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Badji Mokhtar-Annaba University, Faculty of Sciences, Department of Physics, Annaba 
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1. Introduction 

The rare earth iron garnets RE3Fe5O12 (REIG hereafter) have been discovered at Grenoble 
(France) (Bertaut & Forrat, 1956; Bertaut et al., 1956) then independently at Murray Hill 
(USA) (Geller & Gilleo, 1957a, 1957b). These most studied ferrimagnetic materials have a 
general formula {RE3+3}[Fe3+2](Fe3+3)O12 where RE3+ can be any trivalent rare earth ion or the 
Yttrium Y3+. The crystal structure is described by the cubic space group Ia 3 d-( 10Oh ) No. 
230. Three type of brackets are used to indicate the different coordinations of the cations 
with respect to the oxygen O2– ions situated in the general positions x, y, z of the sites 96h(1) 
(Fig. 1). The RE3+ ions are located in the dodecahedral sites {24c}(222) whereas the two Fe3+ 
ions are distributed in the octahedral [16a]( 3 ) and tetrahedral (24d)( 4 ) sites. 

 
Fig. 1. Crystallographic sites of YIG in the space group Ia 3 d (Geller & Gilleo, 1957b) 
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It is a rather loose structure with a volume of 236.9 Å3 per formula unit, which has the great 
technical advantage that it is possible to accommodate a very large variety of cations in the 
garnet structure. Thus, it is feasible to achieve an enormous range of control of the magnetic 
properties in the garnet structure system. The largest of REIG that can be formed is SmIG 
with a lattice parameter of 12.529 Å and the smallest is LuIG with a lattice parameter of 
12.283 Å. The REIG have became these famous magnetic compounds by illustrating the Néel 
theory of ferrimagnetism (Néel, 1948). The strongest superexchange interactions between 
the two iron sublattices Fe3+[a]–Fe3+(d) are antiferromagnetic and the magnetic moment 
vectors ma and md are antiparallel. They make YIG, an ideal ferrimagnet with the Néel 
temperature (TN) equal to 560 K (Pauthenet, 1958a, 1958b). However, substitution of a 
magnetic rare earth ion for the diamagnetic Y3+ in YIG introduces a third sublattice in the 
crystallographic site {c} in which mRE are the magnetic moment vectors. In this three 
sublattices model only weaker and negative antiferromagnetic interactions RE3+{c}–Fe3+(d) 
exist. If Ma, Md and MRE are the magnetizations of each sublattice, the total bulk ferrite 
magnetization of REIG is given by the following equation  

    RE d aREIG   –  –M M M M │ │  (1) 

For the heavier RE3+ ions (Eu3+, ..., Yb3+), MRE is antiparallel to the net resultant of the iron 
magnetizations MFe = Md – Ma. We can consider that if we have MFe ≈ M(YIG) then the 
interactions between the rare earth ions are negligible and the equation (1) becomes in a first 
approximation 

   RE Fe RE YIGREIG    –   –M M M M M │ │ │ │  (2) 

The magnetizations Ma and Md are still given by the N.M.R values found in YIG (Gonano et 
al., 1967). Below TN which is nearly the same for all REIG compounds (554 ± 6) K 
(Pauthenet, 1958a, 1958b) the magnetization of the rare earth ions MRE can dominate the 
magnetization MFe. If the temperature is decreasing, a rapid increasing of MRE is observed 
because of the large magnetic moment mRE. In heavy rare earth iron garnets, there exists a 
compensation temperature (Tcomp) or inversion temperature (TI) (Herpin, 1968) at which the 
bulk ferrite magnetization vanishes. For TbIG, Tcomp is equal to (243.5 ± 0.5 K) and (249.0 ± 
0.5 K) for the single crystal and powder samples respectively (Lahoubi et al., 1985; Lahoubi, 
1986). In the vicinity of Tcomp, the magnetic behavior is equivalent to that observed in the 
antiferromagnet compounds with the existence of the so-called field induced phase 
transitions which have been studied previously theoretically and experimentally (Zvezdin, 
1995). In the Néel model, the RE3+ magnetic behavior is described by the pure free ion 
Brillouin function assuming that the superexchange interactions are represented by the 
isotropic Weiss molecular field coefficients. 

