We are IntechOpen, the world's leading publisher of Open Access books Built by scientists, for scientists



185,000

200M



Our authors are among the

TOP 1% most cited scientists





WEB OF SCIENCE

Selection of our books indexed in the Book Citation Index in Web of Science™ Core Collection (BKCI)

### Interested in publishing with us? Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. For more information visit www.intechopen.com



### Crude Oil Geochemistry Dependent Biomarker Distributions in the Gulf of Suez, Egypt

M. A. Younes Geology Department, Moharrem Bek, Faculty of Science, Alexandria University, Alexandria, Egypt

#### 1. Introduction

The Gulf of Suez occupies the northern end of the Red Sea rift (Said, 1962) Figure 1. It is a northwest-southeast fault-forming basin that provided adequate conditions for hydrocarbon generation, maturation and entrapment (Dolson et al., 2000). The Gulf of Suez province has been producing oil since 1908 and is reported to have 1.35 billion barrels of recoverable oil reserves. Intensive exploration has resulted in the discovery of more than 120 oil fields providing more than 50% of the overall daily oil production in Egypt (Egypt Country Analysis Briefs, 2009).

The Precambrian to Holocene lithostratigraphic succession of the Gulf reaches a total thickness of about 6,000 meters (Figure 2), which contributed to the development of different types of structural traps as well as different source, reservoir, and cap rocks (Khalil and Moustafa, 1995). It can be subdivided into three major lithostratigraphic sequences relative to the Miocene rifting of the Afro-Arabian Plate that led to the opening of the Suez rift and deposition of significant syn-rift facies from the Miocene Gharandal and Ras Malaab Groups (Evans, 1990). The pre-rift lithostratigraphic section, starting from the Nubia Sandstone to the Eocene Thebes Formation, rests unconformably on Precambrian basement. Rifting in the Gulf was associated with the upwelling of hot asthenosphere (Hammouda, 1992). Both crustal extension and tectonic subsidence reached their peaks between 19 and 15 Ma (Steckler, 1985; Steckler et al., 1988). Palaeozoic through Tertiary strata and major Precambrian basement blocks are exposed on both sides of the southern province which is characterized by structural and depositional complexity (Winn et al., 2001). The regional dip of strata is towards the SW (Meshref et al., 1988).

Previous geochemical studies throughout the Gulf of Suez have revealed that the oils are derived mainly from marine sources, which may be differentiated into three main groups (Mostafa, 1993 and Barakat et al., 1997). The distribution of these oil families are consistent with the geographic subdivisions of the Gulf of Suez provinces as northern, central and southern (Moustafa, 2002). Crude oil of the northern Gulf of Suez province is characterized by a  $C_{35}/C_{34}$  homohopane index <1 and a relatively heavy carbon isotope composition ( $\delta^{13}C$  saturate -27‰) suggesting generation from a less reducing marine source rock environment at relatively low levels of thermal maturity. Meanwhile, crude oil of the central province is characterized by low API gravity, a predominance of pristane over phytane, a high  $C_{35}/C_{34}$ 

homohopane index, and a lighter carbon isotopic composition ( $\delta^{13}$ C saturate -29‰). oils of the southern province is characterized by a high API gravity, a low sulfur content and intermediate carbon isotopic composition values ( $\delta^{13}$ C saturate -28 to -29 ‰). These two oil groups are believed to be derived from a marine source and exhibits compositional heterogenity suggesting a complex petroleum system may be present in the Gulf of Suez province.

In the present study saturate and aromatic biomarker distributions as well as stable carbon isotope compositions have been determined for a collection of crude oils of various ages and derived from different source rock types in the Gulf of Suez. These biomarker parameters have been used in an attempt to characterize the types of organofacies, and depositional environments, and to assess the thermal maturity of the source rocks responsible for oil generation.

#### 2. Sampling and analytical techniques

Crude oils of various ages and derived from various source rock types were collected from the giant producing fields in the Gulf of Suez namely: July, Ramadan, Badri, El-Morgan, Sidki, Ras El-Bahar, East Zeit, Hilal, Zeit Bay and Shoab Ali (Fig. 1). These oil samples were collected from syn-rift (Miocene) and pre-rift (Palaeozoic, Lower and Upper Cretaceous) reservoirs (Fig. 2).

The crude oil samples were fractionated using high performance liquid chromatography (HPLC) into saturates, aromatics, and resins following the standard procedures outlined by Peters and Moldowan (1993). Saturate fractions were treated with a molecular sieve (silicate) to remove the *n*-alkanes. The saturate and aromatic fractions were analyzed on a Hewlett Packard 5890 Series-II gas chromatograph equipped with a Quadrex 50m fused silica capillary column. The gas chromatograph was programmed from 40°C to 340°C at 10 °C/min with a 2 min hold at 40° C and a 20 min hold at 340°C. The saturate and aromatic fractions were also analyzed by gas chromatography-mass spectrometry (GCMS) using a Hewlett Packard 5971A Mass Selective Detector (MSD) to determine terpane (m/z 191) and sterane (m/z 217) distributions. The aromatic steroid hydrocarbon fractions were analyzed to determine mono- and triaroaromatic (m/z 253 and m/z 231) steroid hydrocarbon distributions. Aromatic sulphur compounds were monitored to determine dibenzothiophene (m/z)184), methyldibenzothiophenes (m/z)198), dimethyldibenzothiophenes (m/z 212), methylnaphthalenes (m/z 142, 156 and 170) and phenanthrenes (*m*/*z* 178, 192 and 206). Stable carbon isotope values ( $\delta^{13}$ C) were determined for the whole oils, saturate and aromatic hydrocarbon fractions using a Micromass 602 D Mass-Spectrometer. Data are reported as  $\delta^{13}C$  (‰) relative to the PDB standard. The organic geochemical analyses and stable carbon isotopes for the studied crude oil samples were conducted at the organic geochemical laboratories, Oklahoma State University, USA.

#### 3. Results and discussions

Rohrback (1982) concluded that all the crude oils of the Gulf of Suez appear to be of the same genetic family. However, great variations in the biological marker distributions and stable carbon stable isotope compositions of the studied crude oils from this province suggest that this group should be subdivided into two subfamilies consistent vertically with

2

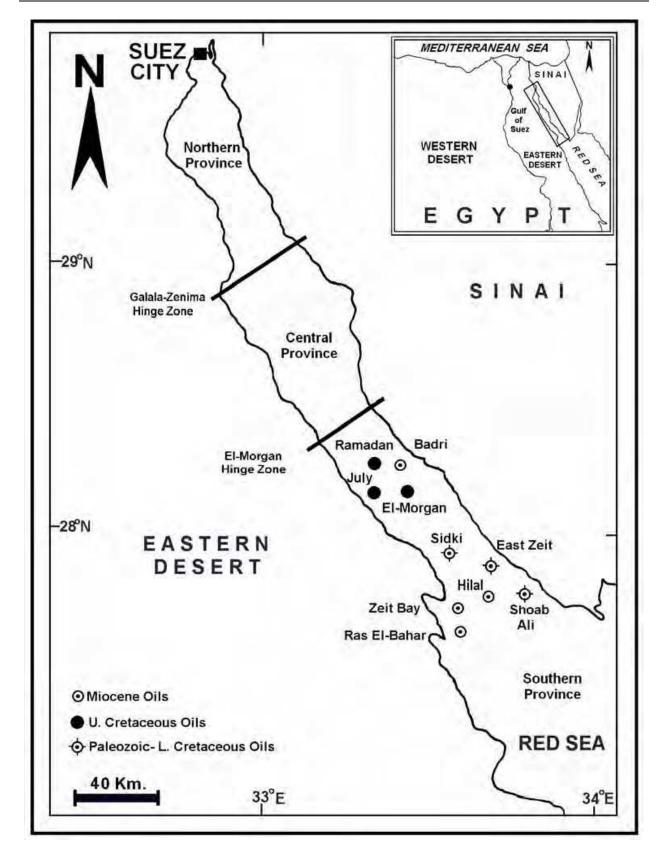



Fig. 1. Map showing the distribution of oil samples from the different fields of the southern Gulf of Suez province.

| RIFT      | A    | TIME                               |              | RO        | CKUN                         | IT      | 5.7.00                                 | HYDROCARBON    |                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |           |     |             |          |       |           |         |  |  |           |  |
|-----------|------|------------------------------------|--------------|-----------|------------------------------|---------|----------------------------------------|----------------|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------|-----|-------------|----------|-------|-----------|---------|--|--|-----------|--|
| SEQUENCE  | ER/  | UN                                 | 10 C C C C C | GROUP     | FORMAT                       | ION     | LITHOLOGY                              | SOURCE<br>ROCK | RESERVOIR<br>RUCK           | OIL FIELDS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |           |     |             |          |       |           |         |  |  |           |  |
| POST RIFT |      | PLIOP                              | LEIST.       |           | Zaafaran                     | a       |                                        | 1000           |                             | 1.7.7.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        |           |     |             |          |       |           |         |  |  |           |  |
| 1 A       |      |                                    |              | 8         | Zeit                         |         | ARRENALARANA                           |                |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |           |     |             |          |       |           |         |  |  |           |  |
| 2         |      |                                    | E N          | IP        | South Gh                     | arib    |                                        |                |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |           |     |             |          |       |           |         |  |  |           |  |
| LFI       | ZOIC | u                                  |              | ш         | ш                            | 12167   | ш                                      | ш              | RAS MALAAB                  | Belayir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | n      |           |     |             |          |       |           |         |  |  |           |  |
| -         | 0    |                                    |              | F         | Kareen                       | n       |                                        |                |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |           |     |             |          |       |           |         |  |  |           |  |
| ÷ S Y N R | CEN  | N N                                |              | GHARANDAL | Rudeis                       |         |                                        |                | Hilal<br>Badri<br>Ras Bahar |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |           |     |             |          |       |           |         |  |  |           |  |
|           |      |                                    | -            | -         | Nukhu                        | -       | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |                |                             | Zeit Bay<br>July<br>El-Morgan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |        |           |     |             |          |       |           |         |  |  |           |  |
|           |      | EOC                                | 1            | EGMA      | Thebe                        |         |                                        | •              |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |           |     |             |          |       |           |         |  |  |           |  |
|           |      | PALEO                              | CENE         | BG        | Esna                         |         |                                        |                |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |           |     |             |          |       |           |         |  |  |           |  |
|           |      |                                    | LATE LATE    | Ш         | Sudr<br>Duwi<br>jBrown Limes |         |                                        | -              | 1                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |           |     |             |          |       |           |         |  |  |           |  |
|           |      | 5                                  |              | E         | Brown Limes<br>Matuli        |         |                                        | -              |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |           |     |             |          |       |           |         |  |  |           |  |
|           |      |                                    |              | NEZZAZAT  | Wat                          |         |                                        |                | ~1.                         | Ramadan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        |           |     |             |          |       |           |         |  |  |           |  |
|           |      | ш                                  |              |           | Abu Qa                       | da      |                                        |                | 1.11                        | and the second s |        |           |     |             |          |       |           |         |  |  |           |  |
|           |      |                                    |              | N.        | Rah                          | a       |                                        | 201            |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |           |     |             |          |       |           |         |  |  |           |  |
| PRERIFT   |      | ESO                                | ESO          | RET       | EARLY                        | L T I H | Malha                                  | ubia-A         |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |           |     |             |          |       |           |         |  |  |           |  |
| <u>и</u>  |      | JURA                               | JURASSIC     |           | NC                           |         |                                        |                | East Zeit                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |           |     |             |          |       |           |         |  |  |           |  |
| ī         |      | TRIAS                              | -1 BC (100-1 | , m       | Qiseib                       | 1       |                                        |                |                             | Sidki                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        |           |     |             |          |       |           |         |  |  |           |  |
|           |      | PERM                               |              | -         | Rod                          | -       |                                        |                |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |           |     |             |          |       |           |         |  |  |           |  |
|           |      | LEOZOI                             | LEOZOI       | LEOZOI    | LEOZOI                       | LEOZOI  | LEOZOI                                 | LEOZOI         | LEOZOI                      | LEOZOI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | LEOZOI | 100100000 | T   | NOA         | El-Hamal |       |           |         |  |  |           |  |
|           |      |                                    |              |           |                              |         |                                        |                |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | LEOZOI    | 10Z | RBONIFEROUS | LATE     | ATADA | Abu Durba | Nubia-B |  |  |           |  |
|           |      |                                    |              |           |                              |         |                                        |                |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |           | CA  | EARLY       | UMN      | BOGMA |           |         |  |  | Shoab Ali |  |
|           |      | CAMBRIAN-<br>ORDOVICIAN<br>OEBLIAT | QEBLIAT      | Naqus     | D Nubia-C                    |         |                                        | Shoab Ali      |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |           |     |             |          |       |           |         |  |  |           |  |
| -         |      | TO MAN DO 188                      | Part Inc.    |           | Araba                        | Nabia-D |                                        |                | 2                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |           |     |             |          |       |           |         |  |  |           |  |
| -         | -    | PRECA                              | MBRI         | AN BA     | SEMENT                       |         |                                        |                |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |           |     |             |          |       |           |         |  |  |           |  |
| Rock      | Salt |                                    | Sanda        | Gravel    | 躍                            | Limes   | tone                                   | Dolomite       |                             | Sandstone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        |           |     |             |          |       |           |         |  |  |           |  |

Fig. 2. Generalized lithostratigraphic succession illustrating the rifting sequences and hydrocarbon distributions in the southern Gulf of Suez modified after (Alsharhan, 2003).

the syn-rift and pre-rift tectonic sequences of the Gulf of Suez. Furthermore, the data from the present study suggests two oil families represent two distinct independent petroleum systems for hydrocarbon generation and maturation.

