
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900



1 

Ischemic Neurodegeneration in  
Stroke-Prone Spontaneously  

Hypertensive Rats and Its  
Prevention with Antioxidants  

Such as Polyphenols 

Kazuo Yamagata 
Laboratory of Molecular Health Science of Food,  

Department of Food Bioscience and Biotechnology,  
College of Bioresource Sciences, Nihon University (NUBS), 

 Japan 

1. Introduction 

Stroke involves cerebral infarction and hemorrhaging and is associated with very high 
mortality. Previous reports have indicated that ischemic stimulation such as the 
reoxygenation that occurs after hypoxia produces a large quantity of reactive oxygen species 
(ROS) that strongly induces neuronal death in vivo and in vitro (Negishi et al., 2001). Indeed, 
this is considered to be the factor that most strongly induces cell death in cerebral ischemia. 
In recent years, apoptosis has been suggested to be the mechanism responsible for ischemic 
neuronal death in animal stroke models (Tagami et al., 1998). 
Stroke-prone spontaneously hypertensive rats (SHRSP) are widely used as a model of 

human stroke (Yamori et al., 1974). In this model, blood pressure is elevated as age 

increases, as is found in humans; and the rats eventually die of stroke. One feature of this 

model is that strokes develop spontaneously following severe hypertension (more than 150 

mmHg). Therefore, in SHRSP, because strokes develop after the onset of elevated blood 

pressure, elevated blood pressure is considered to be the most critical factor for stroke 

induction. However, interestingly, the neuronal cells of this model exhibit a great 

vulnerability compared with normal control WKY/Izm rats during the reoxygenation 

conditions following hypoxia (Tagami et al., 1998; Yamagata et al., 2010c). In addition to the 

influence of blood pressure in SHRSP/Izm rats, the neuronal vulnerability of this model 

strongly contributes to stroke development. SHRSP/Izm rats are susceptible to apoptosis 

under conditions of hypoxia and reoxygenation (H/R) (Tagami et al., 1998). The expression 

of antioxidant enzymes in SHRSP/Izm rats is attenuated in comparison with that in 

WKY/Izm rats. We highlight that this attenuation of antioxidant enzymes is related to the 

vulnerability of neuronal cells (Yamagata et al., 2000b). Furthermore, an altered 

susceptibility to apoptosis was detected in the astrocytes of SHRSP/Izm rats compared with 

those of WKY/Izm rats (Yamagata et al., 2010a). 
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Epidemiologic study indicated the possibility of preventing stroke using antioxidants 
such as dietary polyphenols (Vita, 2005). Polyphenols are substances produced by plants 
via photosynthesis, and their structures contain many hydroxyl groups (–OH). 
Polyphenols are found in vegetables, fruit, and processed products. They are also found 
abundantly in red wine, tea, soybeans, and coffee. The preventive effects of polyphenols 
include the inhibition of blood pressure elevation, cholesterol-lowering activity, 
hypoglycemic activity, antioxidant activity, and antimutagen activity (Sies et al., 2010). 
The effects of polyphenols differ between substances, but most are capable of 
"antioxidation". It is considered that the antioxidative effects of polyphenols are 
advantageous in their roles as defensive substances that protect plant components from 
oxidation. Polyphenols are found in trace amounts in our diet and have been 
demonstrated to prevent degenerative diseases such as cancer and cardiovascular disease 
(Manach et al., 2004). This review describes the vulnerability of neuronal cells and 
susceptibility of astrocytes in SHRSP in stroke conditions. Furthermore, we describe the 
prophylactic effects of apigenin, epigallocatechin-3-gallate (EGCG), and resveratrol on 
endothelial cells as well as their stroke preventive effects. 

2. Susceptibility of neuronal cells and astrocytes of SHRSP/Izm rats during 
cerebral ischemia 

The reoxygenation after cerebral ischemia rapidly generates a large quantity of ROS. The 

following chain of events leads to neuronal cell injury (Love, 1999). Free radicals are 

generated early in the period of the reperfusion and cause neuronal damage (Bolli, 1991). 

Cerebral ischemia–reperfusion induced neuronal cell death is usually apoptotic (Rothstein 

et al., 1994). Here, we describe alteration in neuronal cells and astrocytes related to apoptosis 

in SHRSP/Izm rats during H/R. 

2.1 Neuronal vulnerability of SHRSP during stroke and oxidative stress 
Neuronal death because of cerebral ischemic stress strongly induces apoptosis (Rothstein et 

al., 1994). Reports indicate that the production of hydroxyl radicals is strongly induced in 

SHRSP/Izm rats during H/R (Negishi et al., 2001). SHRSP/Izm and WKY/Izm rats produce 

hydroxyl radicals in their hippocampi when subjected to reoxygenation after 20 minutes of 

hypoxia. However, SHRSP/Izm rats display significantly increased hydroxyl production 

when compared with normal WKY/Izm control rats (Tagami et al., 1998). In SHRSP/Izm 

rats the production of hydroxyl radicals is strongly induced during H/R (Negishi et al., 

2001). The increased levels of hydroxyl radicals produced by SHRSP/Izm rats may induce 

neuronal injury. These findings suggest that capturing the hydroxyl radicals produced 

during H/R, in which the level of antioxidant substances is decreased, would be beneficial 

for preventing neuronal injury (Yamagata et al., 2010c). 

2.2 The neuronal cells of SHRSP/Izm rats strongly induce apoptosis during H/R 
Neuronal cells are easily damaged during H/R. We examined neuronal cells during hypoxia 
using SHRSP/Izm and WKY/Izm rats. After 24 hours of hypoxia, neuronal cell death was not 
observed in WKY/Izm or SHRSP/Izm rats. However, after 36 hours of hypoxia, neuronal cell 
death increased in SHRSP/Izm rats. This was not observed in WKY/Izm rats. The findings of 
a morphologic examination of SHRSP/Izm rats indicated that most neuronal cell death was 
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apoptotic. About 41% of the WKY/Izm neurons died 1.5 hours after reoxygenation (necrosis = 
12%, apoptosis = 29%). On the other hand, 78% of SHRSP/Izm neurons died (necrosis = 15%, 
apoptosis = 63%). Following three hours of reoxygenation, 99% of cells from both strains had 
died. In SHRSP/Izm rat neurons, fragmentation of DNA was strongly induced by 36 hours of 
hypoxia and reoxygenative stimulation for three hours (Tagami et al., 1998). The H/R induced 
apoptosis of neuronal cells in SHRSP/Izm rats (Yamagata et al., 2010c). The neuronal cells of 
SHRSP/Izm rats were strongly induced into apoptosis with 3 or 5 hours of reoxygenation 
following hypoxia. When DNA fragmentation was examined using a TUNEL method, few of 
the SHRSP/Izm rat neurons displayed DNA fragmentation when incubated under normal 
oxygen concentrations (data not shown). However, after 3 hours of reoxygenation following 36 
hours of hypoxia, marked DNA fragmentation was seen. At the same time, many lipid 
droplets were detected in the cells (Tagami et al., 1998). We classified the apoptotic levels in 
H/R conditions via a morphologic analysis of neuronal death (Tagami et al., 1998, 1999). We 
demonstrated the criteria for neuronal apoptosis in the SHRSP/Izm rats in Table 1 and Figure 
1. Neuronal axons and dendrites are lost in the early stages of apoptosis, and many lipid 
droplets are seen in the neuronal cell body (A, initial stage of apoptosis). Furthermore, cells 
shrink as apoptosis advances (B, second stage of apoptosis; C, third stage of apoptosis). The 
neuronal cell membrane is lost in the advanced stage of apoptosis, and the nucleus disappears 
(D). Figure 2 is considered to show the second stage of apoptosis (Tagami et al., 1998: 
Yamagata et al., 2010c). These processes eventually lead to cell death. From these results, it is 
suggested that the neuronal weakness of SHRSP/Izm rats is associated with stroke 
development (Fig. 4). 
 