The optical and magneto-optical (MO) properties of REIG and their substituted compounds 
have also received a substantial interest due to their strong Faraday and Kerr effects. The REIG 
had their first industrial use in bubble memories more than twenty years ago. Today, these 
MO materials are the key elements of several technical applications. There are used in Faraday 
rotators, optical isolators, holographic storage and magnetic field sensors. These applications 
can be enhanced by using photonic crystals with REIG and such research has yielded 
promising results. Recently, an additional interest to the REIG has been caused by the 
prospects for developing materials based on these ferrimagnets for hardware components in 
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the next-generation spintronic devices. The fundamental properties of these REIG and their 
applications have been enormously reviewed previously and only a few authors are reported 
here (Dahlbäck, 2006; Geller, 1977; Guillot, 1995; Kazei et al., 1991). At low temperature when 
both crystal field acting on the RE3+ ions and the RE3+{c}–Fe3+(d) magnetic exchange 
anisotropies become important (Nekvasil & Veltrusky, 1990), the Néel model must be replaced 
by a new spin configuration in which the RE3+ magnetic moments cease to be antiparallel to 
the Fe3+ magnetization MFe. So, neutron diffraction experiments have been performed 
previously to study, the non collinear magnetic structures of the RE3+ moments (RE = Dy, Er, 
Ho, Tb, Tm and Yb) which appear at liquid-helium temperatures (Bertaut et al., 1970; Guillot et 
al., 1982; Herpin et al., 1960; Hock et al., 1990, 1991; Lahoubi et al., 1984; Lahoubi, 1986, 2012; 
Pickart et al., 1970; Tchéou et al., 1970a, 1970b). Neutron diffractions experiments have been 
also made to follow the temperature dependence of these ‘’umbrella’’ magnetic structures in 
HoIG (Guillot et al., 1983, 1984), ErIG (Hock et al., 1991), DyIG (Lahoubi et al., 2009, 2010). 

In the present chapter, we will present the temperature evolution of the Tb3+ magnetic 
ordering in TbIG using powder neutron diffraction experiments combined with magnetic field 
magnetization measurements on single crystal (Lahoubi et al., 1984, 1985; Lahoubi, 1986; 
Lahoubi et al., 1997; Lahoubi, 2012). The experimental techniques are described in the section 
2. The principle of the non-polarized neutrons diffraction with the preliminarily experiment at 
614 K are introduced in the main section 3. The neutron diffraction results obtained at high 
and low temperatures are discussed using the predictions of the symmetry analysis and 
compared with the data of magnetization measurements in the sections 4 and 5 respectively. 
The “Representation Analysis” of Bertaut (Bertaut, 1968, 1971, 1972) is applied to the 
paramagnetic space group Ia 3 d for determining all possible ‘’umbrella’’ magnetic structures in 
this “cubic description”. The method of the so-called ‘’symmetry lowering device” (Bertaut, 1981) is 
required in the treatment for the determination of the best subgroups of Ia 3 d when the 
temperature is decreasing below TN until liquid-helium temperatures. The “basis vectors of 

irreductible representations” of the distorted space group R 3 c are chosen in the “rhombohedral 

description”. The thermal variations of the parameters of the “double umbrella” magnetic 
structure constitute the section 6 which will be followed by a conclusion in the section 7. 