| OIL TYPES         Type-1         Typ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <b>Type-I</b><br>Miocene<br>34.9<br>0.98<br>0.48<br>0.48<br>0.48<br>1.01<br>1.01<br>2.3.15<br>8.66<br>0.81<br>0.81<br>2.3.48<br>2.3.45<br>2.4.8<br>2.2.6 |                                                                                        | <b>Type-II</b><br>35.8<br>1.36<br>0.81<br>0.37<br>0.46<br>0.99<br>0.99<br>0.99<br>1.01<br>3.38<br>21.7<br>1.15<br>1.15<br>1.15<br>2.1.7<br>2.1.7<br>2.1.7<br>2.1.7<br>2.1.7<br>2.1.7<br>2.1.7<br>2.1.7<br>2.1.7<br>2.1.7<br>2.1.7<br>2.1.7<br>2.1.7<br>2.1.7<br>2.1.7<br>2.1.7<br>2.1.7<br>2.1.7<br>2.1.7<br>2.1.7<br>2.1.7<br>2.1.7<br>2.1.7<br>2.1.7<br>2.1.7<br>2.1.7<br>2.1.7<br>2.1.7<br>2.1.7<br>2.1.7<br>2.1.7<br>2.1.7<br>2.1.7<br>2.1.7<br>2.1.7<br>2.1.7<br>2.1.7<br>2.1.7<br>2.1.7<br>2.1.7<br>2.1.7<br>2.1.7<br>2.1.7<br>2.1.7<br>2.1.7<br>2.1.7<br>2.1.7<br>2.1.7<br>2.1.7<br>2.1.7<br>2.1.7<br>2.1.7<br>2.1.7<br>2.1.7<br>2.1.7<br>2.1.7<br>2.1.7<br>2.1.7<br>2.1.7<br>2.1.7<br>2.1.7<br>2.2<br>2.1.7<br>2.1.7<br>2.1.7<br>2.1.7<br>2.1.7<br>2.2<br>2.2<br>2.1.7<br>2.1.7<br>2.2<br>2.1.7<br>2.1.7<br>2.2<br>2.1.7<br>2.2<br>2.1.7<br>2.2<br>2.1.7<br>2.2<br>2.1.7<br>2.2<br>2.1.7<br>2.2<br>2.1.7<br>2.2<br>2.1.7<br>2.2<br>2.1.7<br>2.2<br>2.1.7<br>2.2<br>2.1.7<br>2.1.7<br>2.2<br>2.1.7<br>2.2<br>2.1.7<br>2.2<br>2.1.7<br>2.2<br>2.1.7<br>2.2<br>2.1.7<br>2.2<br>2.1.7<br>2.2<br>2.1.7<br>2.2<br>2.1.7<br>2.2<br>2.1.7<br>2.2<br>2.1.7<br>2.2<br>2.1.7<br>2.2<br>2.1.7<br>2.1.7<br>2.1.7<br>2.1.7<br>2.1.7<br>2.1.7<br>2.1.7<br>2.1.7<br>2.1.7<br>2.1.7<br>2.1.7<br>2.1.7<br>2.1.7<br>2.1.7<br>2.1.7<br>2.1.7<br>2.1.7<br>2.1.7<br>2.1.7<br>2.1.7<br>2.1.7<br>2.1.7<br>2.1.7<br>2.1.7<br>2.1.7<br>2.1.7<br>2.1.7<br>2.1.7<br>2.1.7<br>2.1.7<br>2.1.7<br>2.1.7<br>2.1.7<br>2.1.7<br>2.1.7<br>2.1.7<br>2.1.7<br>2.1.7<br>2.1.7<br>2.2.7<br>2.2.7<br>2.2.7<br>2.2.7<br>2.2.7<br>2.2.7<br>2.2.7<br>2.2.7<br>2.2.7<br>2.2.7<br>2.2.7<br>2.2.7<br>2.2.7<br>2.2.7<br>2.2.7<br>2.2.7<br>2.2.7<br>2.2.7<br>2.2.7<br>2.2.7<br>2.2.7<br>2.2.7<br>2.2.7<br>2.2.7<br>2.2.7<br>2.2.7<br>2.2.7<br>2.2.7<br>2.2.7<br>2.2.7<br>2.2.7<br>2.2.7<br>2.2.7<br>2.2.7<br>2.2.7<br>2.2.7<br>2.2.7<br>2.2.7<br>2.2.7<br>2.2.7<br>2.2.7<br>2.2.7<br>2.2.7<br>2.2.7<br>2.2.7<br>2.2.7<br>2.2.7<br>2.2.7<br>2.2.7<br>2.2.7<br>2.2.7<br>2.2.7<br>2.2.7<br>2.2.7<br>2.2.7<br>2.2.7<br>2.2.7<br>2.2.7<br>2.2.7<br>2.2.7<br>2.2.7<br>2.2.7<br>2.2.7<br>2.2.7<br>2.2.7<br>2.2.7<br>2.2.7<br>2.2.7<br>2.2.7<br>2.2.7<br>2.2.7<br>2.2.7<br>2.2.7<br>2.2.7<br>2.2.7<br>2.2.7<br>2.2.7<br>2.2.7<br>2.2.7<br>2.2.7<br>2.2.7<br>2.2.7<br>2.2.7<br>2.2.7<br>2.2.7<br>2.2.7<br>2.2.7<br>2.2.7<br>2.2.7<br>2.2.7<br>2.2.7<br>2.2.7<br>2.2.7<br>2.2.7<br>2.2.7<br>2.2.7<br>2.2.7<br>2.2.7<br>2.2.7<br>2.2.7<br>2.2.7<br>2.2.7<br>2.2.7<br>2.2.7<br>2.2.7<br>2.2.7<br>2.2.7<br>2.2.7<br>2.2.7<br>2.2.7<br>2.2.7<br>2.2.7<br>2.2.7<br>2.2.7<br>2.2.7<br>2.2.7<br>2.2.7<br>2.2.7<br>2.2.7<br>2.2.7<br>2.2.7<br>2.2.7<br>2.2.7<br>2.2.7<br>2.2.7<br>2.2.7<br>2.2.7<br>2.2.7<br>2.2.7<br>2.2.7<br>2.2.7<br>2.2.7<br>2.2.7<br>2.2.7<br>2.2.7<br>2.2.7<br>2.2.7<br>2.2.7<br>2.2.7<br>2.2.7<br>2.2.7<br>2.2.7<br>2.2.7<br>2.2.7<br>2.2.7<br>2.2.7<br>2.2.7<br>2.2.7<br>2.2.7<br>2.2.7<br>2.2.7<br>2.2.7<br>2.2.7<br>2.2.7<br>2.2.7<br>2.2.7<br>2.2.7<br>2.2.7<br>2.2.7<br>2.2.7<br>2.2.7<br>2.2.7<br>2.2.7<br>2.2.7<br>2.2.7<br>2.2.7<br>2.2.7<br>2.2.7<br>2.2.7<br>2.2.7<br>2.2.7<br>2.2.7<br>2.2.7<br>2.2.7<br>2.2.7<br>2.2.7<br>2.2.7<br>2.2.7<br>2.2.7<br>2. | <b>Type-II</b><br>U.Cretaceous<br>34.8<br>1.32<br>0.91<br>0.37<br>0.91<br>0.37<br>0.98<br>0.98<br>0.98<br>1.07<br>4.45<br>25.53<br>1.04     | <b>Type-II</b><br>U.Cretaceous<br>36.8<br>1.23<br>0.93<br>0.52<br>0.47<br>0.97<br>0.97<br>0.97<br>0.97<br>23.71<br>1.05<br>23.71<br>1.05 | <b>Type-II</b><br>Paleoz-L. Cretaceous<br>41.3<br>1.28<br>0.49<br>0.48<br>0.99<br>0.99<br>0.99<br>6.3<br>29119<br>1.01 | Type-II<br>Paleoz-L. Cretaceous<br>37.2<br>1.33<br>0.94<br>0.35<br>0.99<br>0.99<br>1.08<br>5.01<br>21.99 | <b>Type-II</b><br>Paleoz. L. Cretaceouse<br>4.3.2<br>1.39<br>1.03<br>0.55<br>0.55<br>1.01<br>1.01<br>1.01<br>2.5<br>2.5<br>2.5 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|
| $ \begin{array}{ccccccc} \mathbf{s} & $ | 34.9<br>34.9<br>0.98<br>0.52<br>0.48<br>1.01<br>1.01<br>1.01<br>8.66<br>0.81<br>0.81<br>0.81<br>0.81                                                     |                                                                                        | 35.8<br>1.36<br>0.81<br>0.81<br>0.81<br>0.81<br>0.81<br>0.37<br>0.99<br>0.99<br>0.99<br>1.01<br>3.38<br>2.1.7<br>1.15<br>1.15<br>1.15<br>2.1.7<br>2.1.7<br>2.1.7<br>2.1.7<br>2.1.7<br>2.1.7<br>2.1.7<br>2.1.7<br>2.1.7<br>2.1.7<br>2.1.7<br>2.1.7<br>2.1.7<br>2.1.7<br>2.1.7<br>2.1.7<br>2.1.7<br>2.1.7<br>2.1.7<br>2.1.7<br>2.1.7<br>2.1.7<br>2.1.7<br>2.1.7<br>2.1.7<br>2.1.7<br>2.1.7<br>2.1.7<br>2.1.7<br>2.1.7<br>2.1.7<br>2.1.7<br>2.1.7<br>2.1.7<br>2.1.7<br>2.1.7<br>2.2<br>2.1.7<br>2.2<br>2.1.7<br>2.2<br>2.2<br>2.2<br>2.2<br>2.2<br>2.2<br>2.2<br>2.2<br>2.2<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 34.8<br>34.8<br>0.91<br>0.37<br>0.42<br>0.98<br>0.98<br>0.98<br>1.07<br>1.04<br>1.04<br>1.04                                                | 36.8<br>36.8<br>1.23<br>0.93<br>0.47<br>0.97<br>0.97<br>1.1<br>3.09<br>3.09<br>23.71<br>1.05                                             | 41.3<br>1.28<br>1.01<br>0.49<br>0.48<br>0.99<br>0.99<br>6.3<br>29.19<br>1.01                                           | 37.2<br>1.33<br>0.94<br>0.33<br>0.35<br>0.99<br>1.08<br>5.01<br>21.99<br>1.25                            | 43.2<br>1.39<br>1.03<br>0.56<br>1.01<br>1.01<br>25<br>2.5<br>2.5                                                               |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 34.9<br>0.98<br>1.15<br>0.52<br>0.48<br>0.48<br>1.01<br>1.01<br>2.3.15<br>8.66<br>0.81<br>0.81<br>0.81<br>0.81                                           | 32.2<br>0.88<br>0.54<br>0.55<br>0.56<br>1<br>1<br>7.56<br>0.67<br>21.4<br>23.3<br>28.5 | 35.8<br>1.36<br>0.81<br>0.37<br>0.37<br>0.37<br>0.37<br>0.37<br>0.37<br>0.33<br>3.38<br>2.13<br>1.15<br>1.15<br>1.15<br>1.15<br>2.1.7<br>2.1.7<br>2.1.7<br>2.1.7<br>2.1.7<br>2.1.7<br>2.1.7<br>2.1.7<br>2.1.7<br>2.1.7<br>2.1.7<br>2.1.36<br>0.37<br>0.37<br>0.37<br>0.37<br>0.37<br>0.37<br>0.37<br>0.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 34.8<br>1.32<br>0.91<br>0.37<br>0.37<br>0.37<br>0.37<br>0.37<br>0.37<br>0.37<br>1.04<br>1.07<br>1.04<br>1.04<br>1.04                        | 36.8<br>1.23<br>0.93<br>0.52<br>0.47<br>0.97<br>1.1<br>1.05<br>23.71<br>1.05                                                             | 41.3<br>1.28<br>0.49<br>0.99<br>0.99<br>6.3<br>29.19<br>1.01                                                           | 37.2<br>1.33<br>0.94<br>0.33<br>0.35<br>0.99<br>1.08<br>5.01<br>21.99<br>1.25                            | 43.2<br>1.39<br>1.03<br>0.56<br>0.56<br>1.01<br>1.01<br>25<br>25                                                               |
| $\begin{array}{cccccc} 0.97 & 0.89 \\ 1.37 & 1.12 \\ 0.72 & 0.58 \\ 0.58 & 0.58 \\ 1.01 & 1.02 \\ 1.02 & 0.58 \\ 0.64 & 0.8 \\ 0.64 & 0.8 \\ 0.64 & 0.58 \\ 0.79 & 0.56 \\ 0.77 \\ 0.77 \\ 0.77 \\ 0.77 \\ 0.77 \\ 0.77 \\ 0.77 \\ 0.77 \\ 0.77 \\ 0.77 \\ 0.77 \\ 0.77 \\ 0.77 \\ 0.77 \\ 0.77 \\ 0.77 \\ 0.77 \\ 0.77 \\ 0.77 \\ 0.77 \\ 0.77 \\ 0.77 \\ 0.77 \\ 0.77 \\ 0.77 \\ 0.77 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.71 \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.98<br>1.15<br>0.52<br>0.48<br>0.48<br>1.01<br>2.3.15<br>8.66<br>0.81<br>0.81<br>0.81<br>2.4.8<br>2.24.8<br>2.24.8                                      | 0.88<br>0.54<br>0.55<br>0.56<br>0.67<br>7.56<br>0.87<br>2.1.4<br>2.8.5<br>28.5         | 1.36<br>0.81<br>0.37<br>0.37<br>0.37<br>0.37<br>0.33<br>1.01<br>1.01<br>3.38<br>2.1.7<br>1.15<br>1.15<br>2.1.7<br>2.1.7<br>2.1.7<br>2.1.7<br>2.1.7<br>2.1.7<br>2.1.7<br>2.1.7<br>2.1.7<br>2.1.7<br>2.1.7<br>2.2.1<br>2.2.1<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2<br>2.2.2.2<br>2.2.2.2<br>2.2.2.2<br>2.2.2.2<br>2.2.2.2<br>2.2.2.2<br>2.2.2.2.2<br>2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\begin{array}{c} 1.32\\ 0.91\\ 0.37\\ 0.37\\ 0.37\\ 0.37\\ 0.37\\ 0.37\\ 0.37\\ 0.37\\ 1.07\\ 1.07\\ 1.04\\ 1.04\\ 1.04\\ 1.04\end{array}$ | 1.23<br>0.93<br>0.52<br>0.47<br>0.97<br>1.1<br>1.05<br>23.71<br>1.05<br>42.6                                                             | 1.28<br>1.01<br>0.49<br>0.48<br>0.99<br>6.3<br>29.19<br>1.01                                                           | 1.33<br>0.94<br>0.33<br>0.35<br>0.99<br>1.08<br>5.01<br>21.99<br>1.25                                    | 1.39<br>1.03<br>0.55<br>0.56<br>1.01<br>1.01<br>25<br>25                                                                       |
| $\begin{array}{ccccc} 1.37 & 1.12 \\ 0.72 & 0.57 \\ 0.58 & 0.58 \\ 1.01 & 1.02 & 1.01 \\ 1.02 & 0.58 & 0.58 \\ 0.8 & 0.56 & 0.56 \\ 26.42 & 28.43 & 0.77 \\ 0.79 & 0.79 & 0.77 \\ 0.79 & 0.77 & 0.77 \\ 0.79 & 0.77 & 0.77 \\ 0.71 & 0.48 & 0.77 \\ 0.63 & 0.61 & 0.38 \\ 0.61 & 0.61 & 0.38 \\ 0.61 & 0.61 & 0.38 \\ 0.61 & 0.38 & 0.61 \\ 0.62 & 0.38 & 0.61 \\ 0.61 & 0.38 & 0.61 \\ 0.61 & 0.38 & 0.61 \\ 0.62 & 0.38 & 0.61 \\ 0.61 & 0.38 & 0.61 \\ 0.61 & 0.38 & 0.61 \\ 0.61 & 0.38 & 0.61 \\ 0.61 & 0.38 & 0.61 \\ 0.61 & 0.38 & 0.61 \\ 0.61 & 0.61 & 0.61 \\ 0.62 & 0.61 & 0.61 \\ 0.61 & 0.61 & 0.61 \\ 0.61 & 0.61 & 0.61 \\ 0.61 & 0.61 & 0.61 \\ 0.61 & 0.61 & 0.61 \\ 0.61 & 0.61 & 0.61 \\ 0.61 & 0.61 & 0.61 \\ 0.61 & 0.61 & 0.61 \\ 0.61 & 0.61 & 0.61 \\ 0.61 & 0.61 & 0.61 \\ 0.61 & 0.61 & 0.61 \\ 0.61 & 0.61 & 0.61 \\ 0.61 & 0.61 & 0.61 \\ 0.61 & 0.61 & 0.61 \\ 0.61 & 0.61 & 0.61 \\ 0.61 & 0.61 & 0.61 \\ 0.61 & 0.61 & 0.61 \\ 0.61 & 0.61 & 0.61 \\ 0.61 & 0.61 & 0.61 \\ 0.61 & 0.61 & 0.61 \\ 0.61 & 0.61 & 0.61 \\ 0.61 & 0.61 & 0.61 \\ 0.61 & 0.61 & 0.61 \\ 0.61 & 0.61 & 0.61 \\ 0.61 & 0.61 & 0.61 \\ 0.61 & 0.61 & 0.61 \\ 0.61 & 0.61 & 0.61 \\ 0.61 & 0.61 & 0.61 \\ 0.61 & 0.61 & 0.61 \\ 0.61 & 0.61 & 0.61 \\ 0.61 & 0.61 & 0.61 \\ 0.61 & 0.61 & 0.61 \\ 0.61 & 0.61 & 0.61 \\ 0.61 & 0.61 & 0.61 \\ 0.61 & 0.61 & 0.61 \\ 0.61 & 0.61 & 0.61 \\ 0.61 & 0.61 & 0.61 \\ 0.61 & 0.61 & 0.61 \\ 0.61 & 0.61 & 0.61 \\ 0.61 & 0.61 & 0.61 \\ 0.61 & 0.61 & 0.61 \\ 0.61 & 0.61 & 0.61 \\ 0.61 & 0.61 & 0.61 \\ 0.61 & 0.61 & 0.61 \\ 0.61 & 0.61 & 0.61 \\ 0.61 & 0.61 & 0.61 \\ 0.61 & 0.61 & 0.61 \\ 0.61 & 0.61 & 0.61 \\ 0.61 & 0.61 & 0.61 \\ 0.61 & 0.61 & 0.61 \\ 0.61 & 0.61 & 0.61 \\ 0.61 & 0.61 & 0.61 \\ 0.61 & 0.61 & 0.61 \\ 0.61 & 0.61 & 0.61 \\ 0.61 & 0.61 & 0.61 \\ 0.61 & 0.61 & 0.61 \\ 0.61 & 0.61 & 0.61 \\ 0.61 & 0.61 & 0.61 \\ 0.61 & 0.61 & 0.61 \\ 0.61 & 0.61 & 0.61 \\ 0.61 & 0.61 & 0.61 \\ 0.61 & 0.61 & 0.61 \\ 0.61 & 0.61 & 0.61 \\ 0.61 & 0.61 & 0.61 \\ 0.61 & 0.61 & 0.61 \\ 0.61 & 0.61 & 0.61 \\ 0.61 & 0.61 & 0.61 \\ 0.61 & 0.61 & 0.61 \\ 0.61 & 0.61 & 0.61 \\ 0.61 & 0.61 & 0.61 \\ 0.61 & 0.61 & 0.61 \\ 0.61 & 0.61 & 0.61 \\ 0.61 & 0.61 & 0.61$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.15<br>0.52<br>0.48<br>1.01<br>1.01<br>2.3.15<br>8.66<br>0.81<br>0.81<br>2.4.8<br>2.4.8<br>2.4.8                                                        | 1.13<br>0.54<br>0.56<br>0.56<br>1<br>7.56<br>0.87<br>0.87<br>28.5                      | 0.81<br>0.37<br>0.46<br>0.99<br>0.99<br>0.99<br>1.01<br>3.38<br>21.7<br>1.15<br>1.15<br>21.7<br>21.7<br>21.7<br>21.7<br>21.7<br>21.7<br>25.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.91<br>0.37<br>0.42<br>0.98<br>0.98<br>4.45<br>1.07<br>1.04<br>1.04                                                                        | 0.93<br>0.52<br>0.47<br>0.97<br>1.1<br>3.09<br>3.09<br>1.05<br>1.05<br>42.6                                                              | 1.01<br>0.49<br>0.99<br>0.99<br>0.99<br>6.3<br>29.19<br>1.01                                                           | 0.94<br>0.33<br>0.35<br>0.99<br>0.99<br>0.99<br>5.01<br>21.99<br>1.25                                    | 1.03<br>0.53<br>0.56<br>1.01<br>1.01<br>1.01<br>2.5<br>1.07                                                                    |
| $\begin{array}{ccccc} 0.72 & 0.57 & 0.58 \\ 0.58 & 0.58 & 0.58 & 0.58 \\ 1.01 & 0.8 & 0.56 & 0.58 \\ 0.8 & 0.79 & 0.77 & 0.77 & 0.77 \\ 0.7 & 0.79 & 0.77 & 0.77 & 0.77 \\ 0.7 & 0.79 & 0.71 & 0.48 & 0.77 & 0.61 & 0.38 & 0.61 & 0.48 & 0.38 & 0.61 & 0.48 & 0.61 & 0.48 & 0.38 & 0.61 & 0.48 & 0.38 & 0.61 & 0.48 & 0.38 & 0.61 & 0.38 & 0.61 & 0.38 & 0.61 & 0.38 & 0.61 & 0.38 & 0.61 & 0.38 & 0.61 & 0.38 & 0.61 & 0.38 & 0.61 & 0.38 & 0.61 & 0.38 & 0.61 & 0.38 & 0.61 & 0.38 & 0.61 & 0.38 & 0.61 & 0.38 & 0.61 & 0.38 & 0.61 & 0.38 & 0.61 & 0.38 & 0.61 & 0.38 & 0.61 & 0.38 & 0.61 & 0.38 & 0.61 & 0.38 & 0.61 & 0.38 & 0.61 & 0.38 & 0.61 & 0.38 & 0.61 & 0.38 & 0.61 & 0.38 & 0.61 & 0.38 & 0.61 & 0.38 & 0.61 & 0.38 & 0.61 & 0.38 & 0.61 & 0.38 & 0.61 & 0.38 & 0.61 & 0.38 & 0.61 & 0.38 & 0.61 & 0.38 & 0.61 & 0.38 & 0.61 & 0.38 & 0.61 & 0.38 & 0.61 & 0.38 & 0.61 & 0.38 & 0.61 & 0.38 & 0.61 & 0.38 & 0.61 & 0.38 & 0.61 & 0.38 & 0.61 & 0.38 & 0.61 & 0.38 & 0.61 & 0.38 & 0.61 & 0.38 & 0.61 & 0.38 & 0.61 & 0.38 & 0.61 & 0.38 & 0.61 & 0.38 & 0.61 & 0.38 & 0.61 & 0.38 & 0.61 & 0.38 & 0.61 & 0.38 & 0.61 & 0.38 & 0.61 & 0.38 & 0.61 & 0.38 & 0.61 & 0.38 & 0.61 & 0.38 & 0.61 & 0.38 & 0.61 & 0.38 & 0.61 & 0.38 & 0.61 & 0.38 & 0.61 & 0.38 & 0.61 & 0.38 & 0.61 & 0.38 & 0.61 & 0.38 & 0.61 & 0.38 & 0.61 & 0.38 & 0.61 & 0.38 & 0.61 & 0.38 & 0.61 & 0.38 & 0.61 & 0.38 & 0.61 & 0.38 & 0.61 & 0.38 & 0.61 & 0.38 & 0.61 & 0.38 & 0.61 & 0.38 & 0.61 & 0.38 & 0.61 & 0.38 & 0.61 & 0.38 & 0.61 & 0.38 & 0.61 & 0.38 & 0.61 & 0.38 & 0.61 & 0.38 & 0.61 & 0.38 & 0.61 & 0.38 & 0.61 & 0.61 & 0.61 & 0.61 & 0.61 & 0.61 & 0.61 & 0.61 & 0.61 & 0.61 & 0.61 & 0.61 & 0.61 & 0.61 & 0.61 & 0.61 & 0.61 & 0.61 & 0.61 & 0.61 & 0.61 & 0.61 & 0.61 & 0.61 & 0.61 & 0.61 & 0.61 & 0.61 & 0.61 & 0.61 & 0.61 & 0.61 & 0.61 & 0.61 & 0.61 & 0.61 & 0.61 & 0.61 & 0.61 & 0.61 & 0.61 & 0.61 & 0.61 & 0.61 & 0.61 & 0.61 & 0.61 & 0.61 & 0.61 & 0.61 & 0.61 & 0.61 & 0.61 & 0.61 & 0.61 & 0.61 & 0.61 & 0.61 & 0.61 & 0.61 & 0.61 & 0.61 & 0.61 & 0.61 & 0.61 & 0.61 & 0.61 & 0.61 & 0.61 & 0.61 & 0.61 & 0.61 & 0.61 & 0.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.52<br>0.48<br>1.01<br>1.01<br>8.66<br>8.66<br>0.81<br>0.81<br>2.4.8<br>2.4.8<br>2.4.8                                                                  | 0.54<br>0.56<br>1<br>21.4<br>7.56<br>0.87<br>0.87<br>43.8<br>28.5                      | 0.37<br>0.46<br>0.99<br>0.99<br>3.38<br>3.38<br>21.7<br>1.15<br>1.15<br>21.7<br>21.7<br>21.7<br>21.7<br>21.7<br>22.7<br>22.7<br>22.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.37<br>0.42<br>0.98<br>1.07<br>1.04<br>1.04<br>1.04                                                                                        | 0.52<br>0.47<br>0.97<br>1.1<br>3.09<br>23.71<br>1.05<br>1.05                                                                             | 0.49<br>0.48<br>0.99<br>1.03<br>6.3<br>29.19<br>1.01                                                                   | 0.33<br>0.35<br>0.99<br>5.01<br>1.25                                                                     | 0.55<br>0.56<br>1.01<br>1.13<br>6.03<br>25<br>1.07                                                                             |
| $\begin{array}{c cccc} 0.58 & 0.58 \\ 1.02 & 1.01 \\ 1.02 & 0.58 \\ 1.01 & 0.8 & 0.56 \\ 0.79 & 0.77 & 0.77 \\ 0.79 & 0.77 & 0.77 \\ 0.79 & 0.77 & 0.77 \\ 0.79 & 0.71 & 0.48 \\ 0.79 & 0.77 & 0.71 \\ 0.79 & 0.71 & 0.48 \\ 0.71 & 0.71 & 0.48 \\ 0.61 & 0.32 & 0.61 \\ 0.61 & 0.61 & 0.38 \\ 0.61 & 0.61 & 0.38 \\ 0.61 & 0.61 & 0.38 \\ 0.61 & 0.61 & 0.38 \\ 0.61 & 0.61 & 0.38 \\ 0.61 & 0.61 & 0.38 \\ 0.61 & 0.61 & 0.38 \\ 0.61 & 0.61 & 0.38 \\ 0.61 & 0.61 & 0.38 \\ 0.61 & 0.61 & 0.38 \\ 0.61 & 0.61 & 0.38 \\ 0.61 & 0.61 & 0.38 \\ 0.61 & 0.61 & 0.61 \\ 0.61 & 0.61 & 0.61 \\ 0.61 & 0.61 & 0.61 \\ 0.61 & 0.61 & 0.61 \\ 0.61 & 0.61 & 0.61 \\ 0.61 & 0.61 & 0.61 \\ 0.61 & 0.61 & 0.61 \\ 0.61 & 0.61 & 0.61 \\ 0.61 & 0.61 & 0.61 \\ 0.61 & 0.61 & 0.61 \\ 0.61 & 0.61 & 0.61 \\ 0.61 & 0.61 & 0.61 \\ 0.61 & 0.61 & 0.61 \\ 0.61 & 0.61 & 0.61 \\ 0.61 & 0.61 & 0.61 \\ 0.61 & 0.61 & 0.61 \\ 0.61 & 0.61 & 0.61 \\ 0.61 & 0.61 & 0.61 \\ 0.61 & 0.61 & 0.61 \\ 0.61 & 0.61 & 0.61 \\ 0.61 & 0.61 & 0.61 \\ 0.61 & 0.61 & 0.61 \\ 0.61 & 0.61 & 0.61 \\ 0.61 & 0.61 & 0.61 \\ 0.61 & 0.61 & 0.61 \\ 0.61 & 0.61 & 0.61 \\ 0.61 & 0.61 & 0.61 \\ 0.61 & 0.61 & 0.61 \\ 0.61 & 0.61 & 0.61 \\ 0.61 & 0.61 & 0.61 \\ 0.61 & 0.61 & 0.61 \\ 0.61 & 0.61 & 0.61 \\ 0.61 & 0.61 & 0.61 \\ 0.61 & 0.61 & 0.61 \\ 0.61 & 0.61 & 0.61 \\ 0.61 & 0.61 & 0.61 \\ 0.61 & 0.61 & 0.61 \\ 0.61 & 0.61 & 0.61 \\ 0.61 & 0.61 & 0.61 \\ 0.61 & 0.61 & 0.61 \\ 0.61 & 0.61 & 0.61 \\ 0.61 & 0.61 & 0.61 \\ 0.61 & 0.61 & 0.61 \\ 0.61 & 0.61 & 0.61 \\ 0.61 & 0.61 & 0.61 \\ 0.61 & 0.61 & 0.61 \\ 0.61 & 0.61 & 0.61 \\ 0.61 & 0.61 & 0.61 \\ 0.61 & 0.61 & 0.61 \\ 0.61 & 0.61 & 0.61 \\ 0.61 & 0.61 & 0.61 \\ 0.61 & 0.61 & 0.61 \\ 0.61 & 0.61 & 0.61 \\ 0.61 & 0.61 & 0.61 \\ 0.61 & 0.61 & 0.61 \\ 0.61 & 0.61 & 0.61 \\ 0.61 & 0.61 & 0.61 \\ 0.61 & 0.61 & 0.61 \\ 0.61 & 0.61 & 0.61 \\ 0.61 & 0.61 & 0.61 \\ 0.61 & 0.61 & 0.61 \\ 0.61 & 0.61 & 0.61 \\ 0.61 & 0.61 & 0.61 \\ 0.61 & 0.61 & 0.61 \\ 0.61 & 0.61 & 0.61 \\ 0.61 & 0.61 & 0.61 \\ 0.61 & 0.61 & 0.61 \\ 0.61 & 0.61 & 0.61 \\ 0.61 & 0.61 & 0.61 \\ 0.61 & 0.61 & 0.61 \\ 0.61 & 0.61 & 0.61 \\ 0.61 & 0.61 & 0.61 \\ 0.61 & 0.61 & 0.61 \\ 0.61 & 0.61 & 0.61 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.48<br>1.01<br>2.3.15<br>8.66<br>0.81<br>0.81<br>2.4.8<br>2.4.8<br>2.4.8                                                                                | 0.56<br>1<br>1.56<br>21.4<br>21.4<br>2.1.4<br>43.8<br>43.8<br>28.5                     | 0.46<br>0.99<br>0.99<br>3.38<br>3.38<br>1.01<br>1.15<br>1.15<br>1.15<br>2.1.7<br>2.1.7<br>2.1.7<br>2.1.7<br>2.1.7<br>2.1.7<br>2.1.7<br>2.1.7<br>2.1.7<br>2.1.7<br>2.1.7<br>2.1.7<br>2.1.7<br>2.1.7<br>2.1.7<br>2.1.7<br>2.1.7<br>2.1.7<br>2.1.7<br>2.1.7<br>2.1.7<br>2.1.7<br>2.1.7<br>2.1.7<br>2.1.7<br>2.1.7<br>2.1.7<br>2.1.7<br>2.1.7<br>2.1.7<br>2.1.7<br>2.1.7<br>2.1.7<br>2.1.7<br>2.1.7<br>2.1.7<br>2.1.7<br>2.1.7<br>2.1.7<br>2.1.7<br>2.1.7<br>2.1.7<br>2.2<br>2.1.7<br>2.2<br>2.1.7<br>2.2<br>2.1.7<br>2.2<br>2.2<br>2.2<br>2.2<br>2.2<br>2.2<br>2.2<br>2.2<br>2.2<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.42<br>0.42<br>0.98<br>1.07<br>1.04<br>1.04<br>1.04                                                                                        | 0.47<br>0.97<br>1.1<br>3.09<br>23.71<br>1.05<br>1.05                                                                                     | 0.48<br>0.99<br>1.03<br>6.3<br>2919<br>1.01                                                                            | 0.35<br>0.99<br>0.99<br>5.01<br>1.25                                                                     | 0.56<br>1.01<br>1.13<br>6.03<br>1.07<br>25                                                                                     |