 

Fig. 1. Our criteria to determine apoptosis and necrosis in neurons during H/R in 
SHRSP/Izm rats.  
A. initial stage, B, second stage, C. third stage and D necrosis (Tagami et al., 1998) 
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Fig. 2. Second stage of apoptosis in neurons during H/R in SHRSP/Izm rats. N: nucleus 

 

Stage Criteria of neuronal 
death 

Features of morphological 

1 Initial stage The cells lose their axons and dendrites,  
and numerous lipid droplets appear  
in the cell bodies, although cell  
organelles remain intact 

2 Second stage The cells become round, small, and electron-
dense, and their nuclei demonstrate 
prominent invagination 

3 Advanced stage The cells lose their cytoplasm and cell 
membrane, and their nuclei become  
small and dark before disappearing 

4 Final stage 
 

The cells become electron-lucent,  
organelles decrease in number, and  
nuclei contain abnormal clusters of 
chromatin (the cells lose their cytoplasm  
and cell membrane, and their nuclei  
become small and dark  
before disappearing) 

Cited references (Tagami et al., 1998, 1999). 

Table 1. The morphological criteria for neuronal apoptosis in the SHRSP/Izm rats. 
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2.3 Gene expression of Bcl2 and thioredoxin II in neuronal cells of SHRSP/Izm rats 
during H/R 
The apoptosis in neuronal cells of SHRSP/Izm is strongly induced by reperfusion after 

ischemia (Tagami et al., 1998). Simultaneously, oxidative stress can induce antioxidant 

enzymes in neuronal cells. Antioxidant enzymes can prevent the apoptosis caused by 

oxidation stress. Furthermore, the Bcl2 gene is an oncogene related to human lymphoma and 

is able to inhibit the apoptosis induced by neurodegeneration stimuli (Akhtar et al, 2004). 

We highlight that the Bcl2 gene expression in SHRSP/Izm rat neuronal cells is significantly 

attenuated after 30 minutes of reoxygenation following hypoxia in comparison with that in 

WKY/Izm rats (Yamagata et al., 2000b). The decrease in the expression of Bcl2 leads to 

release of the cytochrome C from mitochondria. Thereafter, caspase activity increases and 

can strongly induce apoptosis. In SHRSP/Izm rat neurons, gene expression of thioredoxin II 

(Txn2) and mitochondrial cytochrome c oxidase III (CO III) decreased in a fashion similar to 

Bcl2 30 minutes after reoxygenation following hypoxia (Yamagata et al., 2000b). Txn2 

provides protection against ROS via its SH group. In addition, these proteins have many 

functions that contribute to intracellular signal transduction. Namely, CO III is associated 

with energy metabolism in mitochondria. It transfers electrons from the reduced form of 

cytochrome C to molecular oxygen. Vitamin E and CO III are present in mitochondria where 

they protect the cell from injury by free radicals (Yang & Korsmeyer, 1996). Attenuation of 

Bcl2 and CO III gene expression in SHRSP/Izm rat neuronal cells may reduce energy 

metabolism and redox control during posthypoxic reoxygenation. The decrease of viability 

in SHRSP/Izm rat neurons, unlike that in WKY/Izm rat neurons, may be associated with 

their vulnerability. 

2.4 Characteristics of SHRSP/Izm rat astrocytes during stroke 
The functions of the astrocytes regulate outbreaks of cerebropathy (Chen & Swanson, 

2003). In brain lesions, reactive astrocyte numbers increase and promote the development 

of stroke (Pekny & Nilsson, 2005). This characteristic of the astrocytes of SHRSP/Izm rats 

may be related to brain disease (Chen & Swanson, 2003). We separated astrocytes from 

the brain of fetal SHRSP/Izm rats and cultured them. We compared the proliferation of 

astrocytes from WKY/Izm with SHRSP/Izm rats under various culture conditions 

(Yamagata et al., 1995). The astrocytes isolated from fetuses are not influenced by blood 

pressure. We examined the characteristics of astrocytes from SHRSP/Izm rats in 

environments that were not influenced by blood pressure. We found that the growth of 

astrocytes from SHRSP/Izm rats was increased in comparison with those from WKY/Izm 

rats (Yamagata et al., 1995). We suggest that the numbers of astrocytes of the SHRSP/Izm 

rats are increased and that this strongly leads to the gliosis following damage. In the rat 

brain transient cerebral ischemia model, epidermal growth factor (EGF) receptor is related 

to mechanism of astrocyte reactivity. The details are not known, but astrocyte numbers of 

SHRSP/Izm rats may increase by cell division through EGF stimulation during the 

appearance of cerebral blood vessel pathogenesis. This proliferation of astrocytes is 

enhanced by vascular smooth muscle cells in SHRSP/Izm rats (Yamori et al., 1981). In 

fibrinoid necrosis degeneration by hypertension, the barrier function of endothelial cells 

diminishes and blood plasma components leak out of the circulation (Johansson, 1999). In 

SHRSP/Izm rats, there is denaturation of smooth muscle cells of the media, necrosis with 
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a rise in blood pressure, and destruction of the blood–brain barrier (BBB) in perforating 

branch arteries (Tagami et al.,1987). We have indicated the possibility that attenuated 

endothelial barrier functions might be induced by comparing the astrocytic potency of 

SHRS/Izm rats (Yamagata et al., 1997b). 

Glutamate is released as a neurotransmitter by nerve terminals and activates astrocytes. 

Furthermore, glutamate uptake via a glutamate transporter in the cell membrane is 

mediated by astrocytes. Glutamate produces lactate in astrocytes and the lactate produced 

by astrocytes is supplied as an energy source to neuronal cells (Pellerin & Magistretti 1994). 

Concurrently, the lactate supplied by astrocytes is important for the recovery of the 

neuronal cells after ischemia (Schurr et al., 1997; Dringen et al., 1995). We demonstrated that 

there is decreased lactate produced in cultured astrocytes from SHRSP/Izm rats when 

compared with that from WKY/Izm rat astrocytes during hypoxia (Yamagata et al., 2000a). 

The decreased lactate production by SHRSP/Izm rat astrocytes may cause neuronal cell 

death through reduced energy supply. 

Furthermore, we examined characteristics of SHRSP/Izm rat astrocytes during stroke. In 

H/R, the expression levels of intercellular adhesion molecule-1 (ICAM1), monocyte 

chemotactic protein-1 (MCP1), and vascular cell adhesion molecule-1 (VCAM1) in 

astrocytes from SHRSP/Izm rats were increased in comparison with that in astrocytes 

from WKY/Izm rats (Yamagata et al., 2010a). In addition, production of glial cell line-

derived neurotrophic factor (GDNF) by adenosine, H2O2, glutamate, sphingosine-1-

phosphate (S1P) was decreased during H/R in astrocytes from SHRSP/Izm rats in 

comparison with that from astrocytes from WKY/Izm rats (Yamagata et al., 2002; 2003; 

2007a) (Fig. 3). Moreover, production of l-serine by nitric oxide (NO) stimulation 

decreased in SHRSP/Izm rats in comparison with that in WKY/Izm rats (Yamagata et al., 

2006). Not all of the differences seen in SHRSP/Izm rats compared with WKY/Izm rats 

may be related to the generation of neuronal dysfunction in SHRSP/Izm rats. However, 

decreased astrocytic lactate and GDNF production may worsen energy conditions and 

nutrition status of SHRSP/Izm rat neurons (Yamagata et al., 2008). We suggest that 

attenuation of astrocyte functions accelerates neuronal cell death during stroke and may 

participate in its appearance (Fig. 4). 