2. Experimental techniques 

The neutron diffraction experiments were measured on polycrystalline sample of TbIG owing 
to some severe extinctions which appear when a high quality single crystal is used (Bonnet et 
al., 1979). The first set of patterns have been recorded previously at the Centre d’Etudes 
Nucleaires de Grenoble (CENG) CEA Grenoble, France (Lahoubi et al., 1984; Lahoubi, 1986; 
Lahoubi et al., 1997) using the famous “Position Sensitive Detector” (PSD) detector (Convert et 
al., 1983; Roudaut et al., 1983). For the study, ten temperatures are chosen in the cryostat: 4.2, 
20, 54, 68, 80, 109 ± 2, 127 ± 5, 160, 208 ± 2 and around Tcomp at 244 ± 10 K. In the furnace, the 
temperatures are: above TN (T = 614 K) and below TN (T = 283, 400 and 453 K). The time of 
counting for some temperatures has been in the order of ten hours. The patterns were recorded 
with a wavelength  equal to 2.49 Å and filters to avoid /2 contaminations are used. The 
second set of patterns has been collected recently on the high flux diffractometer D1B at the 
Institut Laue−Langevin Grenoble, France. The value of the wavelength  is equal to 2.52 Å and 
four temperatures 5, 13, 20 and 160 K have been chosen below room temperature. The 
resolution of the multidetector is 0.2°. For the magnetic study, the magnetization of a flux-
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grown single crystal of TbIG was measured in dc magnetic fields produced either by a 
superconducting coil up to 80 kOe or a Bitter coil up to 150 and 200 kOe. The first series of 
experiments was performed at the Louis Néel Laboratory of Grenoble, France (currently Néel 
Institut) and the second series at the Service National des Champs Intenses (SNCI) of Grenoble 
(currently LNCMI). In the 4.2–300 K temperature range, the external magnetic field was 
applied parallel to the crystallographic directions <111>, <110> and <100> successively. The 
spherical sample with 5.5 mm of diameter and 0.4313 g of weight is oriented along these three 
main crystallographic directions by the X-ray Laüe technique with an error less than 1°. The 
isothermal magnetizations MT(H) as a function of internal magnetic field H (the external 
magnetic field Hex minus the demagnetizing magnetic field of the sphere Hd) are analyzed by 
the least-squares refinement technique. The measured spontaneous magnetizations MSmes(T) 
are reported in (μB/mol) where one mole is equal to 2(TbIG) formula units.  

3. Principle of neutron diffraction  

We present here only the case of the diffraction of the non-polarized (or unpolarized) 
neutrons. This method was used firstly in the determination of the magnetic structure in 
MnO (Shull & Smart, 1949). A multitude of others followed after: approximately thousands 
of magnetic structures have now been solved. The use of polarized neutrons ten years after 
has been the next progress in magnetic neutron scattering (Nathans et al., 1959). In this 
second method, the incident neutron beam is polarized either up or down, and the neutron 
intensities scattered by the sample are compared for the two possible states of the incident 
polarization. Compared to the non-polarized neutrons experiments, an interference term 
between the nuclear and the magnetic amplitudes adds or subtracts to the intensities 
depending on the direction of the polarization. For small magnetic amplitudes, the 
enhancement of sensitivity is remarkable and we know in the case of ferromagnetic and 
ferrimagnetics to determine the form factor of the magnetic atoms and to reconstruct the 
spin (or magnetization) density within the cell. Such investigations are now very common: 
several hundred spin density investigations have already been performed. In YIG (Bonnet et 
al., 1979), the polarized neutrons were used in addition to the study of the covalency effects. 
A book edited recently (Chatterji, 2006) is mostly devoted to the application of polarized 
neutron scattering from magnetic materials.  

3.1 Non-polarized neutrons diffraction: Determination of the diffracted intensities 

The scattering of neutron by a magnetic atom is composed essentially of two terms: a 
nuclear neutron scattering and a magnetic neutron scattering. The first term is due to a 
“neutron-nucleus” nuclear interaction giving the nuclear diffraction which yields information 
on the spatial arrangement of the nuclei of the atoms in crystal. In the second term, the 
neutron has a magnetic moment which can interact with the unpaired electrons of the 
magnetic atoms through the “dipole-dipole” interaction conducting to the magnetic 
diffraction (Bacon, 1975). The nuclear and the magnetic neutron scattering are incoherent in 
our non-polarized neutrons diffraction. For a magnetic material in the paramagnetic state 
obtained at T > TN, there is no magnetic contribution and only the nuclear diffraction exists 
with the diffracted nuclear intensity (IN). The total diffracted intensity I(T > TN) is equal to 

  N N I T T I   (3) 
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In the ordered magnetic state (T < TN) a magnetic intensity (IM) is added to the intensity IN. 

We can measure finally the total diffracted intensity I(T < TN) with the following equation 

 I(T < TN) = IN + IM (4) 

The diffracted magnetic intensity IM is then obtained by the difference  

  IM(T < TN) = I – IN  (5) 

This method is applied if we have a good counting statistics and also if IM is not too lower 
then IN. We will recall briefly the following useful expressions of the nuclear and magnetic 
diffracted intensities for the case of a polycrystalline sample.  