| $\begin{array}{c cccc} 1.02 & 1.01 \\ 1 & 0.8 & 0.56 \\ 26.42 & 28.43 \\ 2.6.42 & 2.8.43 \\ 9.44 & 8.62 \\ 0.77 & 0.77 \\ 0.79 & 0.77 \\ 0.77 & 0.77 \\ 0.79 & 0.77 \\ 0.79 & 0.77 \\ 0.77 & 0.77 \\ 0.77 & 0.77 \\ 0.77 & 0.76 \\ 0.77 & 0.76 \\ 0.77 & 0.76 \\ 0.77 & 0.76 \\ 0.61 & 0.38 \\ 0.61 & 0.61 \\ 0.61 & 0.38 \\ 0.61 & 0.38 \\ 0.61 & 0.38 \\ 0.61 & 0.38 \\ 0.61 & 0.38 \\ 0.61 & 0.38 \\ 0.61 & 0.38 \\ 0.61 & 0.38 \\ 0.61 & 0.38 \\ 0.61 & 0.38 \\ 0.61 & 0.38 \\ 0.61 & 0.38 \\ 0.61 & 0.38 \\ 0.61 & 0.38 \\ 0.61 & 0.38 \\ 0.61 & 0.38 \\ 0.61 & 0.38 \\ 0.61 & 0.38 \\ 0.61 & 0.38 \\ 0.61 & 0.38 \\ 0.61 & 0.38 \\ 0.61 & 0.38 \\ 0.61 & 0.38 \\ 0.61 & 0.38 \\ 0.61 & 0.38 \\ 0.61 & 0.38 \\ 0.61 & 0.38 \\ 0.61 & 0.38 \\ 0.61 & 0.38 \\ 0.61 & 0.38 \\ 0.61 & 0.38 \\ 0.61 & 0.38 \\ 0.61 & 0.38 \\ 0.61 & 0.38 \\ 0.61 & 0.38 \\ 0.61 & 0.38 \\ 0.61 & 0.38 \\ 0.61 & 0.38 \\ 0.61 & 0.38 \\ 0.61 & 0.38 \\ 0.61 & 0.38 \\ 0.61 & 0.38 \\ 0.61 & 0.38 \\ 0.61 & 0.38 \\ 0.61 & 0.38 \\ 0.61 & 0.38 \\ 0.61 & 0.38 \\ 0.61 & 0.38 \\ 0.61 & 0.38 \\ 0.61 & 0.38 \\ 0.61 & 0.38 \\ 0.61 & 0.38 \\ 0.61 & 0.38 \\ 0.61 & 0.61 \\ 0.61 & 0.61 \\ 0.61 & 0.61 \\ 0.61 & 0.61 \\ 0.61 & 0.61 \\ 0.61 & 0.61 \\ 0.61 & 0.61 \\ 0.61 & 0.61 \\ 0.61 & 0.61 \\ 0.61 & 0.61 \\ 0.61 & 0.61 \\ 0.61 & 0.61 \\ 0.61 & 0.61 \\ 0.61 & 0.61 \\ 0.61 & 0.61 \\ 0.61 & 0.61 \\ 0.61 & 0.61 \\ 0.61 & 0.61 \\ 0.61 & 0.61 \\ 0.61 & 0.61 \\ 0.61 & 0.61 \\ 0.61 & 0.61 \\ 0.61 & 0.61 \\ 0.61 & 0.61 \\ 0.61 & 0.61 \\ 0.61 & 0.61 \\ 0.61 & 0.61 \\ 0.61 & 0.61 \\ 0.61 & 0.61 \\ 0.61 & 0.61 \\ 0.61 & 0.61 \\ 0.61 & 0.61 \\ 0.61 & 0.61 \\ 0.61 & 0.61 \\ 0.61 & 0.61 \\ 0.61 & 0.61 \\ 0.61 & 0.61 \\ 0.61 & 0.61 \\ 0.61 & 0.61 \\ 0.61 & 0.61 \\ 0.61 & 0.61 \\ 0.61 & 0.61 \\ 0.61 & 0.61 \\ 0.61 & 0.61 \\ 0.61 & 0.61 \\ 0.61 & 0.61 \\ 0.61 & 0.61 \\ 0.61 & 0.61 \\ 0.61 & 0.61 \\ 0.61 & 0.61 \\ 0.61 & 0.61 \\ 0.61 & 0.61 \\ 0.61 & 0.61 \\ 0.61 & 0.61 \\ 0.61 & 0.61 \\ 0.61 & 0.61 \\ 0.61 & 0.61 \\ 0.61 & 0.61 \\ 0.61 & 0.61 \\ 0.61 & 0.61 \\ 0.61 & 0.61 \\ 0.61 & 0.61 \\ 0.61 & 0.61 \\ 0.61 & 0.61 \\ 0.61 & 0.61 \\ 0.61 & 0.61 \\ 0.61 & 0.61 \\ 0.61 & 0.61 \\ 0.61 & 0.61 \\ 0.61 & 0.61 \\ 0.61 & 0.61 \\ 0.61 & 0.61 \\ 0.61 & 0.61 \\ 0.61 & 0.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.01<br>1.01<br>2.3.15<br>8.66<br>0.81<br>0.81<br>2.4.8<br>2.4.8<br>2.4.8                                                                                | 1<br>0.67<br>7.56<br>0.87<br>43.8<br>28.5                                              | 0.99<br>0.99<br>3.38<br>3.38<br>21.7<br>1.15<br>1.15<br>41.5<br>26.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.98<br>0.98<br>4.45<br>25.53<br>1.04<br>1.04<br>44.6                                                                                       | 0.97<br>1.1<br>3.09<br>23.71<br>1.05<br>42.6                                                                                             | 0.99<br>1.03<br>6.3<br>29.19<br>1.01                                                                                   | 0.99<br>0.99<br>5.01<br>1.25                                                                             | 1.01<br>1.13<br>6.03<br>1.07                                                                                                   |
| ydrocarbons)<br>() $0.8$ $0.56$<br>26.42 $28.439.44$ $8.620.79$ $0.7710.79$ $0.7710.7210.7210.7210.7210.7210.7210.7210.7210.7210.6010.4810.6110.6110.6110.6110.6110.6110.6110.6110.6110.6110.6110.6110.6110.6110.6110.6110.6110.6110.6110.6110.6110.6110.6110.6110.6110.6110.6110.6110.6110.6110.6110.6110.6110.6110.6110.6110.6110.6110.6110.6110.6110.6110.6110.6110.6110.6110.6110.6110.6110.6110.6110.6110.6110.6110.6110.6110.6110.6110.6110.6110.6110.6110.6110.6110.6110.6110.6110.6110.6110.6110.6110.6110.6110.6110.6110.6110.6110.6110.6110.6110.6110.6110.6110.6110.6110.6110.6110.6110.6110.6110.6110.6110.6110.6110.6110.6110.6110.6110.6110.6110.6110.6110.6110.6110.6110.6110.6110.6110.6110.6110.6110.6110.6110.6110.6110.6110.6110.6110.6110.6110.6110.6110.6110.6110.6110.6110.6110.6110.6110.6110.6110.6110.6110.6110.6110.6110.6110.6110.6110.6110.6110.6110.6110.6110.6110.6110.6110.6110.6110.6110.6110.6110.6110.6110.6110.6110.6110.6110.6110.6110.6110.6110.6110.6110.6110.6110.6110.6110.6110.6110.6110.6110.6110.6110.6110.6110.6110.6110.6110.6110.6110.6110.6110.6110.6110.6110.6110.6110.6110.6110.6110.6110.6110.6110.6110.6110.6110.6110.6110.6110.6110.6110.6110.6110.6110.61$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.78<br>23.15<br>8.66<br>0.81<br>0.81<br>24.8<br>24.8<br>27.6                                                                                            | 0.67<br>21.4<br>7.56<br>0.87<br>43.8<br>43.8<br>28.5                                   | 1.01<br>3.38<br>21.7<br>1.15<br>41.5<br>41.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.07<br>4.45<br>25.53<br>1.04<br>1.04                                                                                                       | 1.1<br>3.09<br>23.71<br>1.05<br>42.6                                                                                                     | 1.03<br>6.3<br>29.19<br>1.01                                                                                           | 1.08<br>5.01<br>21.99<br>1.25                                                                            | 1.13<br>6.03<br>25<br>1.07                                                                                                     |
| 0.8     0.56       26.42     28.43       9.44     8.62       9.44     8.62       0.79     0.77       nes     0.79       1     49.5       25.6     29.8       24.9     26.6       0.79     0.77       0.79     0.77       0.79     0.77       0.79     0.77       0.79     0.77       0.32     0.31       0.51     0.48       0.63     0.61       0.46     0.38       0.63     0.61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.78<br>23.15<br>8.66<br>0.81<br>0.81<br>24.8<br>24.8<br>24.8                                                                                            | 0.67<br>21.4<br>7.56<br>0.87<br>43.8<br>28.5                                           | 1.01<br>3.38<br>21.7<br>1.15<br>41.5<br>41.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.07<br>4.45<br>25.53<br>1.04<br>44.6                                                                                                       | 1.1<br>3.09<br>23.71<br>1.05<br>42.6                                                                                                     | 1.03<br>6.3<br>29.19<br>1.01                                                                                           | 1.08<br>5.01<br>21.99<br>1.25                                                                            | 1.13<br>6.03<br>25<br>1.07                                                                                                     |
| x <sup>%</sup> 26.42 28.43<br>9.44 8.62<br>0.79 0.77<br>10.77 8.62<br>2.49 2.66<br>2.4.9 2.66<br>0.31 0.48<br>0.61 0.48<br>0.61 0.38<br>0.61 0.38<br>0.61 0.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 23.15<br>8.66<br>0.81<br>47.6<br>24.8<br>27.6                                                                                                            | 21.4<br>7.56<br>0.87<br>43.8<br>28.5                                                   | 3.38<br>21.7<br>1.15<br>41.5<br>41.5<br>26.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4.45<br>25.53<br>1.04<br>4.4.6                                                                                                              | 3.09<br>23.71<br>1.05<br>42.6                                                                                                            | 6.3<br>29.19<br>1.01                                                                                                   | 5.01<br>21.99<br>1.25                                                                                    | 6.03<br>25<br>1.07                                                                                                             |
| x <sup>%</sup> 9.44 8.62<br>nes 0.79 0.77<br>1 49.5 29.8 25.6 23.1 0.31<br>0.32 0.31 0.48<br>0.63 0.61 0.38<br>0.61 0.38<br>0.65 54.2 0.31<br>0.61 0.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8.66<br>0.81<br>47.6<br>24.8<br>27.6                                                                                                                     | 7.56<br>0.87<br>43.8<br>28.5                                                           | 21.7<br>1.15<br>41.5<br>26.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 25.53<br>1.04<br>4.6<br>2-1.6                                                                                                               | 23.71<br>1.05<br>42.6                                                                                                                    | 29.19                                                                                                                  | 21.99                                                                                                    | 25<br>1.07<br>42 6                                                                                                             |
| nes 0.79 0.77<br>9 49.5 43.6<br>25.6 29.8<br>24.9 26.6<br>0.31 0.48<br>0.63 0.61<br>0.63 0.61<br>0.48<br>0.61 0.38<br>0.61 0.38<br>0.61 0.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.81<br>47.6<br>24.8<br>27.6                                                                                                                             | 0.87<br>43.8<br>28.5                                                                   | 1.15<br>41.5<br>26.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.04<br>44.6                                                                                                                                | 1.05<br>42.6                                                                                                                             | 10.1                                                                                                                   | 1.25                                                                                                     | 1.07                                                                                                                           |
| 49.5         43.6           25.6         29.8           25.6         29.8           24.9         26.6           0.32         0.31           0.51         0.48           0.63         0.61           0.63         0.61           0.46         0.38           0.46         0.38           0.56         0.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 47.6<br>24.8<br>27.6                                                                                                                                     | 43.8<br>28.5                                                                           | 41.5<br>26.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 44.6                                                                                                                                        | 42.6                                                                                                                                     |                                                                                                                        |                                                                                                          | 907                                                                                                                            |
| (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 47.6<br>24.8<br>27.6                                                                                                                                     | 43.8<br>28.5                                                                           | 41.5<br>26.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 44.6                                                                                                                                        | 42.6                                                                                                                                     |                                                                                                                        |                                                                                                          | 900                                                                                                                            |
| 49:5     45:5     45:6       25:6     29:8       24:9     26:6       0.32     0.31       0.51     0.31       0.63     0.61       0.63     0.61       0.46     0.38       0.46     0.38       0.46     0.38       0.46     0.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 47.6<br>24.8<br>27.6                                                                                                                                     | 43.8<br>28.5                                                                           | 41.5<br>7.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 44.0<br>2- 2                                                                                                                                | 47.0                                                                                                                                     | ŗ                                                                                                                      |                                                                                                          | 9/.                                                                                                                            |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 24.8<br>27.6                                                                                                                                             | 28.5                                                                                   | 26.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | , L                                                                                                                                         |                                                                                                                                          | 41.5                                                                                                                   | 6.44                                                                                                     | 12.0                                                                                                                           |
| $\begin{array}{ccccccc} 24.9 & 26.6 \\ 0.32 & 0.31 \\ 0.53 & 0.61 \\ 0.63 & 0.61 \\ 0.46 & 0.38 \\ 0.46 & 0.38 \\ 0.46 & 0.38 \\ 0.46 & 0.38 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 27.6                                                                                                                                                     |                                                                                        | 70.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 25.1                                                                                                                                        | 23.3                                                                                                                                     | 23.4                                                                                                                   | 26.1                                                                                                     | 27.9                                                                                                                           |