 
 

 

Fig. 3. Expression of GDNF in SHRSP/Izm rats by H/R stimulation.  
H/R: hypoxia and reoxygenation: S1P: sphingosine-1-phosphate,  
GDNF: glial cell line derived neurotrophic factor 
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Fig. 4. Alteration of astrocytes and neuronal apoptosis by H/R stimulation. 

3. Endothelial dysfunction and importance of stroke prevention through 
nutrition 

The risk of stroke increases with the presence of arteriosclerosis in cerebral blood vessel 
endothelial cells. Here, we describe preventive action for endothelial cell disorders by food 
components. The secretion of cytokines by initial lesions strongly activates endothelial cells, 
vascular smooth muscle cells, and blood cells. For example, endothelial cells are strongly 
influenced by the effects of inflammatory cytokines such as tumor necrosis factor alpha 

(TNF-) and interleukin beta (IL-1) (Kofler et al., 2005). As a consequence, monocytic 
adhesion to endothelial cells is induced, which promotes various arteriosclerotic processes. 
Among these, the oxidative stress produced during the early period of the disorder triggers 
arteriosclerosis. When the various arteriosclerotic reactions begin simultaneously, they are 
very difficult to inhibit. Therefore, it is best to inhibit ROS production in the early stages of 
the disorder in order to avoid arteriosclerosis (Kondo et al., 2009). Indeed, the effects of 
nutritional components with antioxidant activity on the redox regulation of ROS in stroke 
conditions have been reported previously. It is considered to be possible to inhibit blood 
vessel disorders in the early stages and that the inhibition of ROS production using 
polyphenols prevents the development of arteriosclerosis (Manach et al., 2004). Therefore, it 
is very likely that arteriosclerosis prevention via the consumption of appropriate foods such 
as antioxidant nutrients can be used to reduce the risk of stroke. 

3.1 Possible role of polyphenols against cerebral ischemia injury  
Cerebral ischemia induces the rapid production of a large quantity of ROS and induces cell 
injury through self-perpetuating reactions. Free radicals are produced within several 
minutes of reoxygenation after cerebral ischemia and induce brain cell injury (Bolli, 1991). 
Cerebral ischemia elevates the intracellular level of calcium ions and activates calcium-
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dependent proteases. Moreover, these reactions activate xanthine dehydrogenase (XDH) 
and produce xanthine oxidase (XOD) (Thompson-Gorman & Zweier, 1990). It is considered 
that the superoxide anion radicals produced via this pathway cause neuronal death. 
However, the consumption of polyphenol-rich foods, such as fruits and vegetables, is 
beneficial for preventing vascular disorders (Manach et al., 2004). Epidemiological studies 
have indicated that an inverse correlation exists between polyphenolic consumption and the 
risk of having to undergo a cardiovascular procedure (Arts & Hollman, 2005). Polyphenols 
induce the production of vasodilatory factors such as NO (Auger et al., 2010) and 
prostacyclin (PGI2) (Mizugaki et al., 2000) and inhibit the synthesis of endothelin-1, which 
induces vasoconstriction in endothelial cells (Reiter et al., 2010). On the other hand, the 
polyphenols present in the skin of grapes and in wine inhibit the proliferation and migration 
of smooth muscle cells (Lee et al., 2009). Polyphenols may eliminate the active oxygen 
produced by reoxygenation after cerebral ischemia via their antioxidative effects. 

3.2 Vasorelaxant effects of polyphenols on endothelial cells 
Epidemiological analysis has suggested that polyphenols have protective effects against heart 
disease. The polyphenols that protect against heart disease are found in foods including cocoa, 
wine, grape pips, berries, tea, tomatoes, soybeans, and pomegranates (Chong et al., 2010). The 
mechanisms by which polyphenols reduce the risk of heart disease are associated with the 
prevention of endothelial cell disorders. Endothelial cell disorders strongly induce 
arteriosclerosis, which subsequently progresses to heart disease and stroke. Therefore, the 
prevention of endothelial cell disorders by polyphenols is effective in preventing heart disease 
and stroke. Table 2 shows the effects of the typical polyphenols apigenin, EGCG, and 

resveratrol on endothelial cells. Jin et al. (2009) demonstrated that apigenin (0.5 – 72.0 M) 
enhanced concentration-dependent relaxation in aortas. Apigenin action is mediated by 
weakening the oxidative stress and by NO reduction. On the other hand, it has been shown 
that stimulation of expression of endothelial NOS (eNOS) by apigenin occurs through 
phosphatidylinositol 3-kinase/Akt (PI3K/Akt) for Ca2+ dependence (Chen et al., 2010). 
Moreover, the blockade of adhesion of monocytes and cyclooxygenase (COX)-2 expression in 
endothelial cells by apigenin has been reported (Lee et al., 2007). We have shown that apigenin 

strongly inhibits high glucose- and TNF--induced VCAM1 expression and the adhesion of 
U937 in human endothelial cells (Yamagata et al., 2010b). These effects of apigenin are caused 

by the inhibition of Iionkinase (IKK)  and IKK/IKKi. From these findings, we suggested that 
the mechanism by which apigenin inhibits the expression of adhesion molecules and the 

adhesion of monocytic U937 to endothelial cells involves nuclear factor kappa beta (NF-). 
From the structure and inhibitory activity profiles of dietary flavonoids, it was recognized that 
the double bond found in the C-ring of flavonoids and the third hydroxyl group (A-ring) are 
required for the inhibition of VCAM1 gene expression (Yamagata et al., 2010b). Apigenin may 
inhibit monocytic adhesion caused by superoxide anions as well as block reductions in NO 
activity. From these reports, it is considered that apigenin reduces the levels of ROS, promotes 

NO activity, and inhibits cell adhesion. Moreover, apigenin strongly inhibited the TNF--
stimulated expression of lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) 
(Yamagata et al., 2011) and the double bond of the C ring of apigenin is essential for this action 
(Fig. 5). As shown in Figure. 5, the inhibition of LOX-1 expression by apigenin requires a 
flavone frame, a double bond in the C-ring, and the absence of a third hydroxyl group in the B- 
and C-rings, which are not found in naringenin (not active) (Yamagata et al., 2011). 
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Polyphenol(s) Effects on pathological condition(s) Ref  
(authors and issue)  

Apigenin Endothelium-dependent vasorelaxant and 
antiproliferative effect 

Zhang  
et al (2000)  

Inhibiton of VEGF Osada  
et al., (2004)  

Inhibiton of laser-induced choroidal 
neovascularization 

Zou and Chiou 
(2006)  

Inhibition of COX-2 expression and adhesion of 
monocytes 

Lee et al., (2007)  

Inhibition of superoxide anion-mediated impairment Ma  
et al., (2008)  

Inhibition of platelet adhesion and thrombus 
formation 

Navarro-Nunez  
et al., (2008)  

Protection against the oxidative stress by the NO Jin et al., (2009)  

Induction of calcium dependent activation of the NO Chen  
et al., (2010)  

Inhibition of high glucose and TNFα-induced 
adhesion molecule expression 

Yamagata  
et al., (2010b)  

Inhibition of TNFα-induced LOX-1 expression Yamagata  
et al., (2011)  

EGCG Increase of the prostacyclin production Mizugaki  

et al., (2000)  

Inhibition of the vascular-endothelial growth factor-

induced intracellular signaling and mitogenesis 

Neuhaus  

et al., (2004)  

Inhibits the angiotensin II-induced adhesion molecule 

expression 

Chae et al., (2007)   

Inhibiton of MCP-1 expression Hong et al., (2007)  