3.1.1 Nuclear intensity IN  

In the paramagnetic state, the nuclear intensity IN(H) can be calculated through the nuclear 
structure factor FN(H) with the following expressions 

       2
N N  I P F │ │H H H  (6) 

  
N

j
j 1

2
N j j b exp(2 i )exp(–B | | /2)F 



 H H r H  (7) 

with P(H), the multiplicity of the reflector plane, and H, the corresponding scattering vector 
which is concentrated in the Bragg peaks (hkl) of the reciprocal lattice, bj and Bj being 
respectively the neutron scattering length and the Debye-Waller factor of the jth atom in the 

jth position vector rj among N, the total number of atoms in the crystallographic unit cell. 
The nuclear structure factor appears as a scalar factor. 

3.1.2 Magnetic intensity IM 

When the materials are magnetically ordered, the magnetic diffracted intensity IM(H) has the 
same form that found before for IN(H) but we consider only the perpendicular component to 
H of the magnetic structure factor FM(H). We can write these equations 

      2 2 2
M M M    | | –| | /| |I  │ │H F H H F H H  (8) 

  
j j

j 1

2
M j j  f ( )exp(2 )exp(–B | | /2)

N

i


  F H S H H r H  (9) 

with fj(H), the magnetic form factor of the jth spin Sj , and ┟ = |γ|e2/2m0c = +0.02696 cm, the 
magnetic diffusion length (γ = – 1.91348). The magnetic structure factor has a vector form.  

3.1.3 Observed Iobs and calculated Ical intensities 

The observed diffracted intensity Iobs is integrated on number of counts. The value (in barns) 
is corrected by the Lorentz factor L(H) and normalized by the scale factor K where the 
definitions are expressed respectively by the following equations 
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     cal obs    1 /sin  sin 2  ; /L K I I   H  (10) 

The value of K is obtained by the refinement of the nuclear structure. For each Iobs, an 
absolute error ΔIobs is found. She is associated to the sum of a statistical error with the 
appreciated one on the continu fund noise. The corresponding observed relative error is 
noted ΔIobs/Iobs. Using the least square method, we can define the reliability factor R  

  R = obs cal obs/I I I   (11) 

For each calculated diffracted intensity Ical, a calculated relative error ΔIcal/Ical is attributed. 
The non-polarized neutron diffraction is then based in the comparison between Ical and Iobs.  

3.2 Preliminarily neutron diffraction at 614 K 

In the pattern (not show) recorded at T = 614 K higher than TN (568 ± 2 K) (Pauthenet, 1958a, 
1958b), only the nuclear contribution exists and the reflections (hkl) are indexed with the 
general extinction rule of the cubic space group Ia 3 d, h + k + l = 2n. Attention was paid to 
the thermal agitation of the jth atom in the different sites by introducing the corresponding 
isotropic Debye-Waller factors Bj. For the determination of the calculated nuclear intensities 
(IN)cal, the previous scattering lengths (Bacon, 1972) are used: b(O) = 0.580; b(Fe) = 0.95; b(Tb) 
= 0.76 (in units of 10–12 cm/atom). We can determine the number of refinement cycles and to 
choose the parameters with a sufficient number of iterations. The previous best values of the 
parameters x = –0.0279, y = 0.0555, z = 0.1505 found previously at T = 693 K (Tchéou et al., 
1970c) for the general positions (96h) of the oxygen atoms are used as constant parameters 
and the refinement is made only on the scale factor K and after the corresponding isotropic 
Debye-Waller factors Bj. A good agreement with a reliability factor of order 10 % is found 
for the lattice parameter a = 12.470 ± 0.004 Å and K = 0.42 ± 0.02 with Bh(O) = 0.88; Bd(Fe) = 
Ba(Fe) = 0.82 and Bc(Tb) = 0.81. We observe that the observed intensities of the reflections 
(400) and (420) are lower than the corresponding calculated intensities and the refinement of 
the temperature parameters Bj has a little influence on the values of the observed intensities 
(for example when Bc(Tb) change from 0.80 to 0.30). 