| () 0.32 0.31<br>0.51 0.48<br>0.63 0.61<br>0.46 0.38<br>0.46 0.38<br>62.6 54.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                          | 27.7                                                                                   | 31.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 30.3                                                                                                                                        | 34.1                                                                                                                                     | 35.1                                                                                                                   | 29.6                                                                                                     | 29.5                                                                                                                           |
| () 0.51 0.48<br>0.63 0.61 0.61<br>0.46 0.38<br>62.6 54.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.36                                                                                                                                                     | 0.34                                                                                   | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.51                                                                                                                                        | 0.49                                                                                                                                     | 0.59                                                                                                                   | 0.54                                                                                                     | 0.59                                                                                                                           |
| 0.63 0.61<br>0.46 0.38<br>62.6 54.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.53                                                                                                                                                     | 0.52                                                                                   | 0.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.6                                                                                                                                         | 0.58                                                                                                                                     | 0.67                                                                                                                   | 0.65                                                                                                     | 0.71                                                                                                                           |
| 0.46 0.38 0.46 0.38 0.26 54.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.58                                                                                                                                                     | 0.62                                                                                   | 0.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.69                                                                                                                                        | 0.73                                                                                                                                     | 0.75                                                                                                                   | 0.81                                                                                                     | 0.78                                                                                                                           |
| (5.8) 0.46 0.38 0.38 62.6 54.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                          |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                             |                                                                                                                                          |                                                                                                                        |                                                                                                          |                                                                                                                                |
| 62.6 54.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.41                                                                                                                                                     | 0.45                                                                                   | 0.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.68                                                                                                                                        | 0.62                                                                                                                                     | 0.71                                                                                                                   | 0.73                                                                                                     | 0.76                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 59.6                                                                                                                                                     | 56.8                                                                                   | 67.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 73.1                                                                                                                                        | 68.4                                                                                                                                     | 75.2                                                                                                                   | 74.4                                                                                                     | 78.2                                                                                                                           |
| TAS/MAS% (all isomers) 66.1 58.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 63.2                                                                                                                                                     | 64.2                                                                                   | 73.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 76.2                                                                                                                                        | 72.3                                                                                                                                     | 76.5                                                                                                                   | 77.2                                                                                                     | 83.2                                                                                                                           |
| GC- MS (Aromatic Sulfur Compounds)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                          |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                             |                                                                                                                                          |                                                                                                                        |                                                                                                          |                                                                                                                                |
| 4-MDBT/1-MDBT (MDR) 1.87 1.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.81                                                                                                                                                     | 1.85                                                                                   | 2.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.27                                                                                                                                        | 2.34                                                                                                                                     | 2.85                                                                                                                   | 2.91                                                                                                     | 2.87                                                                                                                           |
| 2.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.3                                                                                                                                                      | 2.46                                                                                   | 4.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4.1                                                                                                                                         | 4.56                                                                                                                                     | 5.23                                                                                                                   | 5.98                                                                                                     | 5.45                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.29                                                                                                                                                     | 2.84                                                                                   | 3.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4.15                                                                                                                                        | 4.38                                                                                                                                     | 4.96                                                                                                                   | 5.23                                                                                                     | 5.58                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.37                                                                                                                                                     | 0.38                                                                                   | 0.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.62                                                                                                                                        | 0.69                                                                                                                                     | 0.73                                                                                                                   | 0.94                                                                                                     | 0.81                                                                                                                           |
| Stable Carbon Isotope Composition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                          |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                             |                                                                                                                                          |                                                                                                                        |                                                                                                          |                                                                                                                                |
| -26.42 -27.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -27.63                                                                                                                                                   | -28.36                                                                                 | -28.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -28.46                                                                                                                                      | -28.78                                                                                                                                   | -26.31                                                                                                                 | -28.96                                                                                                   | -28.16                                                                                                                         |
| -25.2 -26.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -26.98                                                                                                                                                   | -28.04                                                                                 | -27.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -28.43                                                                                                                                      | -27.57                                                                                                                                   | -26.25                                                                                                                 | -28.69                                                                                                   | -28.06                                                                                                                         |
| -26.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -27.31                                                                                                                                                   | -27.56                                                                                 | -28.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -27.78                                                                                                                                      | -28.24                                                                                                                                   | -26.98                                                                                                                 | -28.5                                                                                                    | -27.76                                                                                                                         |
| Canonical Variable Parameters -0.754 -1.407 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -1.645                                                                                                                                                   | -2.148                                                                                 | -0.339                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -2.76                                                                                                                                       | -0.045                                                                                                                                   | -3.365                                                                                                                 | -2.073                                                                                                   | -2.698                                                                                                                         |

