the 
proinflammatory cytokine TNF after MCAO. In addition, work from our laboratory 
showed that upregulation of GLT-1 in astrocytes using ceftriaxone decreases CA1 neuronal 
cell death in a global ischemia model (Ouyang et al., 2007). Complete knock-out of GLT-1 
results in spontaneous seizures, selective death of CA1 neurons and 20% survival of animals 
at 12 weeks (Tanaka et al., 1997) and mice lacking GLT-1 display enhanced neuronal death 
after brief ischemia compared to wild type controls (Mitani and Tanaka, 2003). These 
findings underline the importance of exquisite regulation of synaptic glutamate by 
astrocytes in maintaining neuronal integrity. 

4. Heat shock proteins affect astrocyte regulation of ischemia 

4.1 A role for Hsp72 in ischemia 

Our laboratory has been particularly interested in the role of astrocytic heat shock proteins 

as regulators of ischemic injury. Initial studies demonstrated induction of Hsp72 in cultured 

astrocytes exposed to heat shock or OGD (Bergeron et al., 1996) and further work confirmed 

that Hsp72 overexpression in astrocytes exposed to glucose deprivation (Xu and Giffard, 

1997) or oxygen-glucose deprivation (Papadopoulos et al., 1996) was cytoprotective. 

Interestingly, overexpression of Hsp72 in astrocytes was shown to protect co-cultured 

neurons from ischemic injury (Xu et al., 1999); highlighting the integral role of astrocytes in 

neuronal homeostasis and survival. As discussed above, we have also demonstrated that the 

carboxyl-terminal domain of Hsp72 is sufficient to protect astrocytes from oxygen-glucose 

deprivation by suppressing protein aggregation and further decreases infarct volume after 

transient middle cerebral artery occlusion (MCAO) (Sun et al., 2006b). Astrocytes in the CA1 

region of the brain, which is particularly sensitive to forebrain ischemia, lose glutamate 

transporter expression and activity prior to the death of CA1 neurons (Chen et al., 2005; 

Ouyang et al., 2007; Yeh et al., 2005). We have shown that astrocyte-targeted overexpression 

of Hsp72 not only protects CA1 neurons from transient forebrain ischemia, but also 

preserves GLT-1 immunoreactivity in the region (Xu et al., 2010) suggesting a possible 

mechanism for the observed protection. 

4.2 Hsp72 as a regulator of apoptosis 

Multiple studies have highlighted a neuroprotective role of Hsp72 overexpression in models 
of ischemia (Hoehn et al., 2001; Rajdev et al., 2000; van der Weerd et al., 2005). The 
mechanism was initially attributed to the known chaperone functions of Hsp72 including 
maintaining correct protein folding and inhibiting aggregation, however, a body of work 
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has now emerged that indicates a direct role for Hsp72 in regulation of cell death by 
apoptosis and potentially even necrosis (Giffard and Yenari, 2004). Mitochondria are central 
to both cell death pathways; severe ischemia renders mitochondria unable to produce ATP 
and in less extreme stress conditions, mitochondria may increase production of reactive 
oxygen species (ROS), lose membrane potential and undergo changes in respiratory 
function (Dugan and Kim-Han, 2004). Ischemia can activate mitochondrial cytochrome c 
which translocates to the cytosol where it interacts with Apaf1 to form the apoptosome and 
activate caspase 9, initiating a cascade leading to DNA fragmentation (Chan, 2004; Leist and 
Jaattela, 2001). We have shown that overexpression of Hsp72 in cultured astrocytes 
subjected to glucose deprivation leads to decreased formation of ROS, stabilization of the 
mitochondrial membrane potential and prevention of increases in state IV respiration 
suggesting decreased cytochrome c release and activation of apoptosis (Ouyang et al., 2006). 
Furthermore, in the MCAO model of ischemia, we have shown that transfection of Hsp72 
leads to inhibition of apoptosis-inducing factor (AIF) translocation to the nucleus thereby 
blocking caspase-independent apoptosis (Sun et al., 2006b). This is supported by previous 
work by Ravagnan et al. (2001) demonstrating that Hsp72 protects Apaf -/- cells against 
death via an interaction with AIF. For a comprehensive review of the role of Hsp72 in cell 
death please see Giffard et al. (2008). 

4.3 Mitochondrial protection and mortalin/mitochondrial Hsp70 

Mitochondrial dysfunction leading to a loss of ATP production impairs many of the energy-

demanding neuroprotective functions of astrocytes after ischemic injury including ion 

homeostasis and neurotransmitter turnover (Bambrick et al., 2004). Mortalin forms part of 

the mitochondrial protein import machinery by binding a translocase in the inner 

membrane to form an ATP-dependent motor (Voos et al., 1999) and while it is not heat 

inducible it has been shown to increase after a variety of other stressors including glucose 

deprivation, oxidative stress and focal cerebral ischemia (Hadari et al., 1997; Lee, 2001; 

Massa et al., 1995).  