4. Neutron diffraction study at high temperature 

The neutron diffraction patterns below TN are reported in Fig. 2 for 453 and 400 K. Both 
patterns at (283 K) and at 5 K (D1B) are presented for a useful comparison in Fig. 3. A 
magnetic intensity IM(hkl) is superimposed to the nuclear intensity IN(hkl): we have then, 
I(hkl) = IN(hkl) + IM(hkl). In these patterns, we have indexed all the reflections (hkl) in the 
chemical cell with the same extinction rule characterized by a wave vector k = 0. In these 
temperatures, the magnetic structure factors FM(a)(hkl), FM(d)(hkl) and FM(c)(hkl) associated to 
each magnetic sublattice of TbIG are used to describe the collinear ferrimagnetic state of the 
Néel model along the easy axis [111] found by magnetization measurements (Lahoubi et al., 
1985 and refs. herein). Two types of reflections (hkl) appear in the patterns: (h = odd, k = 
odd, l = even) and h = even, k = even, l = even). For the related reflections (hkl) with (h = 
even, k = odd, l = odd) and (h = odd, k = even, l = odd) and cyclic permutations (c.p.) of h, k, 
l must be done in the expressions of the magnetic structure factors. A complete description 
can be found in the previous paper on the neutron diffraction of HoIG (Guillot et al., 1984). 
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Fig. 2. Neutron diffraction patterns at 453 and 400 K 

 
Fig. 3. Neutron diffraction patterns at 283 and 5 K (D1B) 

4.1 Results and discussion 

We have observed during the refinement that the calculated parameters mTb, ma and md of the 
three magnetic sublattices are depending highly of the choice of the magnetic form factors, 
fTb(hkl) and particularly those related to the two iron sublattices fa(hkl) and fd(hkl). We choose 
at first, the theoretical magnetic form factors determined in the Hartree-Fock description based 
on the free ion model for the Tb3+ ion, fTb(hkl) (Blume, et al., 1962) and those calculated 
(Watson & Fremann, 1961) fa(hkl) and fd(hkl) with the equality fa(hkl) = fd(hkl) for the iron 
sublattices. Secondly, two previous experimental magnetic form factors fa(hkl) and fd(hkl) are 
also tentatively used. The first values (Bonnet, 1976; Bonnet et al., 1979) obtained by polarized 
neutrons experiments on YIG single crystal indicate that fa(hkl) and fd(hkl) are different that 
the free ion value and fa(hkl) > fd(hkl). The second values of fa(hkl) and fd(hkl) with the relation 
fa(hkl) < fd(hkl) have been found previously by powder neutron diffraction experiments 
(Guillot et al., 1983). In the study of the “umbrella structure” at low temperature on HoIG 
sample prepared by grinding of single crystals (Guillot et al., 1984), an evaluation of ma and md 
using the Bonnet’ fa(hkl), fd(hkl) determinations was made. At 4.2 K, these moments were 
found equal respectively to 4,01 and 4,26 μB. These values are smaller than the theoretical 
ground state 6S5/2 saturated magnetic moment (5 μB). The observed reduction of the moments 
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is explained by covalent bonding for YIG (Bonnet, 1976; Fuess et al., 1976) or topological 
frustration for FeF3 (Ferey et al., 1986). When the proposed values (Guillot., et al 1983) are 
chosen in the refinement of the neutron diagrams at 453, 400 and 283 K, we observe that the 
calculated intensities of the reflections (211) and (220) which have a high magnetic 
contribution are lower than the observed intensities. Consequently, we shall consider in this 
work for the Fe3+ ions only the theoretical values of fa(hkl) and fd(hkl) (Watson & Fremann, 
1961). In this condition, ma and md are not considered as fitting parameters in the first cycle of 
the refinement and the N.M.R values are used (Gonano et al., 1967). Working in this 
hypothesis leads to the best values of mTb at each temperature. Finally, in the second cycle of 
the refinement based on twenty reflections, the parameters ma and md are fitted by the self-
consistent calculation of mTb. At 453 and 400 K, we obtain respectively for mTb the refined 
values 0.50 ± 0.10 μB and 0.60 ± 0.10 μB with a reliability factor R varying in the range of 11.8–
9.3 and 11.6–8.6 % if the refinement is makes only on the twelve first reflections (Lahoubi, 
1986). The results lead to a good agreement between the bulk calculated magnetizations 
MScal(TbIG) and the observed spontaneous magnetization MSobs(TbIG) (Pauthenet, 1958a, 
1958b). The result at 283 K (1.15 μB with R = 8.5 %) (Lahoubi, 1986) is similar to that found 
previously (Bonnet, 1976; Fuess et al., 1976) but with a poor agreement for ma and md which 
have been found lower by comparison with those determined by N.M.R (Gonano et al., 1967).  