Crude Oil Geochemistry Dependent Biomarker Distributions in the Gulf of Suez, Egypt

Table 1. Bulk, biomarker properties and stable carbon isotope composition of crude oils from the Gulf of Suez.

| Peak No. | Compound Name                                                                 |
|----------|-------------------------------------------------------------------------------|
| A        | C <sub>19</sub> Tricyclic terpane                                             |
| B        | C <sub>20</sub> Tricyclic terpane                                             |
|          | C <sub>21</sub> Tricyclic terpane                                             |
| D        | C <sub>22</sub> Tricyclic terpane                                             |
|          | C <sub>23</sub> Tricyclic terpane                                             |
| F        | C <sub>24</sub> Tricyclic terpane                                             |
| G        | $C_{25}$ Tricyclic terpane (22 $R$ )                                          |
| G        | $C_{25}$ Tricyclic terpane (22 <i>S</i> )                                     |
| Н        | C <sub>24</sub> Tetracyclic terpane                                           |
| Ι        | $C_{26}$ Tricyclic terpane (22 <i>R</i> )                                     |
| Ι        | $C_{26}$ Tricyclic terpane (22 <i>S</i> )                                     |
| J        | $C_{28}$ Tricyclic terpane (22 <i>R</i> )                                     |
| J        | $C_{28}$ Tricyclic terpane (22 <i>S</i> )                                     |
| К        | $C_{29}$ Tricyclic terpane (22 <i>R</i> )                                     |
| К        | $C_{29}$ Tricyclic terpane (22 <i>S</i> )                                     |
| L (Ts)   | $C_{27}$ 18 $\alpha$ ( <i>H</i> )-22, 29, 30- trisnorneohopane                |
| M (Tm)   | $C_{27}17\alpha(H)$ -22, 29, 30- trisnorhopane                                |
| N        | $C_{30}$ Tricyclic terpane (22 <i>R</i> )                                     |
| N        | $C_{30}$ Tricyclic terpane (22 <i>S</i> )                                     |
| Р        | $C_{31}$ Tricyclic terpane (22 <i>R</i> )                                     |
| Р        | $C_{31}$ Tricyclic terpane (22 <i>S</i> )                                     |
| Q        | $C_{29}$ 18 $\alpha$ (H)-norneohopane (29Ts)                                  |
| R        | $C_{30}$ 18 $\alpha$ ( <i>H</i> )-oleanane                                    |
| S        | $C_{30} 17 \alpha(H)$ , $21 \beta(H)$ -hopane                                 |
| Т        | $C_{30}17\beta(H)$ , $21\alpha(H)$ - moretane                                 |
| U        | $C_{31} 17 \alpha(H)$ , $21 \beta(H)$ -30 homohopane (22 <i>S</i> )           |
|          | $C_{31} 17 \alpha(H), 21 \beta(H)-30$ homohopane (22 <i>R</i> )               |
| V        | C <sub>30</sub> Gammacerane                                                   |
| W        | $C_{32}$ 17 $\alpha(H)$ , 21 $\beta(H)$ -30 bishomohopane (22S)               |
|          | $C_{32}$ 17 $\alpha(H)$ , 21 $\beta(H)$ -30 bishomohopane (22R)               |
| X        | $C_{33}$ 17 $\alpha(H)$ , 21 $\beta(H)$ -30 trishomohopane (22S)              |
|          | $C_{33}$ 17 $\alpha(H)$ , 21 $\beta(H)$ -30 trishomohopane (22R)              |
| Y        | $C_{34}$ 17 $\alpha(H)$ , 21 $\beta(H)$ -30 tetrakishomohopane (22 <i>S</i> ) |
| _        | $C_{34}$ 17 $\alpha(H)$ , 21 $\beta(H)$ -30 tetrakishomohopane (22 <i>R</i> ) |
| Z        | $C_{35}$ 17 $\alpha(H)$ , 21 $\beta(H)$ -30 pentakishomohopane (22 <i>S</i> ) |
|          | $C_{35}$ 17 $\alpha(H)$ , 21 $\beta(H)$ -30 pentakishomohopane (22 <i>R</i> ) |

Table 2. Peak identifications in the m/z 191 mass fragmentograms.

|                  | MUQGAI                                                                                                                                                                                                                                                                                                                                       |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Peak No.         | Compound Name                                                                                                                                                                                                                                                                                                                                |
| a                | 13 $\beta$ (H), 17 $a$ (H)- diacholestane (20 $S$ )<br>13 $\beta$ (H), 17 $a$ (H)- diacholestane (20 $R$ )<br>13 $a$ (H), 17 $\beta$ (H)- diacholestane (20 $S$ )                                                                                                                                                                            |
| b<br>c           | $13a(H)$ , $17\beta(H)$ - diacholestane (203)<br>$13a(H)$ , $17\beta(H)$ - diacholestane (20 <i>R</i> ) +<br>24- Methyl- $13\beta(H)$ , $17a(H)$ - diacholestane (20 <i>S</i> )<br>24- Methyl- $13\beta(H)$ , $17a(H)$ - diacholestane (20 <i>R</i> )                                                                                        |
| d<br>e<br>f      | 5a(H), $14a(H)$ , $17a(H)$ – cholestane (20 <i>S</i> )<br>$5a(H)$ , $14\beta(H)$ , $17\beta(H)$ – cholestane (20 <i>R</i> ) +<br>24-Ethyl-13 $\beta(H)$ , $17a(H)$ - diacholestane (20 <i>S</i> )                                                                                                                                            |
| g                | $5a(H)$ , $14\beta(H)$ , $17\beta(H)$ – cholestane (20 <i>S</i> ) +<br>24-Methyl-13 $\beta$ (H), $17a(H)$ - diacholestane (20 <i>R</i> )                                                                                                                                                                                                     |
| h<br>i<br>j      | 5a(H), 14a(H), 17a(H) - cholestane (20R)<br>24-Ethyl-13 $\beta$ (H), 17 $a$ (H)- diacholestane (20R)<br>24-Ethyl-13 $a$ (H), 17 $\beta$ (H)- diacholestane (20S)                                                                                                                                                                             |
| k<br>l<br>m      | 5 <i>a</i> (H), 14 <i>a</i> (H), 17β(H)– 24-methylcholestane (20 <i>S</i> )<br>5 <i>a</i> (H), 14 <i>a</i> (H), 17β(H)– 24-methylcholestane (20 <i>R</i> )+<br>24-Ethyl-13 <i>a</i> (H), 17β(H)– diacholestane (20 <i>R</i> )                                                                                                                |
| n<br>o<br>p      | 5 <i>a</i> (H), 14 $\beta$ (H), 17 $\beta$ (H)– 24-methylcholestane (20 <i>S</i> )<br>24-Propyl-13 <i>a</i> (H), 17 $\beta$ (H)– diacholestane (20 <i>S</i> )<br>5 <i>a</i> (H), 14 <i>a</i> (H), 17 <i>a</i> (H)– 24-methylcholestane (20 <i>R</i> )<br>5 <i>a</i> (H), 14 <i>a</i> (H), 17 <i>a</i> (H)– 24 othylcholestane (20 <i>S</i> ) |
| q<br>r<br>s<br>t | 5a(H), $14a(H)$ , $17a(H)$ – 24-ethylcholestane (20 <i>S</i> )<br>$5a(H)$ , $14\beta(H)$ , $17\beta(H)$ – 24-ethylcholestane (20 <i>R</i> )<br>$5a(H)$ , $14\beta(H)$ , $17\beta(H)$ – 24-ethylcholestane (20 <i>S</i> )<br>5a(H), $14a(H)$ , $17a(H)$ – 24-ethylcholestane (20 <i>R</i> )                                                   |

Table 3. Peak identifications in the m/z 217 mass fragmentograms.