Improves endothelial function and insulin sensitivity, 

reduces blood pressure, and protects against 

myocardial I/R injury in SHR 

Potenza  

et al., (2007)  

Inhibiton of TNFα-induced MCP-1 production Ahn et al., (2008)  

Protection against linoleic-acid-induced endothelial 

cell activation 

Zheng et al., (2009)  

Decrease of caveolin-1 expression Li et al., (2009)  

Decrease of endothelin-1 expression and secretion Reiter et al., (2010)  

Induction of the NO Auger et al., (2010)  

Protection of against oxidized LDL-induced 

endothelial dysfunction 

Lee et al., (2010)  

Protects against oxidized LDL-induced endothelial 

dysfunction by inhibiting LOX-1-mediated signaling 

Ou et al., (2010)  

Decreases thrombin/paclitaxel-induced endothelial 

tissue factor expression 

Wang et al., (2010)  

inhibiton of angiotensin II-induced endothelial barrier 

dysfunction 

Yang et al., (2010)  
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Resveratrol Inhibition of angiogenesis, tumor growth,  

and wound healing 

Brakenhielm  

et al., (2001)  

Prevention of superoxide-dependent  

inflammatory responses induced by I/R,  

PAF, or oxidants. 

Shigematsu  

et al., (2003)  

Inhibition of VEGF-induced angiogenesis Lin  

et al., (2003)  

Protection against peroxynitrite-mediated  

endothelial cell death 

Brito et al., (2006)  

Attenuation of TNF alpha-induced activation; 

inhibition of NF-kappaB  

Csiszar et al., (2006)  

Inhibition of MCP-1 synthesis and secretion Cullen et al., (2007)  

Attenuates oxLDL-stimulated NADPH  

oxidase activity and protects endothelial  

cells from oxidative functional damages. 

Chow et al (2007)  

Prevention of concentric hypertrophy and  

diastolic impairment 

Juric et al., (2007)  

Induction of NO production by increasing  

estrogen receptor alpha 

Klinge et al., (2008)  

Induction of NADPH oxidases 1 and 4 mediate 

cellular senescence 

Schilder  

et al., (2009)  

Reduces oxidative stress by modulating  

the gene expression of SOD1,  

GPx1 and Nox4 

Spanier et al (2009)  

Decrease of mitochondrial oxidative stress Ungvari  

et al., (2009)  

Prevention of hyperglycemia-induced  

endothelial dysfunction 

Xu et al., (2009)  

Decrease of oxidized LDL-evoked  

LOX-1 signaling 

Chang  

et al., (2011)  

Protecton of H 2O2-induced oxidative stress Kao  

et al., (2010)  

Protecton of oxidized LDL-induced  

breakage of the blood-brain  

barrier 

Lin et al., (2010)  

COX; cyclooxygenase, GPx1; glutathione peroxidase 1, I/R; ischemia/reperfusion, LDL; low density 
lipoprotein, LOX-1; lectin-like oxidized low-density lipoprotein receptor-1, MCP-1; monocyte 
chemotactic protein-1, NO; nitric oxide, Nox4; NADPH oxidase subunit, PAF; platelet-activating factor, 
SOD1; superoxide dismutase 1, SHR, spontaneously hypertensive rats, TNF; tumor necrosis factor, 
VEGF; vascular endothelial growth factor,  

Table 2. Studies on the protective effects of apigenin, EGCG and resveratrol in endothelial 
cells  

EGCG is a catechin that is found in green tea. The catechins found in tea include epicatechin 
(EC), epigallocatechin (EGC), epicatechin gallate (ECG), and epigallocatechin gallate 
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(EGCG), and the content order of these compounds is as follows: EGCG>EGC>ECG>EC. 
Catechins are also responsible for the bitter taste of green tea. Catechins account for around 
13%–30% of the dry weight of tea leaves (Wolfram, 2007). EGCG suppresses the expression 
of adhesion molecules such as MCP1 (Ahn et al., 2008; Chae et al., 2007; Hong et al., 2007) 
and expression of endothelin-1 (Reiter et al., 2010). Like apigenin, EGCG inhibits the 

expression of monocyte adhesion molecules in endothelial cells stimulated with TNF- 

(Ahn et al., 2008; Zheng et al., 2010) and it has been reported that EGCG inhibits the TNF--
induced expression of activator protein-1 in endothelial cells and increased the expression of 
HO-1. These findings suggest that EGCG inhibits the expression of activator protein-1 and 
increases the expression of HO-1, both of which aid endothelial protection. Furthermore, a 
least one study demonstrated that EGCG downregulated the endothelial cell activation 
induced by linoleic acid via caveolin-1 (Zheng et al., 2009). Six hours of linoleate exposure 
induced the expression of caveolin-1 and COX-2 in caveolae. However, pretreatment with 
EGCG inhibited the expression of caveolin-1 and COX-2 induced by linoleic acid. Exposure 
to linoleic acid also increased the levels of several kinases (p38 MAPK, extracellular signal 
regulated kinase 1/2 8ERK1/2), and amino kinase terminal (Akt). According to these 
findings, EGCG activates several enzymes in endothelial cell caveolae and may have many 
preventive effects for vascular disorders. 
 
 
 

 
 

Fig. 5. Structures and LOX-1 inhibitory activities of apigenins. 
○: active (indicates that the compound dose-dependently inhibited TNFα-induced LOX-1 
gene expressions).  

Many studies have demonstrated that ischemic heart disease is decreased by wine intake, 

and in particular, it has been shown that the antioxidative effects of the polyphenols 

found in red wine are important for cardioprotection. It was shown that this 

cardioprotective effect is caused by the actions of resveratrol. It has been confirmed that 

resveratrol displays various pharmacologic actions such as antioxidant activity in humans 
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(Brito et al., 2006; Chow et al., 2007; Spanier et al., 2009; Ungvari et al., 2009). Resveratrol 

is considered to decrease circulating low-density lipoprotein (LDL) cholesterol levels and 

thereby reduce the risk of cardiovascular disease (CVD) (Ramprasath & Jones, 2010). 

Resveratrol inhibits atherosclerosis and improves the function of endothelial cells in 

animal models. There have been many studies of resveratrol actions, which have shown 

that it has various effects on endothelial cells, as shown in Table 2. The effects of 

resveratrol and red wine on endothelial cells were investigated using experimental 

hypercholesterolemic rabbits (Zou et al., 2003). It was found that hypercholesterolemic 

rabbits displayed significant improvements in the functions of their endothelial cells after 

the administration of resveratrol (3 mg/kg/day), red wine (4 ml/kg/day), or 

nonalcoholic red wine (4 ml/kg/day) for 12 weeks. Moreover, they demonstrated 

decreased levels of plasma endothelin-1 and NO, which are increased by 

hypercholesterolemia. On the other hand, it was also shown that resveratrol protects 

against injury to the BBB caused by oxidized LDL (oxLDL) (Lin et al., 2010). It is 

considered that the mechanism behind these effects of resveratrol involves amelioration of 

the effects of oxLDL on the expression of occludin and ZO-1, which aids the stability of 

tight junctions. Resveratrol regulates the expression of tight junction proteins as a means 

of protecting against the disruption of the BBB induced by oxLDL. In a rat postischemic 

reoxygenation model, resveratrol decreased ROS generation (Shigematsu et al., 2003), and 

the effect of resveratrol on cerebral infarction was also examined in a rat middle cerebral 

artery occlusion (MCA) model (Sinha et al., 2002). In addition, after MCA and 2 hours of 

reperfusion, the rats were evaluated for motor disorders, malondialdehyde (MDA), 

reduced glutathione, and infarct volume. After MCA, increases in the frequency of 

functional motility disorders and the levels of MDA and reduced glutathione were 

observed. On the other hand, the administration of resveratrol prevented these increases 

and significantly decreased the infarct volume. These findings indicate that resveratrol 

inhibits the organ injuries produced by ischemia–reperfusion. The other polyphenols 

found in wine are not known to have this effect. Correspondingly, resveratrol prevents 

myocardial infarction by reducing peroxide levels. It is suggested that this effect can be 

attributed to the antioxidative effects of resveratrol (Dudley et al., 2008). 