5. Neutron diffraction study at low temperature and symmetry analysis 

The neutron patterns recorded at 5 (D1B), 13 (D1B), 20, 54, 68, 80, 109, 127, 160, 208 and 244 
K are presented from Fig. 3 up to Fig. 9. 

5.1 Results and discussion  

At T = 5 K (Fig. 3), two types of reflection appear. In addition to the earlier reflections (hkl) 
observed previously, pure superstructure lines (hkl)* forbidden by the nuclear space group 
Ia 3 d are present and we have I = IM(hkl)*: (110)*, (310)*, (411, 330)*, (433, 530)* and (510)*. 

 
Fig. 4. Neutron diffraction pattern at 13 K (D1B) 
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In contrast to previous findings at 1.5 K (Bertaut et al., 1970; Tchéou al., 1970a) and 4.2 K 
(Lahoubi et al., 1984), the small superstructure lines (200)* and (600, 442)* have been observed 
recently and confirmed only at 5 K (D1B) (Lahoubi, 2012) with a sensibility equal to 0.5 and 1% 
respectively, the line (110)* being chosen as a reference. The same order of magnitude (1/276) 
by comparison with the previous result (Hock et al., 1990) was found for the line (200)*. Above 
5 K, they are not observed in the neutron diffraction pattern at 13 K (Fig. 4). 

 
Fig. 5. Neutron diffraction patterns at 20 and 54 K 

 
Fig. 6. Neutron diffraction patterns at 68 and 80 K 

 
Fig. 7. Neutron diffraction patterns at 109 and 127 ± 5 K 
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Fig. 8. Neutron diffraction patterns at 160 and 208 K 

All the superstructure lines appear without any ambiguity from 5 K up to 127 ± 5 K. They 
are indexed with the same extinction rule (h* + k* + l* = 2n) and imply the signature of a 
change of the collinear magnetic structure of the RE3+{24c} ions of the Néel model to a non 
collinear magnetic structure with the wave vector k = 0. At 160 and 208 K, the 
superstructure line (110)* is resolved with the best sensibility (0.3 and 1 respectively) 
which is equal to the ratio of the peak to background normalized to the intensity of the line 
(211) (see the details for 2┠ up to 15° in the left of Fig. 9).  

 
Fig. 9. Details at 160 and 208 K (left) and neutron diffraction pattern at 244 ± 10 K (right) 

The chemical cell is equal to the magnetic cell, thus the primitive translation noted 
(11/2,1/2,1/2) of the crystallographic lattice (I) (Hahn, 1983) is a primitive translation of 
the magnetic lattice (I). Based on the numbered positions gathered on Table 1 we can write 
for the RE3+{24c} and Fe3+(24d) sublattices that Sj  = Sj  + Sj+12 (j = 1-3); for Fe3+[16a] sublattice, 
we have Sp = Sp+ Sp+8 (p = 1-4) and Sp' = Sp' + Sp'+8 (p' = 5-8). It means that two spin vectors 
Sj, Sj+12, Sp, Sp+8 and Sp', Sp'+8 are coupled ferromagnetically. To discuss the corresponding 
magnetic structure factors FM(a)(hkl)*, FM(d)(hkl)* and FM(c)(hkl)* associated to each magnetic 
sublattice in TbIG, the four earlier linear combinations of four spin vectors introduced by 
Bertaut (Bertaut, 1963) labeled F, G, C and A are used. These four magnetic modes (one 
ferromagnetic and three antiferromagnetics) form the “basis of irreductible representations”. 
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Notations Cj , C’j ( j = 1-3) and  
{i = 1-6} (Wolf et al., 1962; Wolf, 
1964 and Pearson et al., 1965)  
 
Local axes in D2(222) symmetry 
U     gz 
V     gx  (gy) 
W    gy  (gx) 
 
Numbered positions of RE3+ 
ions in site {24c}(222) 

Notations Dj, D’j ( j = 1-3) 
 
Numbered positions of 
Fe3+ ions in site (24d)( 4 ) 

Unprimed and primed (') 
notations respectively for p 
= 1-4 and p' = 5-8 with c.p. 
 