#### 4. Gross geochemical characteristics

The syn-rift oil produced from (Miocene) reservoirs is a naphthenic, non-waxy crude with API gravity ranging from 27.9° to 34.9° and sulfur content between 0.78 to 0.98 wt.% (Table 1). Meanwhile, the second type, which occurs in the pre-rift lithostratigraphic units is paraffinic and waxy with API gravity ranging from 34° to 44° and sulfur content between 1.23 and 1.39 wt.%. The stratigraphic change in gross geochemical characteristics of the crude oils from a naphthenic to a paraffinic type is related probably to the change of source rock types from clastics to carbonate and environment of source rock deposition (Rohrback, 1982). High sulfur oils of the second oil type is indicative of carbonate evaporate source rocks, while the low sulfur concentrations are typical for siliciclastic source rocks (Gransch and Posthuma, 1974). The diversity of the gross geochemical characteristics of the crude oils is consistent vertically with a gradual change in API gravity and maturity variation (Matava et al., 2003).

#### 5. Source-dependent biomarker distributions

Biomarkers are compounds that characterize certain biotic sources and retain their source information after burial in sediments (Meyers, 2003). It is used for oil-oil and oil-source rock correlations to assess the source of organofacies, kerogen types and the degree of thermal maturity (Philp and Gilbert, 1986; Waples and Machihara, 1991; Peters and Moldowan, 1993; Peters and Fowler, 2002). The great variability of saturate and aromatic biomarker indices, listed in Table 1, that enable subdivisions of the studied crude oil into two types referred as type-I and II as illustrated in (Figure 3). The predominance of *n*-alkanes and acyclic isoprenoids in the  $C_{11}$  to  $C_{35}$  region of the gas chromatograms is diagnostic of marine organofacies sources (Collister et al., 2004). A predominance of

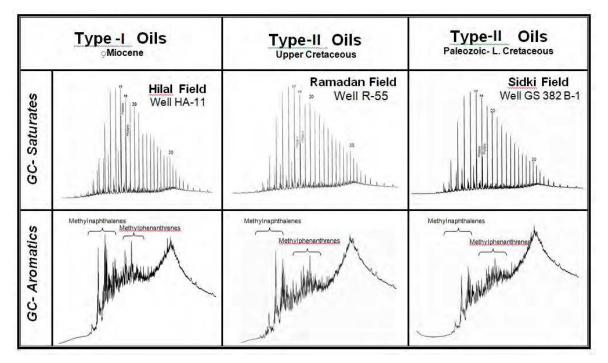



Fig. 3. Gas chromatograms of saturate and aromatic hydrocarbon fractions for representative crude oil types I and II.

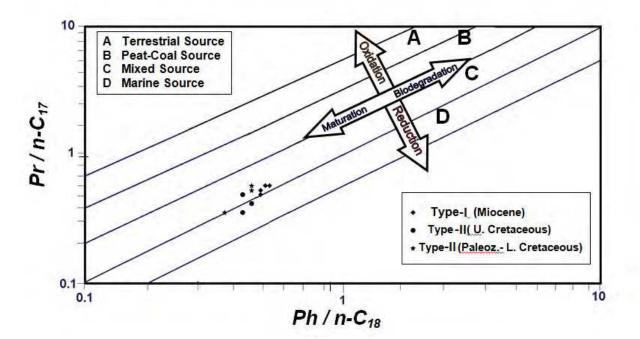



Fig. 4. Relationship between isoprenoids and *n*-alkanes showing source and depositional environments (Shanmugam, 1985) of the oil samples from the Gulf of Suez. All samples are located within the mixed to marine reducing depositional environments.

| Peak No. | Compound Name                                |
|----------|----------------------------------------------|
| А        | C <sub>20</sub> Triaromatic Sterane          |
| В        | C <sub>21</sub> Triaromatic Sterane          |
| С        | $C_{26}$ Triaromatic Sterane (20 <i>S</i> )  |
| D        | $C_{26}$ Triaromatic Sterane (20 <i>R</i> )+ |
|          | $C_{27}$ Triaromatic Sterane (20 <i>S</i> )  |
| Е        | $C_{28}$ Triaromatic Sterane (20 <i>S</i> )  |
| F        | $C_{27}$ Triaromatic Sterane (20 <i>R</i> )  |
| G        | $C_{28}$ Triaromatic Sterane (20 <i>R</i> )  |
|          |                                              |

Table 4. Peak identifications in the m/z 231 mass fragmentograms.

pristane over phytane (Pr/Ph ratio >1) and the high odd-even carbon preference index (CPI>1) for the type-I oil is typical of crude oils generated from source facies containing terrigenous, wax-rich components (Peters et al., 2000). Type-II oil has lower Pr/Ph ratios (<1) and a slight even-carbon preference index (CPI<1) indicating algal/bacterial organic detritus in the kerogen (Collister et al., 2004), typical for a marine source rock deposited under less reducing conditions (Lijmbach, 1975). The nature of the source rock depositional environments can be further supported from the plotting of the isoprenoid ratios  $Pr/n-C_{17}$  versus  $Ph/n-C_{18}$  (Shanmugam,1985). It can be seen from Fig. 4 that both of the oil types plotted in the border region of marine-mixed organic matter with the source rocks being deposited under less reducing conditions and receiving significant clastic input (Bakr and Wilkes, 2002).

| Peak No.                                     | Compound Name                                                    |
|----------------------------------------------|------------------------------------------------------------------|
| a                                            | 5 β- C <sub>27</sub> Monoaromatic Sterane (20 <i>S</i> )         |
| b                                            | dia- $C_{27}$ Monoaromatic Sterane (20 <i>S</i> )                |
| с                                            | 5 $\beta$ - C <sub>27</sub> Monoaromatic Sterane (20 <i>R</i> )+ |
|                                              | dia- C <sub>27</sub> Monoaromatic Sterane (20R)                  |
| d                                            | 5 $\alpha$ - C <sub>27</sub> Monoaromatic Sterane (20 <i>S</i> ) |
| е                                            | 5 $\beta$ - C <sub>28</sub> Monoaromatic Sterane (20 <i>S</i> )+ |
|                                              | dia- $C_{28}$ Monoaromatic Sterane (20 <i>S</i> )                |
| $f ( \bigcirc ) f ( \bigcirc ) ( \bigcirc )$ | $5 \alpha$ - C <sub>27</sub> Monoaromatic Sterane (20 <i>R</i> ) |
| g                                            | $5 \alpha$ - C <sub>28</sub> Monoaromatic Sterane (20 <i>S</i> ) |
| h h                                          | 5 β- C <sub>28</sub> Monoaromatic Sterane (20 $R$ )+             |
|                                              | dia- C <sub>28</sub> Monoaromatic Sterane (20R)                  |
| i                                            | 5 $\beta$ - C <sub>29</sub> Monoaromatic Sterane (20 <i>S</i> )+ |
|                                              | dia- $C_{29}$ Monoaromatic Sterane (20 <i>S</i> )                |
| j                                            | $5 \alpha$ - C <sub>29</sub> Monoaromatic Sterane (20 <i>S</i> ) |
| k                                            | $5 \alpha$ - C <sub>28</sub> Monoaromatic Sterane (20 <i>R</i> ) |
| 1                                            | 5 $\beta$ - C <sub>29</sub> Monoaromatic Sterane (20 <i>R</i> )+ |
|                                              | dia- C <sub>29</sub> Monoaromatic Sterane (20R)                  |
| m                                            | $5 \alpha$ - C <sub>29</sub> Monoaromatic Sterane (20 <i>R</i> ) |

Table 5. Peak identifications in the m/z 253 mass fragmentograms.

Terpane biomarker distributions derived from the m/z 191 mass chromatograms are shown in (Figure 5) and peak identifications are given in (Table 2). The ratio of Ts/(Ts+Tm) is considered as a facies and depositional environmental parameter of the relevant source rocks (Bakr and Wilkes, 2002). It is also considered a maturation parameter due to the greater thermal stability of Ts (18 $\alpha$ (H)-22,29,30-trisnorneohopane) than its counterpart Tm (17 $\alpha$  (H)-22,29,30-trisnorhopane) (Seifert and Moldowan, 1978; Cornford et al., 1988; Isaksen, 2004). Ts/(Ts+Tm) ratio for the crude oil is generally consistent with the carbon preference index CPI, indicating an anoxic marine depositional environment (Mello et al., 1988). The C<sub>35</sub>/C<sub>34</sub> homohopane ratio was found to be less than unity for type-I oil, suggesting a reducing marine environment. The Ts/(Ts+Tm) ratio is greater than unity for type-II oil suggesting a higher contribution of bacterial biomass to the sediments possibly reflecting a highly saline reducing environment (ten Haven et al., 1988; Mello et al., 1988).

Depositional environment biomarker parameters based on the terpanes (m/z 191), such as [oleanane/(oleanane+hopane)] the \_ oleanane index and gammacerane index [gammacerane/(gammacerane+hopane)], illustrate that type-I oil is highly enriched in oleanane compared to the type-II oil. The oleanane ratio are 28.4% in some samples clearly demonstrating an enrichment of angiosperm higher land plant input to the source kerogen of Tertiary age (Ekweozor et al., 1979; Moldowan et al., 1994). Meanwhile, the low oleanane index in the type-II oil, ranging from 3.4 to 6.3%, suggesting generation from an Upper Cretaceous source rock or older (Moldowan et al., 1994). Higher values of the gammacerane index for type-II oil (21.7 to 25.5%) compared to type-I oil (7.6 to 9.4%) indicates a highly saline depositional environment associated with an evaporiticcarbonate deposition and low terrigenous input (Rohrback, 1982; Mello et al., 1988; Peters and Moldowan, 1994).

Sterane distributions for the two oil types (m/z 217) are shown in (Figures 5) and compound identifications are given in (Table 3). The predominance of C<sub>27</sub> steranes (Table 1) and the presence of C<sub>30</sub> *n*-propyl steranes (Figure 5) further support the idea of generation from bacterial-algal marine source rocks (Moldowan et al., 1985; Peters and Moldowan, 1991). Type-II oil is highly enriched in  $\alpha\beta\beta$  sterane isomers relative to the type-I oil, which suggests that the type-II oil is probably generated from an evaporitic-carbonate source rock.

Cross plots of the Pr/Ph ratio for the two oil types against various depositional environment biomarker indices show an obvious separation of the two oil types, and a direct relationship of the Pr/Ph ratio with the oleanane index and an inverse relationship with gammacerane and the  $C_{35}/C_{34}$  homohopane ratio. An inverse relationship also exists between the oleanane and gammacerane indices for the two oil types (Figure 6). The separation of the two oil types is interpreted to indicate the presence of two independently sourced oils that consistent vertically with the pre-rift and syn-rift tectonic sequences of the Gulf of Suez.

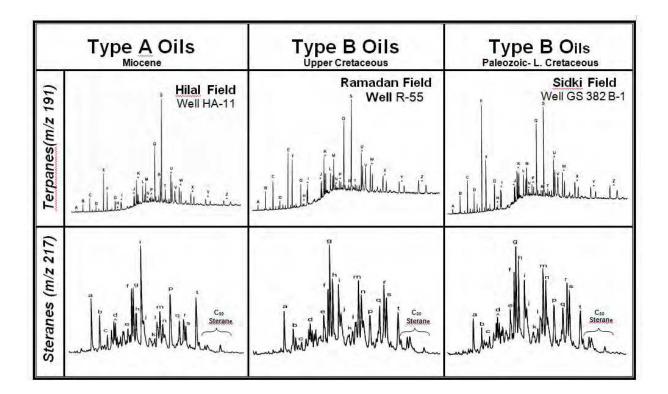



Fig. 5. Triterpane (m/z 191) and sterane (m/z 217) distribution patterns of the saturate hydrocarbon fractions from the two oil types in the Gulf of Suez. Labeled peaks are identified in Tables 2 and 3.

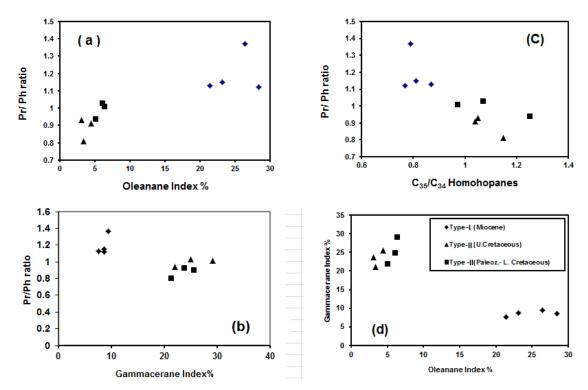



Fig. 6. A cross plot relation of source parameter Pr/Ph ratio for the studied crude oils that enable from differentiation of crude oils into two groups and show a direct relationship between Pr/Ph ratio with oleanane index and reverse relation with gammacerane and  $C_{35}/C_{34}$  homohopanes. A reverse relationship is shown on the basis of oleanane versus gammacerane indices.

|                                 | Type - <u>I</u> Oils                    | Type-II Oils                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Type-II Oils<br>Paleozoic- L. Cretaceous                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
|---------------------------------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| s (miz 231)                     | Hilal Field<br>Well HA-11               | Ramadan Field<br>Well R-55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Sidki Field<br>Well GS 382 B-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| Triaromatic Steranes (mlz       | A B A A A A A A A A A A A A A A A A A A | B<br>B<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Ântra Callanta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| Monoaromatic Steranes (m/z 253) |                                         | a way way way a start way a st | a dundy dund |  |

Fig. 7. Triaromatic (m/z 231) and monoaromatic (m/z 253) distribution patterns for two oil types from the Gulf of Suez. Labeled peaks are identified in Tables 4 and 5.