4. Preventive effects of antioxidant drugs and polyphenols for SHRSP rat 
neurons during stroke 

We indicated that high dose vitamin E induced neutral gamma glutamylcystenyl synthase 

(-GCS), GSH levels, and strongly prevented neuronal death (Yamagata et al., 2009). 

Furthermore, we have shown that ebselen, a seleno–organic antioxidant (Yamagata et al., 

2008), amlodipine, and carvedilol (Yamagata et al., 2004) prevented neuronal cell death in 

SHRSP/Izm rats. Another study demonstrated that the expression of VCAM1 by TNF- 

in astrocytes isolated from SHRSP/Izm rats was increased compared with that in those 

from WKY/Izm rats. However, apigenin strongly attenuated TNF--induced VCAM1 

mRNA and protein expression and suppressed the adhesion of U937 cells and 

SHRSP/Izm astrocytes (Yamagata et al., 2010a). It is suggested that apigenin regulates 

adhesion molecule expression in reactive astrocytes during ischemia and prevents 

neuronal death. 
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5. Conclusion 

Endothelial cell dysfunction causes arteriosclerosis and promotes neuronal demise after stroke. 
Enhanced neuronal sensitivity to oxidative stress contributes to the neuronal death observed 
in SHRSP/Izm rats. Also, enhanced oxidative stress after hypoxia-reoxygenation is important 
in ischemic stroke. Polyphenols reduce oxidation stress and have a protective effect on 
endothelial and neuronal cells. Antioxidant nutrients such as polyphenols may prevent or 
reduce endothelial dysfunction and neuronal cell injury during cerebral ischemia. 

6. Abbreviations 

BBB; blood–brain barrier, CO III; cytochrome c oxidase III, COX; cyclooxygenase, CVD; 
cardiovascular disease, EC; epicatechin, ECG; epicatechin gallate, EGC; epigallocatechin, 

EGCG; epigallocatechin-3-gallate, EGF; epidermal growth factor, eNOS; endothelial NOS, -
GCS; gamma glutamylcystenyl synthase, GDNF; glial cell line-derived neurotrophic factor, 
GSH: glutathione, HO-1; hemoxigenase-1, H/R; hypoxia and reoxygenation, ICAM1; 

intercellular adhesion molecule-1, IL-1; interleukin beta, IKK; IIKKkinase, LDL; low-
density lipoprotein, LOX-1; lectin-like oxidized low-density lipoprotein receptor-1, MCP1; 

monocyte chemotactic protein-1, NO; nitric oxide, NF-; nuclear factor kappa beta, oxLDL; 
oxidized LDL, PGI2; prostacyclin, PI3K/Akt; phosphatidylinositol 3-kinase/Akt, ROS; 
reactive oxygen species, SHRSP/Izm; spontaneously hypertensive rats/Izm, S1P; 

sphingosine-1-phosphate, TNF-; tumor necrosis factor alpha, TRX; thioredoxin, VCAM1; 
vascular cell adhesion molecule-1, WKY/Izm; Wistar Kyoto rat/Izm, XDH; xanthine 
dehydrogenase, XOD; xanthine oxidase.  
Keywords; Endothelial cells, Ischemic stroke, Polyphenol, SHRSP. 

7. References 

Ahn, H.Y., Xu, Y. & Davidge, S.T. (2008). Epigallocatechin-3-O-gallate inhibits TNFalpha-
induced monocyte chemotactic protein-1 production from vascular endothelial 
cells. Life Sci 82 (17-18): 964-968. 

Akhtar, R.S., Ness, J.M. & Roth, K.A. (2004). Bcl-2 family regulation of neuronal 
development and neurodegeneration. Biochim Biophys Acta 1644(2-3): 189-203. 

Arts, I.C., & Hollman, P.C. (2005). Polyphenols and disease risk in epidemiologic studies. 
Am J Clin Nutr 81 (Suppl 1): 317S-325S.  

Auger, C., Kim, J.H., Chabert, P., Chaabi, M., Anselm, E., Lanciaux, X., Lobstein, A. & 
Schini-Kerth, V.B. (2010). The EGCg-induced redox-sensitive activation of 
endothelial nitric oxide synthase and relaxation are critically dependent on 
hydroxyl moieties. Biochem Biophys Res Commun 393 (1): 162-167. 

Bolli, R. (1991). Oxygen-derived free radicals and myocardial reperfusion injury: an 
overview. Cardiovasc Drugs Ther (Suppl 2): 249-268. 

Bråkenhielm, E., Cao, R. & Cao, Y. (2001). Suppression of angiogenesis, tumor growth, and 
wound healing by resveratrol, a natural compound in red wine and grapes. FASEB 
J 15 (10): 1798-1800. 

Brito, P.M., Mariano, A., Almeida, L.M. & Dinis, T.C. (2006). Resveratrol affords protection 
against peroxynitrite-mediated endothelial cell death: A role for intracellular 
glutathione. Chem Biol Interact 164 (3): 157-166. 

www.intechopen.com



 
Advances in the Preclinical Study of Ischemic Stroke 

 

16

Chae, Y.J., Kim, C.H., Ha, T.S., Hescheler, J. & Ahn, H.Y. & Sachinidis A. (2007). 
Epigallocatechin-3-O-gallate inhibits the angiotensin II-induced adhesion molecule 
expression in human umbilical vein endothelial cell via inhibition of MAPK 
pathways. Cell Physiol Biochem 20 (6); 859-866.  

Chang, H.C., Chen, T.G., Tai, Y.T., Chen, T.L., Chiu, W.T. & Chen, R.M. (2011). Resveratrol 
attenuates oxidized LDL-evoked Lox-1 signaling and consequently protects against 
apoptotic insults to cerebrovascular endothelial cells. J Cereb Blood Flow Metab 31 
(3): 842-854. 

Chen, C.C., Ke, W.H., Ceng, L.H., Hsieh, C.W. & Wung, B.S. (2010). Calcium- and 
phosphatidylinositol 3-kinase/Akt-dependent activation of endothelial nitric oxide 
synthase by apigenin. Life Sci 87 (23-26); 743-739. 

Chen, Y., & Swanson, R.A. (2003). Astrocytes and brain injury. J Cereb Blood Flow Metab 23 
(2): 137-149. 

Chong, M.F., Macdonald, R. & Lovegrove, J.A. (2010). Fruit polyphenols and CVD risk: a 
review of human intervention studies. Br J Nutr 104 (Suppl 3): S28-S39. 

Chow, S.E., Hshu, Y.C., Wang, J.S. & Chen, J.K. (2007). Resveratrol attenuates oxLDL-
stimulated NADPH oxidase activity and protects endothelial cells from oxidative 
functional damages. J Appl Physiol 102 (4): 1520-1527. 

Csiszar, A., Smith, K., Labinskyy, N., Orosz, Z., Rivera, A. & Ungvari, Z. (2006). Resveratrol 
attenuates TNF-alpha-induced activation of coronary arterial endothelial cells: role 
of NF-kappaB inhibition. Am J Physiol Heart Circ Physiol 291 (4): H1694-H1699. 

Cullen, J.P., Morrow, D., Jin, Y., Curley, B., Robinson, A., Sitzmann, J.V., Cahill, P.A. & 
Redmond, E.M. (2007). Resveratrol, a polyphenolic phytostilbene, inhibits 
endothelial monocyte chemotactic protein-1 synthesis and secretion. J Vasc Res 44 
(1): 75-84. 