Numbered positions of Fe3+ 
ions in site [16a]( 3 ) 

C1 
1 
3 
 

 100 
011  
 011 
 

(1)       1/8,0,1/4 
(7)       7/8,0,3/4 
(13) 5/8,1/2,3/4 
(19) 3/8,1/2,1/4 

 
D1 
 

(1)       3/8,0,1/4 
(7)       5/8,0,3/4 
(13) 7/8,1/2,3/4 
(19) 1/8,1/2,1/4 

 
(1)              0,0,0 
(9) 1/2,1/2,1/2 

C1 
2 
4 

 100 
 011 
011  
 

(4)       3/8,0,3/4 
(10)     5/8,0,1/4 
(16) 7/8,1/2,1/4 
(22) 1/8,1/2,3/4 

 
D1 
 

(4)       1/8,0,3/4 
(10)     7/8,0,1/4 
(16) 5/8,1/2,1/4 
(22) 3/8,1/2,3/4 

 
(2)       0,1/2,1/2 
(10)        1/2,0, 0 

C2 
3 
5 
 

 010 
101  
 101 
 

(2)       1/4,1/8,0 
(8)       3/4,7/8,0 
(14) 3/4,5/8,1/2 
(20) 1/4,3/8,1/2 

 
D2 
 

(2)       1/4,3/8,0 
(8)       3/4,5/8,0 
(14) 3/4,7/8,1/2 
(20) 1/4,1/8,1/2 

 (3)        1/2,0,1/2 
(11)          0,1/2,0 

C2 
4 
6 

 010 
 101 
101  
 

(5)       3/4,3/8,0 
(11)     1/4,5/8,0 
(17) 1/4,7/8,1/2 
(23) 3/4,1/8,1/2 

 
D2 
 

(5)       3/4,1/8,0 
(11)     1/4,7/8,0 
(17) 1/4,5/8,1/2 
(23) 3/4,3/8,1/2 

 (4)        1/2,1/2,0 
(12)          0,0,1/2 

C3 
5 
1 
 

 001 
110  
 110 
 

(3)       0,1/4,1/8 
(9)       0,3/4,7/8 
(15) 1/2,3/4,5/8 
(21) 1/2,1/4,3/8 

 
D3 
 

(3)       0,3/4,3/8 
(9)       0,3/4,5/8 
(15) 1/2,3/4,7/8 
(21) 1/2,3/4,3/8 

(') (5)    1/4,1/4,1/4 
(13)  3/4,3/4,3/4 

C3 
6 
2 

 001 
 110 
110  
 

(6)       0,3/4,3/8 
(12)     0,1/4,5/8 
(18) 1/2,1/4,7/8 
(24) 1/2,3/4,1/8 

 
D3 
 

(6)       0,3/4,1/8 
(12)     0,1/4,7/8 
(18) 1/2,1/4,5/8 
(24) 1/2,3/4,3/8 

(') (6)    1/4,3/4,3/4 
(14)  3/4,1/4,1/4 

 

(') 

 

(7)    3/4,1/4,3/4 
(15)  1/4,3/4,1/4 
 

(') 

 

(8)    3/4,3/4,1/4 
(16)  1/4,1/4,3/4 
 

Table 1. Notations, numbers and positions in the unit cell of the three magnetic sublattices. 
U, V and W are the local axes of the RE3+ in D2(222) symmetry  
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The adapted magnetic modes for the RE3+{24c} and Fe3+(24d) sublattices with j = 1-3 are  

 
j j j 3 j 6 j 9 j j j 3 j 6 j 9

j j j 3 j 6 j 9 j j j 3 j 6 j 9

; – – ;

– – ; – –

     

     

     

   

F S S S S G S S S S

C S S S S A S S S S

 (12) 

For the Fe3+[16a] sublattice, it is necessary to consider two distinct magnetic modes. The 
first chosen notation is the unprimed magnetic modes for the numbered spins  

p p p 8 S S S  (p = 1-4)  

 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4; – – ; – – ; – –         F S S S S G S S S S C S S S S A S S S S  (13) 

The second chosen notation of the magnetic modes is the primed notation (') for the 
numbered spins p' p' p' 8 S S S  (p' = 5-8) 

 5 6 7 8 5 6 7 8 5 6 7 8 5 6 7 8' ; ' – – ; ' – – ; ' – –         F S S S S G S S S S C S S S S A S S S S  (14) 