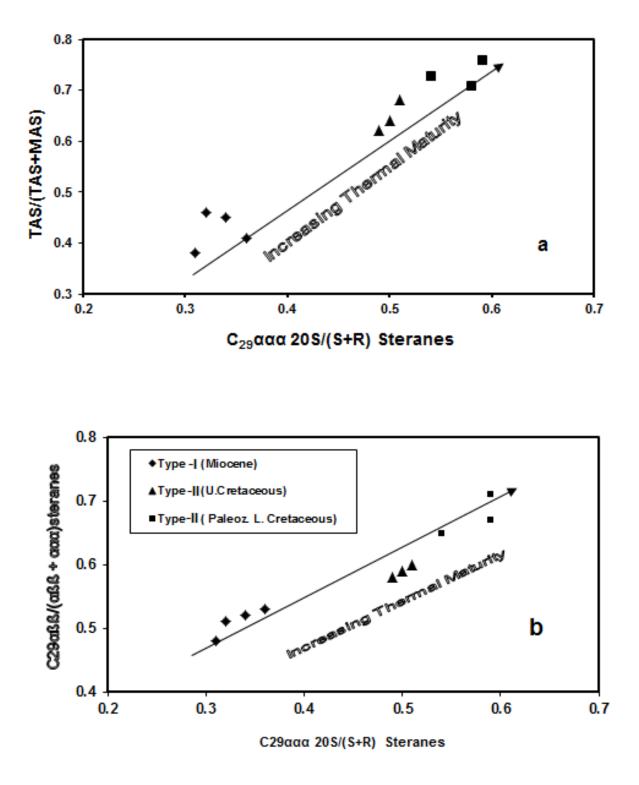



Fig. 8. Regular relationship between sterane maturity biomarkers  $C_{29} \alpha \alpha \alpha 20S/(S+R)$  sterane with [(TAS/(TAS+MAS)] and  $C_{29}\alpha\beta\beta/(\alpha\beta\beta + \alpha\alpha\alpha)$ .



Table 6. Peak identifications of the aromatic sulfur compound mass fragmentograms.

#### 6. Maturation-dependent biomarker distributions

The Gulf of Suez province is characterized by local areas of higher heat flow due to the presence of hot spots in the southernmost Gulf and northern Red Sea (Alsharhan, 2003). Biomarker maturity parameters, including the sterane isomerization ,  $C_{29} \alpha \alpha \alpha 20S/(S+R)$ , and ratios based on the mono-and triaromatic steroidal hydrocarbon distributions (m/z 253 and 231) are shown in (Figure 7) with compound identifications in (Tables 4 and 5). These parameters also clearly distinguish the two different oil types on the basis of their different maturity levels consistent with the pre-rift and syn-rift tectonic sequences of the Gulf of Suez. Increasing source rock maturation from diagenesis to catagenesis is accompanied by an increase in the degree of aromaticity that converts monoaromatic steroids (MAS) to triaromatic steroids increase thermal (TAS) lead to an maturity through diagenetic/catagenetic processes results in the conversion of monoaromatic steroid to triaromatics (Seifert and Moldowan, 1978).

The triaromatic/monoaromatic maturity parameters (TAS/MAS) for all isomers and  $C_{27}/C_{28}$  ratios found to be 60% for type-I oil. For type-II B oil these ratios reaches more than 75%. Both of these ratios indicate a predominance of triaromatic relative to monoaromatic steroids for type-II oil compared to type-I oil which in turn reflect the higher maturity level for the type-II oil. Thus, it is proposed that type-II oil was generated from high mature source rock compared to type-I oil which are considered to be derived from a marginally mature source rock in the Gulf of Suez.

A plot showing the relationship between the sterane isomerization ratios  $C_{29}\alpha\alpha\alpha 20S/(S+R)$ and  $C_{29}\alpha\beta\beta/(\alpha\beta\beta+\alpha\alpha\alpha)$  and TAS/(MAS+TAS), that according to Seifert and Moldowan (1981), are genetically related to the effect of thermal maturity processes are shown in (Figure 8). It shows that there is a direct relationship between  $C_{29}\alpha\alpha\alpha 20S/(S+R)$  and both TAS/(MAS+TAS) and  $C_{29}\alpha\beta\beta/(\alpha\beta\beta+\alpha\alpha\alpha)$  increasing with burial depth of the source rocks (Matava et al., 2003). Type-II oil has a maximum value of 0.71 for the sterane isomerization ratio and 0.59 for the  $C_{29}\alpha\alpha\alpha 20S/(S+R)$  ratio, while these ratios for type-I oil is 0.53 and 0.36 respectively. The API gravity is directly proportional to the maturity biomarker parameters as  $C_{29}\alpha\alpha\alpha 20S/(S+R)$ ,  $C_{29}\alpha\beta\beta/(\alpha\beta\beta+\alpha\alpha\alpha)$ , TAS/(MAS+TAS) and  $C_{35}/C_{34}$  homohopanes as shown in (Figure 9). These relationships also support the high thermal maturity level of the type-II oil compared to the type-I oil in the Gulf of Suez province.

Diasterane/sterane ratios are highly dependent on both the nature of the source rock and level of thermal maturity. This ratio is commonly used to distinguish carbonate from clay rich source rocks and can be used to differentiate immature from the highly mature oils (Seifert and Moldowan, 1978). Type-I oil is slightly depleted in diasteranes relative to type-II oil, probably reflecting differences in their level of thermal maturity and also differing clastic input to their source rocks (Kennicutt et al., 1992). Aromatic sulfur compounds such as dibenzothiophene (DBT), methyldibenzothiophenes (MDBT) and dimethyldibenzothiophenes (DMDBT) can be used as maturity indicators of source rock and petroleum (Chakhmakhchev et al., 1997; Radke et al., 1997). Figure (10) displays representative partially expanded mass chromatograms of the aromatic sulfur hydrocarbons representing naphthalenes, phenanthrenes and dibenzothiophenes with compound identifications given in (Table 6). Previous studies (e.g. Radke et al., 1997) have demonstrated that the relative distributions of methylated aromatic compounds are thermodynamically controlled and, with increasing maturity, a decrease is observed in the amount of the less stable *a*-

substituted isomer (1-MDBT) compared with the amount of the more stable  $\beta$ -substituted isomer (4-MDBT). A number of ratios are applicable for thermal maturity assessments on the basis of aromatic sulphur compounds. Logarithmic scale cross-plots of 4-MDBT/1-MDBT (MDR) parameter versus the three maturity parameters (4,6-/1,4-DMDBT; 2,4-/1,4-DMDBT; and DBT/Phenanthrene ratios) is presented in (Figure 11). An increase of MDR is accompanied by an increase of the 4,6-/1,4-DMDBT, 2,4-/1,4-DMDBT and DBT/Phenanthrene ratios, reflects the differences in aromatic sulfur compound maturity from the marginally mature type-I oil (syn-rift Miocene Rudeis Shale) to fully mature type-II oils (pre-rift Upper Cretaceous Brown Limestone and Middle Eocene Thebes Formation) in the Gulf of Suez.

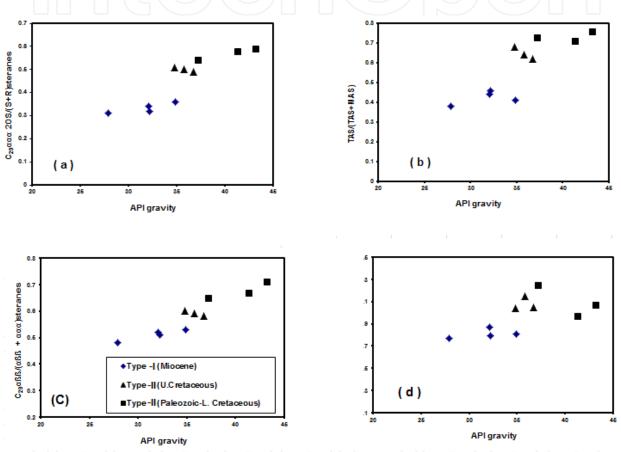



Fig. 9. Illustrates the direct relationship between gross geochemical attribute API gravity of crude oils and the sterane and triterpane maturity biomarkers  $C_{29} \alpha \alpha \alpha 20S/(S+R)$ , [(TAS/(MAS+TAS)],  $C_{29} \alpha \beta \beta/(\alpha \beta \beta + \alpha \alpha \alpha)$  and  $C_{35}/C_{34}$  homohopanes.

#### 6.1 Stable carbon isotopic compositions

The stable carbon isotopic composition of organic matter is an important tool in differentiating algal from land plant source materials and marine from continental depositional environments (Meyers, 2003). Rohrback (1982) and Zein El-Din and Shaltout (1987) found that the crude oils of the Gulf of Suez were relatively light with  $\delta^{13}$  C values for the saturate fractions between -27‰ to -29‰. They concluded that the stable carbon isotope values of crude oils are dependent mainly on the depositional environment of the source rock and the degree of thermal maturity at which the oil was expelled.

Sofer (1984) distinguished oils derived from marine and non-marine sources from different parts of the world, including Egypt on the basis of the  $\delta^{13}$  C composition of the saturate and aromatic hydrocarbon fractions.

Using the canonical variable relationship  $CV= -2.53\delta^{13}C_{sat.} + 2.22\delta^{13}C_{arom.} - 11.65$ , postulated by Sofer (1984), the Gulf of Suez province oil yield canonical variable values between -3.365 and -0.045. These values are generally lower than 0.47 indicating typical marine (non-waxy) oils. Stable carbon isotope data of the saturate and aromatic hydrocarbons and whole oils are shown in (Table 1) and plotted in (Figure 11). The stable carbon isotope composition of the saturate fraction ranges between -28.96 and -26.42‰, while the aromatic fraction has a range of -28.69 to -25.2‰. The results show an almost complete separation of the type-I and II oils. The results of the stable carbon isotope values are consistent with the results obtained by Rohrback (1982) and Alsharhan (2003), who concluded that all the Gulf of Suez crude oils were derived from marine source rocks. Type-I oil is generally exhibit heavier isotopic values than type-II oil, which is consistent with source rock variations. Miocene oil from the Zeit Bay well has a stable carbon isotope composition, which is more consistent with Type-II oil. Paleozoic-Lowe Cretaceous oil from the well East Zeit A-18 has a stable carbon isotope composition which is more like type-I oil.

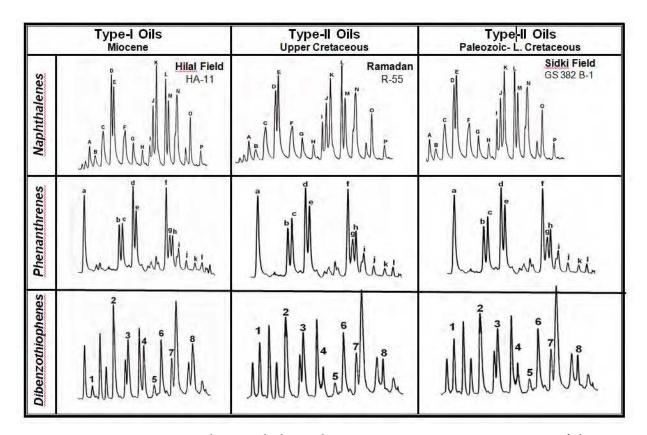



Fig. 10. Representative partial expanded gas chromatograms-mass spectrometry of the aromatic fractions to the naphthalenes (m/z 142, 156 and 170), phenanthrenes (m/z 178, 192 and 206) dibenzothiophenes, methyldibenzothiophenes, and dimethyldibenzothiophenes (m/z 184, 198 and 212) with peak identifications in Table 6.

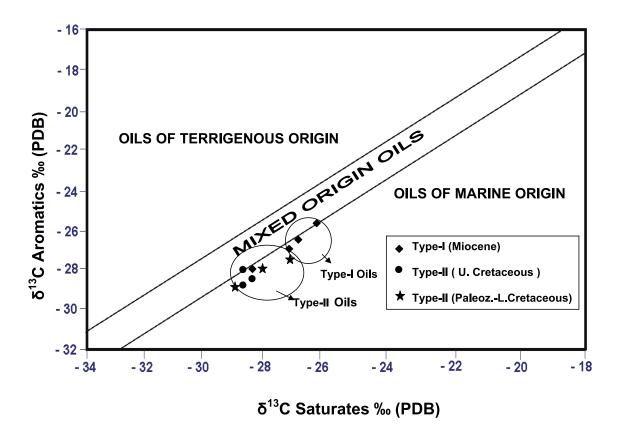



Fig. 11. Relationship between the carbon stable isotopic composition of the saturate and aromatic fractions for crude oils from the southern Gulf of Suez province (Sofer,1984).

#### 7. Inferred oil to source rock correlation

Comprehensive studies published on the source rock potential in the Gulf of Suez were by Shahin and Shehab, 1984; Chowdhary and Taha, 1987; Alsharhan and Salah,1995; Barakat et al., 1997; Lindquist, 1998; Weaver, 2000; Younes, 2001; Younes, 2003 a and b; Alsharhan, 2003; and El-Ghamri and Mostafa, 2004. They found that the Black Shale of the Nubia-B, Upper Cretaceous Brown Limestone, Middle Eocene Thebes Formation and the Lower Miocene Rudeis Shale all appear to have good source rock potential in the Gulf of Suez.

As mentioned above, detailed biomarker distributions in conjunction with stable carbon isotopic composition distinguished the studied crude oils into two types referred to as type-I and II consistent vertically with the pre-rift and syn-rift tectonic rift sequences of the Gulf of Suez province. High oleanane, low gammacerane and marginally mature type-I oil possess organic geochemical characteristics with close similarities to the Tertiary Lower Miocene Rudeis Shale source rock. This formation reached the oil generation window at vitrinite reflectance measurements Ro% between 0.60 and 0.85 at 3-4 Ma and began to generate oils at a depth of 3000 meters in the deeper basin of the Gulf of Suez. Meanwhile, type-II oil, characterized by low oleanane, high gammacerane indices and high level of thermal maturity are fully mature with more advanced level of aromatization and complete sterane isomerisation ratios. Type-II oil has been generated at a depth of approximately 5000 meters in a deeper kitchen within the pre-rift source rocks

(Upper Cretaceous Brown limestone and Middle Eocene Thebes Formation) that entered the oil generation window at vitrinite reflectance measurements Ro% between 0.85-1.35 at 8-10 Ma (Younes, 2003a).