Dringen R, Peters H, Wiesinger H, Hamprecht B. (1995). Lactate transport in cultured glial 
cells. Dev Neurosci 17 (2): 63-69. 

Dudley, J.I., Lekli, I., Mukherjee, S., Das, M., Bertelli, A.A. & Das, D.K. (2008). Does white 
wine qualify for French paradox? Comparison of the cardioprotective effects of red 
and white wines and their constituents: resveratrol, tyrosol, and hydroxytyrosol. J 
Agric Food Chem 56 (20); 9362-9373. 

Hong, M.H., Kim, M.H., Chang, H.J., Kim, N.H., Shin, B.A., Ahn, B.W. & Jung, Y.D. (2007). (-
)-Epigallocatechin-3-gallate inhibits monocyte chemotactic protein-1 expression in 
endothelial cells via blocking NF-kappaB signaling. Life Sci 80 (21): 1957-1965. 

Jin, B.H., Qian, L.B., Chen, S., Li, J., Wang, H.P., Bruce, I.C., Lin, J, & Xia, Q. (2009). Apigenin 
protects endothelium-dependent relaxation of rat aorta against oxidative stress. Eur 
J Pharmacol 616 (1-3): 200-205.  

Johansson, B.B. (1999). Hypertension mechanisms causing stroke. Clin Exp Pharmacol 
Physiol 26 (7): 563-565. 

Juric, D., Wojciechowski, P., Das, D.K. & Netticadan, T. (2007). Prevention of concentric 
hypertrophy and diastolic impairment in aortic-banded rats treated with 
resveratrol. Am J Physiol Heart Circ Physiol 292 (5): H2138-H2143. 

Kao, C.L., Chen, L.K., Chang, Y.L., Yung, M.C., Hsu, C.C., Chen, Y.C., Lo, W.L., Chen, S.J., 
Ku, H.H. & Hwang, S.J. (2010). Resveratrol protects human endothelium from 
H(2)O(2)-induced oxidative stress and senescence via SirT1 activation. J Atheroscler 
Thromb 17 (9); 970-979. 

Klinge, C.M., Wickramasinghe, N.S., Ivanova, M.M. & Dougherty, S.M. (2008). Resveratrol 
stimulates nitric oxide production by increasing estrogen receptor alpha-Src-

www.intechopen.com



Ischemic Neurodegeneration in Stroke-Prone  
Spontaneously Hypertensive Rats and Its Prevention with Antioxidants Such as Polyphenols 

 

17 

caveolin-1 interaction and phosphorylation in human umbilical vein endothelial 
cells. FASEB J 22 (7): 2185-2197. 

Kofler, S., Nickel, T. & Weis, M. (2005). Role of cytokines in cardiovascular diseases: a focus 
on endothelial responses to inflammation. Clin Sci (Lond) 108 (3): 205-513. 

Kondo, T., Hirose, M. & Kageyama, K. (2009). Roles of oxidative stress and redox regulation 
in atherosclerosis. J Atheroscler Thromb 16 (5): 532-528. 

Lee, B., Lee, E.J., Kim, D.I., Park, S.K., Kim, WJ. & Moon, S.K. (2009). Inhibition of 
proliferation and migration by piceatannol in vascular smooth muscle cells. Toxicol 
In Vitro 23 (7): 1284-1291. 

Lee, J.H., Zhou, H.Y., Cho, S.Y., Kim, Y.S., Lee, Y.S. & Jeong, C.S. (2007). Anti-inflammatory 
mechanisms of apigenin: inhibition of cyclooxygenase-2 expression, adhesion of 
monocytes to human umbilical vein endothelial cells, and expression of cellular 
adhesion molecules. Arch Pharm Res 30 (10): 1318-1327. 

Lee, Y.W., Lee, W.H. & Kim, P.H. (2010). Role of NADPH oxidase in interleukin-4-induced 
monocyte chemoattractant protein-1 expression in vascular endothelium. Inflamm 
Res 59 (9): 755-765.  

Li, Y., Ying, C., Zuo, X., Yi, H., Yi, W., Meng, Y., Ikeda, K., Ye, X., Yamori, Y. & Sun, X. 
(2009). Green tea polyphenols down-regulate caveolin-1 expression via ERK1/2 
and p38MAPK in endothelial cells. J Nutr Biochem 20 (12): 1021-1027. 

Lin, M.T., Yen, M.L., Lin, C.Y. & Kuo, M.L. (2003). Inhibition of vascular endothelial growth 
factor-induced angiogenesis by resveratrol through interruption of Src-dependent 
vascular endothelial cadherin tyrosine phosphorylation. Mol Pharmacol 64 (5): 
1029-1036. 

Lin, Y.L., Chang, H.C., Chen, T.L., Chang, J.H., Chiu, W.T., Lin, J.W. & Chen. R.M. (2010). 
Resveratrol protects against oxidized LDL-induced breakage of the blood-brain 
barrier by lessening disruption of tight junctions and apoptotic insults to mouse 
cerebrovascular endothelial cells. J Nutr 140 (12): 2187-2192. 

Love, S. (1999). Oxidative stress in brain ischemia. Brain Pathol 9 (1): 119-131. 
Ma, X., Li, Y.F., Gao, Q., Ye, Z.G., Lu, X.J., Wang, H.P., Jiang, H.D., Bruce, I.C. & Xia, Q. (2008). 

Inhibition of superoxide anion-mediated impairment of endothelium by treatment 
with luteolin and apigenin in rat mesenteric artery. Life Sci 83 (3-4): 110-117. 

Manach, C., Scalbert, A., Morand. C., Remesy, C. & Jimenez, L. (2004). Polyphenols: food 
sources and bioavailability. Am J Clin Nutr 79 (5): 727-747. 

Mizugaki, M., Ishizawa, F., Yamazaki, T. & Hishinuma T. (2000). Epigallocatechin gallate 
increase the prostacyclin production of bovine aortic endothelial cells. 
Prostaglandins Other Lipid Mediat 62 (2): 157-164. 

Navarro-Nunez, L., Lozano, M.L., Palomo, M., Martinez, C., Vicente, V., Castillo, J., Benavente-
Garcia, O., Diaz-Ricart, M., Escolar, G. & Rivera, J. (2008). Apigenin inhibits platelet 
adhesion and thrombus formation and synergizes with aspirin in the suppression of 
the arachidonic acid pathway. J Agric Food Chem 56 (9): 2970-2096. 

Negishi, H., Ikeda, K., Nara. Y. & Yamori, Y. (2001). Increased hydroxyl radicals in the 
hippocampus of stroke-prone spontaneously hypertensive rats during transient 
ischemia and recirculation. Neurosci Lett 306 (3): 206-208.  

Neuhaus, T., Pabst, S., Stier, S., Weber, A.A., Schrör, K., Sachinidis, A., Vetter, H. & Ko, Y.D. 
(2004). Inhibition of the vascular-endothelial growth factor-induced intracellular 
signaling and mitogenesis of human endothelial cells by epigallocatechin-3 gallate. 
Eur J Pharmacol 483 (2-3): 223-227. 

www.intechopen.com



 
Advances in the Preclinical Study of Ischemic Stroke 

 

18

Osada, M., Imaoka, S. & Funae, Y. (2004). Apigenin suppresses the expression of VEGF, an 
important factor for angiogenesis, in endothelial cells via degradation of HIF-
1alpha protein. FEBS Lett 575 (1-3): 59-63. 