Using LXSN-mortalin-transduced astrocytes, our laboratory has shown that overexpression 
of mortalin produces mitochondrial protection after glucose deprivation (Voloboueva et al., 
2008). Specifically, we found decreased hydroethidine fluorescence (an indicator of the 
accumulation of reactive oxygen species (ROS)) and preserved mitochondrial membrane 
potential as measured by tetramethyl rhodamine staining (TMRE), a dye whose 
sequestration by mitochondria depends on the mitochondrial membrane potential, in 
astrocytes expressing increased levels of mortalin. In addition, mortalin overexpression 
preserved ATP levels in astrocytes subjected to oxygen-glucose deprivation and enhanced 
cell survival. In a more clinically relevant model of stroke, middle cerebral artery occlusion 
(MCAO), we further investigated the role of mortalin in mitochondrial protection. Rats 
overexpressing mortalin in astrocytes and neurons by direct intraventricular injection of a 
DNA plasmid encoding mortalin were subjected to MCAO and found to have a reduction in 
infarct area, decreased ROS and lipid oxidation compared to vector-transfected controls. 
Similar to our in vitro data we showed that mortalin overexpression reduced the ischemia-
induced depletion of ATP and maintained electron transport chain complex IV activity (Xu 
et al., 2009). 
To investigate the specific role of astrocytic mitochondrial inhibition in ischemia we treated 
astrocyte cultures with the Krebs cycle inhibitor, fluorocitrate (Voloboueva et al., 2007). 
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After glucose deprivation, astrocytes treated with fluorocitrate showed depletion of ATP, 
cell death and suppressed glutamate uptake within 3 hours. In addition, we demonstrated 
that inhibition of astrocytic mitochondria increased cell death in co-cultured neurons and 
enhanced changes in mitochondrial membrane potential in astrocytes suggesting a two-way 
crosstalk between these cells after injury related to energy supply and demand (Voloboueva 
et al., 2007). 

4.4 The role of Grp78/BiP in calcium handling 

The endoplasmic reticulum (ER) controls several cellular processes including protein 

synthesis, folding and trafficking. Under conditions of physiologic stress, including 

ischemia, that perturb ER Ca2+ homeostasis and therefore ER protein folding, the concerted 

actions of multiple pathways that influence protein synthesis and folding are activated; this 

is termed the unfolded protein response (UPR). Grp78/BiP is an ER chaperone protein 

involved in protein folding, suppression of apoptosis and regulation of the UPR. It is 

strongly induced as part of the UPR and translocates to mitochondria and other 

compartments after stress where it is postulated to mediate ER-mitochondria crosstalk (Sun 

et al., 2006a). Several prior studies also supported a role for Grp78/BiP in protection from 

ischemia-induced cell death using BIX, a Grp78 inducer, prior to transient global forebrain 

ischemia in gerbils (Oida et al., 2008) and focal ischemia in mice (Kudo et al., 2007). Work 

from our laboratory further showed that overexpression of Grp78/BiP protected cultured 

astrocytes from OGD, suppressed the GD-induced increase in mitochondrial Ca2+ and 

preserved mitochondrial function (Ouyang et al., 2011). 

5. Conclusion 

The processes leading to neuronal death following ischemia are complex and involve the 
integrated action of multiple pathways in a variety of cells types. Data from our laboratory, 
among others, has highlighted a role for dysfunction of astrocytes and microglia in the 
pathophysiology of cerebral ischemia. Currently, the most promising areas for intervention 
are ischemia-induced inflammation and oxidative stress with several drugs in clinical trials 
at this time aimed at suppressing cytokine release and reactive oxygen species, respectively. 
For example, the microglial inhibitor minocycline, which affects the release of inflammatory 
mediators from activated microglia is in Phase IV trials (Yenari et al., 2006), and epoetin alfa, 
which may be downregulated in astrocytes after ischemic injury is in Phase II/III trials 
(Zhao and Rempe, 2010). In this chapter we have reviewed several key functions of glial 
cells including control of inflammation, apoptosis and synaptic glutamate clearance as well 
as modulation of blood flow and mitochondrial protection (see Figure 1) that may be 
therapeutically targeted to protect neurons from injury. As the roles of glial cells and heat 
shock proteins in normal function and cerebral ischemia continue to be elucidated novel 
neuroprotective strategies may be developed in the future. 
Astrocytes are well poised to respond to changes in blood flow by release of vasodilators 
such as cyclooxygenase (COX) and adenosine. In the case of ischemia from thrombus or 
embolus, the decrease in oxygen and glucose delivery can initiate a stress response in 
astrocytes including changes in morphology, increase in intermediate filaments such as 
GFAP (not shown), decreases in glutamate transporters and activation of mitochondrial cell 
death pathways. Heat shock proteins have been shown to modulate several of these 
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pathways to inhibit astrocyte dysfunction leading to neuronal death. Microglia play an 
important role in the inflammatory cascade following ischemia. Activation of NFB leads to 
the production of pro-inflammatory cytokines which can exacerbate damage to neurons. 

Heat shock proteins may also have a role in inhibiting the activation of NFB, by direct 
interaction and stabilization of the IB:NFB complex or by inhibition of IKK preventing 
phosphorylation of degradation of IB. 
 

 

Fig. 1. Glial involvement in neuronal death from ischemia.  
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