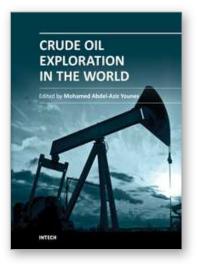
#### 8. Conclusions

Two independent petroleum systems for oil generation, maturation and entrapment consistent vertically with the pre-rift and syn-rift tectonic sequences of the Gulf of Suez province were revealed from biomarker distributions in conjunction with stable carbon isotopic compositions of crude oils. Biomarker variations in crude oils of various ages and source rock types dividing the Gulf of Suez crude oils into two oil types referred as type-I and II that were generated from two types of source rocks of different levels of thermal maturation. Type-I oil is characterized by a predominance of oleanane and low gammacerane indices suggesting an angiosperm higher land plants input of terrigenous organofacies source rock within the marginally mature syn-rift Lower Miocene Rudeis Shale. By contrast, type-II oil is distinguished by a relatively high gammacerane content and low oleanane indices, and may be generated from fully mature marine carbonate source rocks within the Upper Cretaceous Brown Limestone to Middle Eocene Thebes Formation. The higher sterane isomerization as well as aromatic sulfur compound further support the higher thermal maturation level for the type II oils rather than type I.

#### 9. Acknowledgements

The author wishes to express the deepest gratitude to the management of the Gulf of Suez Petroleum Company (GUPCO), Suez Oil Company (SUCO) and Suez Esso Petroleum Company (SUESSO) for providing crude oil samples to accomplish this work. Sincere thanks and gratitudes are also due to the Egyptian General Petroleum Corporation (EGPC) for granting the permission to publish the paper.

#### 10. References


- Alsharhan, A. S. 2003. Petroleum geology and potential hydrocarbon plays in the Gulf of Suez rift basin, Egypt. American Association of Petroleum Geologist Bulletin,87, 1, 143-180.
- Alsharhan, A. S. and Salah, M. G., 1995 Geology and hydrocarbon habitat in the rift setting: northern and central Gulf of Suez, Egypt. Bulletin of Canadian Petroleum Geology, 43, 156-176.
- Bakr, M. Y, and Wilkes, H. 2002, The influence of facies and depositional environment on the occurrence and distribution of carbazoles and benzocarbazoles in crude oils: A case study from the Gulf of Suez, Egypt: Organic Geochemistry , 33, 561-580.
- Barakat, A.O., Mostafa, A., El-Gayar, M. S., and Rullkőtter, J. 1997. Source-dependent biomarker properties of five crude oils from the Gulf of Suez, Egypt. Organic Geochemistry, 26, 441-450.
- Chakhmakhchev, A., Suzuki, M. and Takayama, K. 1997. Distribution of alkylated dibenzothiophenes in petroleum as tool for maturity assessments. Organic Geochemistry , 26, 483-490.

- Chowdhary, L.R. and Taha, S. 1987. Geology and habitat of oil in Ras Budran Field, Gulf of Suez, Egypt: American Association of Petroleum Geologist Bulletin,71, 1274-1293.
- Collister, J., Ehrlich, R., Mango, F. and Johnson, G. 2004. Modification of the petroleum system concepts: Origin of alkanes and isoprenoids in crude oils. American Association of Petroleum Geologist Bulletin, 88, 5, 587-611.
- Cornford, C., Christie U., Enderesen, P., Jensen and Myhr. M. B. 1988. Source rock and seep maturity in Dorset, Southern England: Organic Geochemistry, 13, 399-409.
- Dolson, J. C. Shann, M. V. Matbouly, S. Hammouda, H. and Rashed, R. 2000. Egypt in the next millenium: petroleum potential in offshore trends. Proceeding of the Mediterranean Offshore Conference, Alexandria, 109-131.
- Egypt Country Analysis Briefs 2009. Country analysis briefs (Oil and natural gas energy annual report, Egypt. February, 2009 (internet report).
- Egyptian General Petroleum Corporation 1996. Gulf of Suez oil fields (A comprehensive Overview). Cairo, 736 pp.
- El-Ghamri , M. A. and Mostafa, A. R. 2004. Geochemical evaluation of the possible source rocks in the October Field, Gulf of Suez, Egypt. Sedimentological Society of Egypt, v. 12, p. 55-67.
- Ekweozor, C. M., Okogun, J. I., Ekong, D.E.U. and Maxwell, J. R. 1979. Preliminary organic geochemical studies of samples from the Niger Delta (Nigeria). Analyses of crude oils for triterpanes. Chemical Geology, 27, 11-29.
- Evans, A. I., 1990. Miocene sandstone provenance relations in the Gulf of Suez. Insight into synrift unroofing and uplift history. American Association of Petroleum Geologist Bulletin, 74,1386-1400.
- Gransch, J. A. and Posthuma, J. 1974. On the origin of sulfur in crude. In Advance in Organic Geochemistry. 1973, eds. B. Tissot and F. Bienner, 727-739.
- Hammouda, H., 1992. Rift tectonics in the southern Gulf of Suez, 11<sup>th</sup> Petroleum Exploration and Production Conference, Cairo, pp.18-19.
- Hunt, J. M., 1996. Petroleum Geochemistry and Geology: New York, Freeman, 743 p.
- Isaksen, G. H. 2004, Central North Sea hydrocarbon systems: Generation, migration, entrapment and thermal degradation of oil and gas. American Association of Petroleum Geologist Bulletin, 68, 1545-1572.
- Khalil, M. and Moustafa, A. R.1995. Tectonic framework of northeast Egypt and its bearing on hydrocarbon exploration. American Association of Petroleum Geologist Bulletin, 79, 8, 1409-1423.
- Kennicutt, H. M.C., Mcdonald, T. J. Comet, P. A. Denoux, G. J. and Brooks, J. M. 1992. The origin of petroleum in the northern Gulf of Mexico. Geochemica et Cosmochemica Acta 56, 1259-1280.
- Lijambach, G.W., 1975. On the origin of petroleum. Proceeding of the 9<sup>th</sup> World Petroleum Congress, Applied Science Publisher, London. 2, 357-369.
- Lindquist, S. J. 1998. The Red Sea basin province: Sudr-Nubia and Maqna petroleum systems. Open file report 99-50-A. U. S. Geological Survey, Denver, Colorado. 21p.
- Matava, T., Rooney, M. A., Chung, H. M., Nwankwo, B. and Unomah, G. 2003. Migration effect on the composition of hydrocarbon accumulations in the OML 67-70 areas of the Niger Delta. American Association of Petroleum Geologist Bulletin, 87, 1193-1206.

Crude Oil Geochemistry Dependent Biomarker Distributions in the Gulf of Suez, Egypt

- Meshref, W. M., Abu Karamat, M. S. and Gindi, M., 1988. Exploration Concepts for oil in the Gulf of Suez. 9th Petroleum Exploration and Production Conference, Cairo. P. 1-24.
- Mello, M.R., Gaglianone, P.C., Brassell, S.C. and Maxwell, J. R., 1988. Geochemical and biological marker assessment of depositional environments using Brazilian offshore oils. Marine and Petroleum Geology, 5, 205-233.
- Meyers, P. A. 2003. Application of organic geochemistry to paleolimnological reconstructions: a summary of examples from Laurentian Great Lakes. Organic Geochemistry, 34, 2, 261-289.
- Moldowan, J.M., Dahl, J., Huizinga, B. and Fago, F., 1994. The molecular fossil record of oleanane and its relation to angiosperms. Science 265, 768-771.
- Moldowan, J.M., Seifert, W.K. and Gallegos, E. J., 1985. Relationship between petroleum composition and depositional environment of petroleum source rocks. American Association of Petroleum Geologist Bulletin, 69, 1255-1268.
- Mostafa, A. R., 1993. Organic geochemistry of source rocks and related crude oils in the Gulf of Suez, Egypt. Berlin.Geowiss.Abh.A147, 163pp. Berlin.
- Moustafa, A. R., 2002. Control on the geometry of transfer zones in the Suez rift and northwest Red Sea: Implications for the structural geometry of rift systems. American Association of Petroleum Geologist Bulletin, 86, 979-1002.
- Peters, K.E. and Moldowan, J. M. 1991. Effect of source, thermal maturity and biodegradation on the distribution and isomerization of homohopanes. Organic Geochemistry , 17, 46-61.
- Peters, K.E. and Moldowan, J. M. 1993. The biomarker guide interpreting molecular fossils in petroleum and ancient sediments, Prentice Hall, Engelwood Cliffs, NJ,363 pp.
- Peters, K. E. and Fowler, M. G. 2002. Application of petroleum geochemistry to exploration and reservoir management. Organic Geochemistry, 33, 5-36.
- Peters, K. E. Snedden, J. W., Sulaeman, A., Sarg, J. F. and Enrico, R. J. 2000. A new geochemical sequence stratigraphic model for the Mahakam delta and Makassar slope, Kalimantan, Indonesia: American Association of Petroleum Geologist Bulletin, 84, 12-44.
- Philp, R. P. and Gilbert, T. D. 1986. Biomarker distributions in oils predominantly derived from terrigenous source materials. In advances in Organic Geochemistry 1985, eds.
  D. Leythaeuser and R. Rullkőtter. Organic Geochemistry 10, 73-84, Pergamon, Oxford.
- Radke, M., Horsfield, B., Littke, R. and Rullkőtter, J. 1997. Maturation and petroleum generation. In migration of hydrocarbons in sedimentary basins, ed. B. Doligez. pp.649-665.
- Rohrback, B.G. 1982. Crude oil geochemistry of the Gulf of Suez. 6th EGPC Exploration and Production Conference, v. 1, p. 212-224.
- Said, R. 1962. The Geology of Egypt: Amesterdam, Elsevier, 317p.
- Steckler, M. S., 1985. Uplift and extension of the Gulf of Suez. Nature. 317, 135-139.
- Steckler, M. S., F. Berthelot, N. Lyberris and Le Pichon, 1988. Subsidence in the Gulf of Suez: Implication for rifting and plate kinematics: Tectonophysics, 153, 249-270.
- Seifert, W.K. and Moldowan, J. M. 1978. Applications of steranes, terpanes and monoaromatics to the maturation , migration and source of crude oils. Geochimica et Cosmochimica Acta, 42, 77-95.

- Seifert, W.K. and Moldowan, J. M. 1981. Paleoreconstruction by biological markers. Geochimica et Cosmochimica Acta , 45, 783-795.
- Shahin, A.N. and Shehab, M. M. 1984. Petroleum generation, migration and occurrences in the Gulf off Shore of South Sinai, Proceeding of the 7 th Petroleum Exploration Seminar, 126-151, Cairo.
- Shanmugam, G. 1985. Significance of coniferous rain forests and related oil , Gippsland Basin , Australia. American Association of Petroleum Geologists Bulletin, 69, 1241-1254 .
- Sofer, Z. 1984. Stable carbon isotope compositions of crude oils: Applications to source depositional environments and petroleum alteration. American Association of Petroleum Geologists Bulletin, 68, 31-49.
- Ten Haven, H.L., De Leeuw, J.W., Sinninghe Damasté, J.S., Schenck, P.A., Palmer, S.E. and Zumberge, J.E. 1988. Application of biological marker in the recognition of paleohypersaline environments: In Kelts K., Fleet A. and Talbot M.(eds) Lacustrine petroleum source rocks, pp.123-130.
- Younes, M. A. 2003a. Hydrocarbon seepage generation and migration in the southern Gulf of Suez, Egypt: insight from biomarker characteristics and source rock modeling. International Journal of Petroleum Geology, 26, 211-224.
- Younes, M. A. 2003b. Organic and carbon isotope geochemistry of crude oils from Ashrafi field, southern Gulf of Suez province, Egypt: implications for the processes of hydrocarbon generation and maturation. Petroleum Science and Technology Journal, 21, 971-995.
- Younes, M. A., 2001. Application of Biomarkers and Stable Carbon Isotopic Composition to assess the Depositional Environment of Source Rock and the Maturation of Crude Oils from East Zeit Field, Southern Gulf of Suez, Egypt . Petroleum Science and Technology Journal.19, 1039-1061.
- Waples, D. and Machihara, T. 1991. Biomarkers for geologists. America Association of Petroleum Geologists. Methods in Exploration Series, no. 9, pp.91.
- Wever, H. 2000. Petroleum and Source Rock Characterization Based on C7 Star Plot Results: Examples from Egypt. American Association of Petroleum Geologist Bulletin, 84, 1041–1054.
- Winn, R. D., Crevello, P. D. and Bosworth, W., 2001. Lower Miocene Nukhul Formation, Gebel El-Zeit, Egypt: Model for structural control on early synrift strata and reservoirs, Gulf of Suez. AAPG Bull., 85,10,1871-1890.
- Zein El-Din, M.Y. and Shaltout, E.M. 1987. Application of isotope type curves to multiple source rock correlation in the Gulf of Suez, Egypt. Abstract, American Association of Petroleum Geologist Bulletin, 61, 631.



Crude Oil Exploration in the World Edited by Prof. Mohamed Younes

ISBN 978-953-51-0379-0 Hard cover, 220 pages Publisher InTech Published online 16, March, 2012 Published in print edition March, 2012

"Crude Oil Exploration in the World" contains multidisciplinary chapters in the fields of prospection and exploration of crude oils all over the world in addition to environmental impact assessments, oil spills and marketing of crude oils.

#### How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

M. A. Younes (2012). Crude Oil Geochemistry Dependent Biomarker Distributions in the Gulf of Suez, Egypt, Crude Oil Exploration in the World, Prof. Mohamed Younes (Ed.), ISBN: 978-953-51-0379-0, InTech, Available from: http://www.intechopen.com/books/crude-oil-exploration-in-the-world/crude-oil-geochemistry-dependent-biomarker-distribution-in-the-gulf-of-suez-egypt

## INTECH

open science | open minds

#### InTech Europe

University Campus STeP Ri Slavka Krautzeka 83/A 51000 Rijeka, Croatia Phone: +385 (51) 770 447 Fax: +385 (51) 686 166 www.intechopen.com

#### InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai No.65, Yan An Road (West), Shanghai, 200040, China 中国上海市延安西路65号上海国际贵都大饭店办公楼405单元 Phone: +86-21-62489820 Fax: +86-21-62489821 © 2012 The Author(s). Licensee IntechOpen. This is an open access article distributed under the terms of the <u>Creative Commons Attribution 3.0</u> <u>License</u>, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

# IntechOpen

# IntechOpen