Ou, H.C., Song, T.Y., Yeh, Y.C., Huang, C.Y., Yang, S.F., Chiu, T.H., Tsai, K.L., Chen, K.L., 
Wu, Y.J., Tsai, C.S., Chang, L.Y., Kuo, W.W. & Lee, S.D. (2010). EGCG protects 
against oxidized LDL-induced endothelial dysfunction by inhibiting LOX-1-
mediated signaling. J Appl Physiol 108 (6): 1745-1756. 

Potenza, M.A., Marasciulo, F.L., Tarquinio, M., Tiravanti, E., Colantuono, G., Federici, A., 
Kim, J.A., Quon, M.J. & Montagnani, M. (2007). EGCG, a green tea polyphenol, 
improves endothelial function and insulin sensitivity, reduces blood pressure, and 
protects against myocardial I/R injury in SHR. Am J Physiol Endocrinol Metab 292 
(5): E1378-E1387. 

Pekny, M. & Nilsson, M. (2005). Astrocyte activation and reactive gliosis. Glia 50 (4): 427-434. 
Pellerin, L. & Magistretti, J. (1994). Glutamate uptake into astrocytes stimulates aerobic 

glycolysis: a mechanism coupling neuronal activity to glucose utilization. Proc Natl 
Acad Sci USA 91 (22): 10625-10629. 

Ramprasath, V.R. & Jones, P.J. (2010). Anti-atherogenic effects of resveratrol. Eur J Clin Nutr 
64 (7): 660-668. 

Reiter, C.E., Kim, J.A. & Quon, M.J. (2010). Green tea polyphenol epigallocatechin gallate 
reduces endothelin-1 expression and secretion in vascular endothelial cells: roles 
for AMP-activated protein kinase, Akt, and FOXO1. Endocrinology 151 (1): 103-114. 

Rothstein, J.D., Bristol, L.A., Hosler, B., Brown, R.H. Jr. & Kuncl R.W. (1994). Chronic 
inhibition of superoxide dismutase produces apoptotic death of spinal neurons. 
Proc Natl Acad Sci USA 91 (10): 4155-4159. 

Schurr, A., Payne, R.S., Miller, J.J. & Rigor, B.M. (1997). Glia are the main source of lactate 
utilized by neurons for recovery of function posthypoxia. Brain Res 774 (1-2): 221-
224. 

Schilder, Y.D., Heiss, E.H., Schachner, D., Ziegler, J., Reznicek, G., Sorescu, D. & Dirsch, 
V.M. (2009). NADPH oxidases 1 and 4 mediate cellular senescence induced by 
resveratrol in human endothelial cells. Free Radic Biol Med 46 (12): 1598-1606. 

Shigematsu, S., Ishida, S., Hara, M., Takahashi, N., Yoshimatsu, H., Sakata, T. & Korthuis 
R.J. (2003) Resveratrol, a red wine constituent polyphenol, prevents superoxide-
dependent inflammatory responses induced by ischemia/reperfusion, platelet-
activating factor, or oxidants. Free Radic Biol Med 34 (7): 810-817. 

Sies, H. Polyphenols and health: update and perspectives. (2010). Arch Biochem Biophys 501 
(1): 2-5. 

Sinha K, Chaudhary G, Gupta YK. (2002). Protective effect of resveratrol against oxidative stress 
in middle cerebral artery occlusion model of stroke in rats. Life Sci 71 (6): 655-665. 

Spanier ,G., Xu, H., Xia, N., Tobias, S., Deng, S., Wojnowski, L., Forstermann, U. & Li, H. 
(2009). Resveratrol reduces endothelial oxidative stress by modulating the gene 
expression of superoxide dismutase 1 (SOD1), glutathione peroxidase 1 (GPx1) and 
NADPH oxidase subunit (Nox4). J Physiol Pharmacol 60 (Suppl 4): 111-116. 

Tagami, M., Nara, Y., Kubota, A., Sunaga, T., Maezawa, H., Fujino, H. & Yamori, Y. (1987). 
Ultrastructural characteristics of occluded perforating arteries in stroke-prone 
spontaneously hypertensive rats. Stroke 18 (4): 733-740. 

Tagami, M., Yamagata, K., Ikeda, K., Nara, Y., Fujino, H., Kubota, A., Numano, F, & Yamori, 
Y. (1998). Vitamin E prevents apoptosis in cortical neurons during hypoxia and 
oxygen reperfusion. Lab Invest 78 (11): 1415-1429. 

www.intechopen.com



Ischemic Neurodegeneration in Stroke-Prone  
Spontaneously Hypertensive Rats and Its Prevention with Antioxidants Such as Polyphenols 

 

19 

Tagami, M., Yamagata, K., Ikeda, K., Fujino, H., Nara, Y., Nakagawa, K., Kubota, A., 
Numano, F. & Yamori, Y. (1999). Genetic vulnerability of cortical neurons isolated 
from stroke-prone spontaneously hypertensive rats in hypoxia and oxygen 
reperfusion. Hypertens Res 22 (1): 23-29. 

Thompson-Gorman, S.L. & Zweier J.L. (1990). Evaluation of the role of xanthine oxidase in 
myocardial reperfusion injury. J Biol Chem 265 (12): 6656-6663. 

Ungvari, Z., Labinskyy, N., Mukhopadhyay, P., Pinto, J.T., Bagi, Z., Ballabh, P., Zhang, C., 
Pacher, P. & Csiszar, A. (2009). Resveratrol attenuates mitochondrial oxidative 
stress in coronary arterial endothelial cells. Am J Physiol Heart Circ Physiol 297 (5): 
H1876-H1881. 

Vita, J.A. (2005). Polyphenols and cardiovascular disease: effects on endothelial and platelet 
function. Am J Clin Nutr 81 (Suppl1): 292S-297S. 

Wang, H.J., Lo, W.Y., Lu, T.L. & Huang, H. (2010). (-)-Epigallocatechin-3-gallate decreases 
thrombin/paclitaxel-induced endothelial tissue factor expression via the inhibition 
of c-Jun terminal NH2 kinase phosphorylation. Biochem Biophys Res Commun 391 
(1): 716-721. 

Wolfram, S. (2007). Effects of green tea and EGCG on cardiovascular and metabolic health. J 
Am Coll Nutr 26 (4): 373S-388S.  

Xu, Q., Hao, X., Yang, Q. & Si, L. (2009). Resveratrol prevents hyperglycemia-induced 
endothelial dysfunction via activation of adenosine monophosphate-activated 
protein kinase. Biochem Biophys Res Commun 388 (2): 389-394. 

Yang, D., Liu, J., Tian, C., Zeng, Y., Zheng, Y.H., Fang, Q. & Li, H.H. (2010). Epigallocatechin 
gallate inhibits angiotensin II-induced endothelial barrier dysfunction via inhibition 
of the p38 MAPK/HSP27 pathway. Acta Pharmacol Sin 31 (10): 1401-1406. 

Yamagata, K., Nara, Y., Tagami, M. & Yamori, Y. (1995). Demonstration of hereditarily 
accelerated proliferation in astrocytes derived from spontaneously hypertensive 
rats. Clin Exp Pharmacol Physiol 22 (9): 605-609. 

Yamagata, K., Tagami, M., Ikeda, K., Noguchi, T., Yamori, Y. & Nara, Y. (2000a). Reduced 
production of lactate during hypoxia and reoxygenation in astrocytes isolated from 
stroke-prone spontaneously hypertensive rats. Neurosci Lett 296 (2-3): 113-116. 

Yamagata, K., Tagami, M., Ikeda, K., Yamori, Y. & Nara, Y. (2000b). Altered gene 
expressions during hypoxia and reoxygenation in cortical neurons isolated from 
stroke-prone spontaneously hypertensive rats. Neurosci Lett 284 (3): 131-134. 

Yamagata, K., Tagami, M., Torii, Y., Takenaga, F., Tsumagari, S., Itoh, S., Yamori, Y. & Nara, 
Y. (2003). Sphingosine 1-phosphate induces the production of glial cell line-derived 
neurotrophic factor and cellular proliferation in astrocytes. Glia 41 (2): 199-206. 

Yamagata, K., Tagami, M., Ikeda, K., Tsumagari, S., Yamori, Y. & Nara, Y. (2002). 
Differential regulation of glial cell line-derived neurotrophic factor (GDNF) mRNA 
expression during hypoxia and reoxygenation in astrocytes isolated from stroke-
prone spontaneously hypertensive rats. Glia 37(1): 1-7. 

Yamagata, K., Ichinose, S. & Tagami, M. (2004). Amlodipine and carvedilol prevent 
cytotoxicity in cortical neurons isolated from stroke-prone spontaneously 
hypertensive rats. Hypertens Res 27(4): 271-282. 

Yamagata, K., Shoji, Y., Terashima, T. & Yokogoshi, H. (2006). Glutamate reduces secretion 
of l-serine in astrocytes isolated from stroke-prone spontaneously hypertensive 
rats. Neuroscience 143 (3): 729-737. 

Yamagata, K., Hakata, K., Maeda, A., Mochizuki, C., Matsufuji, H., Chino, M. & Yamori Y. 
(2007a). Adenosine induces expression of glial cell line-derived neurotrophic factor 
(GDNF) in primary rat astrocytes. Neurosci Res 59 (4): 467-474. 

www.intechopen.com



 
Advances in the Preclinical Study of Ischemic Stroke 

 

20

Yamagata, K., Tagami, M., Nara, Y., Fujino, H., Kubota, A., Numano, F., Kato, T. & Yamori 
Y. (1997b). Faulty induction of blood-brain barrier functions by astrocytes isolated 
from stroke-prone spontaneously hypertensive rats. Clin Exp Pharmacol Physiol 24 
(9-10): 686-691. 

Yamagata, K., Tagami, M. & Yamori, Y. (2008). Nitric oxide reduces astrocytic lactate 
production and induces neuronal vulnerability in stroke-prone spontaneously 
hypertensive rats. Glia 56 (4): 387-393. 

Yamagata, K. Ichinose, S., Tagawa, C. & Tagami, M. (2009). Vitamin E regulates SMase activity, 
GSH levels, and inhibits neuronal death in stroke-prone spontaneously hypertensive 
rats during hypoxia and reoxygenation. J Exp Stroke Transl Med 1 (2): 41-48. 

Yamagata, K., Kitazawa, T., Shinoda, M., Tagawa, C., Chino, M. & Matsufuji. H. (2010a). 
Stroke status evoked adhesion molecule genetic alterations in astrocytes isolated 
from stroke-prone spontaneously hypertensive rats and the apigenin inhibition of 
their expression. Stroke Res Treat pii:386389. 1-11. 

Yamagata, K., Miyashita, A., Matsufuji, H. & Chino, M. (2010b). Dietary flavonoid apigenin 
Inhibits high glucose and tumor necrosis factor alpha-induced adhesion molecule 
expression in human endothelial cells. J Nutr Biochem 21 (2): 116-124. 

Yamagata, K., Tagami, M., & Yamori, Y. (2010c). Neuronal vulnerability of stroke-prone 
spontaneously hypertensive rats to ischemia and its prevention with antioxidants 
such as vitamin E. Neuroscience 170 (1): 1-7. 

Yamagata, K., Miyashita, A., Chino, M. & Matsufuji, H. (2011). Apigenin inhibits tumor 
necrosis factor alpha plus high glucose-induced LOX-1 expression in human 
endothelial cells. Microvasc Res 81 (1): 60-67. 

Yamori, Y. (1974). Importance of genetic factors in hypertensive cerebrovascular lesions: an 
evidence obtained by successive selective breeding of stroke-prone and-resistant 
SHR. Jpn Circ J 38 (12): 1095-1100. 

Yamori, Y., Igawa, T., Kanbe, T., Kihara, M., Nara, Y. & Horie, R. Clin Sci (Lond) (1981). 
Mechanisms of structural vascular changes in genetic hypertension: analyses on 
cultured vascular smooth muscle cells from spontaneously hypertensive rats. 61 
Suppl (7): 121s-123s. 

Yang, E. & Korsmeyer, S.J. (1996). Molecular thanatopsis: a discourse on the BCL2 family 
and cell death. Blood 88 (2): 386-401. 

Zhang, Y.H., Park, Y.S., Kim. T.J., Fang, L.H., Ahn, H.Y., Hong, J.T., Kim, Y., Lee, C.K. & 
Yun, Y.P. (2000). Endothelium-dependent vasorelaxant and antiproliferative effects 
of apigenin. Gen Pharmacol 35 (6): 341-347. 

Zheng, Y., Lim, E.J., Wang, L., Smart, E.J., Toborek, M. & Hennig, B. (2009). Role of caveolin-
1 in EGCG-mediated protection against linoleic-acid-induced endothelial cell 
activation. J Nutr Biochem 20 (3): 202-209. 

Zheng, Y., Toborek, M. & Hennig, B. (2010). Epigallocatechin gallate-mediated protection 
against tumor necrosis factor-α-induced monocyte chemoattractant protein-1 
expression is heme oxygenase-1 dependent. Metabolism 59 (10): 1528-1535. 

Zou, Y., & Chiou, G.C. (2006). Apigenin inhibits laser-induced choroidal neovascularization 
and regulates endothelial cell function. J Ocul Pharmacol Ther 22 (6): 425-430. 

Zou, J.G., Wang, Z.R., Huang, Y.Z., Cao, K.J. & Wu, J.M. (2003). Effect of red wine and wine 
polyphenol resveratrol on endothelial function in hypercholesterolemic rabbits. Int 
J Mol Med 11 (3): 317-320. 

www.intechopen.com



Advances in the Preclinical Study of Ischemic Stroke

Edited by Dr. Maurizio Balestrino

ISBN 978-953-51-0290-8

Hard cover, 530 pages

Publisher InTech

Published online 16, March, 2012

Published in print edition March, 2012

InTech Europe

University Campus STeP Ri 

Slavka Krautzeka 83/A 

51000 Rijeka, Croatia 

Phone: +385 (51) 770 447 

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai 

No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 

Fax: +86-21-62489821

This book reports innovations in the preclinical study of stroke, including - novel tools and findings in animal

models of stroke, - novel biochemical mechanisms through which ischemic damage may be both generated

and limited, - novel pathways to neuroprotection. Although hypothermia has been so far the sole

"neuroprotection" treatment that has survived the translation from preclinical to clinical studies, progress in

both preclinical studies and in the design of clinical trials will hopefully provide more and better treatments for

ischemic stroke. This book aims at providing the preclinical scientist with innovative knowledge and tools to

investigate novel mechanisms of, and treatments for, ischemic brain damage.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Kazuo Yamagata (2012). Ischemic Neurodegeneration in Stroke-Prone Spontaneously Hypertensive Rats and

Its Prevention with Antioxidants Such as Polyphenols, Advances in the Preclinical Study of Ischemic Stroke, Dr.

Maurizio Balestrino (Ed.), ISBN: 978-953-51-0290-8, InTech, Available from:

http://www.intechopen.com/books/advances-in-the-preclinical-study-of-ischemic-stroke/ischemic-

neurodegeneration-in-stroke-prone-spontaneously-hypertensive-rat-and-its-prevention-with-an



© 2012 The Author(s). Licensee IntechOpen. This is an open access article

distributed under the terms of the Creative Commons Attribution 3.0

License, which permits unrestricted use, distribution, and reproduction in

any medium, provided the original work is properly cited.