For the RE3+ ions in the Wyckoff site {24c}, the local axes (U,V,W) in the D2(222) symmetry 
are identified to the parameters gα (α = x,y,z) of the magnetic tensor g in the hypothesis of 
the effective spin Hamiltonian model (Wolf et al., 1962, Wolf, 1964). The particular 
superstructure lines (222)* and (622)* are not observed in the whole temperature range 
below TN. For example, the associated magnetic structure factors are all equal to zero 

        * *a (d)
M M 1 2 3222 – ' 0; 222 i 0      F F F F A A A  (15) 

            * *c c
M 1 2 3 M 1 2 3222 –i 0; 622 i – – 0      F A A A F A A A  (16) 

In these conditions, the spins vectors Sj and Sj+6 (j = 1-3) of Tb3+{24c} and Fe3+(24d) ions are 
coupled ferromagnetically and the symmetry operation ( 1 0,0,0) is an inversion center. 
These significant properties related to magnetic symmetry involve that all the magnetic 
modes Aj are absent. This absence will be accompanied by the elimination of the modes Cj. 
Consequently, the above crystallographic sites split into six magnetically inequivalent 
sublattices Cj, Cj and Dj, Dj with (j = 1-3) respectively as it is indicated on Table 1. In each 
sublattice we have four ions which are equivalent under the symmetry operations: ( 1 0,0,0) 
and (11/2,1/2,1/2). The sublattices C2 and C3 are related to C1 by a rotation of 120 and 240° 
around the 3-fold symmetry [111] axis (also for Cj); the same remarks can be made for the 
sublattices Dj, Dj (j = 1-3). Contrary to previous spin rotation observed at Tcomp (260  5 K) by 
mössbauer spectroscopy (Hong et al., 2004), no deviation from the colinearity along the easy 
axis [111] for the spins of the Fe3+[16a] ions is evidenced around Tcomp (244 ± 10 K) (right of 
Fig. 9). In this T-region, this sublattice is described by one ferromagnetic configuration of the 
cubic magnetic modes F and F' with the equality of the left of the equation (15). The 
magnetic structure factors FM(c)(hkl)* calculated for all the observed superstructure lines 
imply to know if we need both magnetic modes Fj(c) and Gj(c) in the description of the non 
collinear magnetic structures at low temperature 

    *c
M 1 2 1 2 3100 2 / 2( – ) i[ 2 / 2( ) ]   F G G C C A  (17) 
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    *c
M 2 3 1200 – i  F F F A  (18) 

    *c
M 1 2 1 2 3310 2 / 2(– ) i[ 2 / 2( – ) ]   F G G C C A  (19) 

    *c
M 2 3 2 3 1411 2 / 2( – ) i[ 2 / 2( ) – ]  F G G C C A  (20) 

    *c
M 1 2 1 2 3330 2 / 2(– ) i[ 2 / 2( ) – ]   F G G C C A  (21) 

    *c
M 1 2 1 2 3510 2 / 2(– – ) i[ 2 / 2(– ) ]   F G G C C A  (22) 

    *c
M 2 3 2 3 1433 2 / 2(– ) i[ 2 / 2( ) ]    F G G C C A  (23) 

    *c
M 1 2 1 2 3530 2 / 2(– – ) i[ 2 / 2(– – ) – ] F G G C C A  (24) 

    *c
M 2 3 1600 – – i F F F A  (25) 

    *c
M 2 1 3442 – i  F F F A  (26) 

From these expressions, one can observe that both magnetic modes Fj(c) and Gj(c) are 
necessary in the description of the non collinear structures of the Tb3+ ions. The absence of 
the small superstructure lines (200)* and (600, 442)* above 13 K gives rise to the equality 
between the magnetic modes Fj(c) (j = 1-3). It must be noted that the superstructure line (510)* 

appears at the same Bragg peak of the pure nuclear reflection (431) (┠ = 30.7°). A magnetic 
contribution of the RE3+ ions exists for (431). We observe also a magnetic contribution for 
another reflection (541). It is very difficult to  isolate only the magnetic contribution of these 
two reflections which are represented by their magnetic structure factors 

    c
M 2 3 2 3 1431  2 / 2(– )  i[ 2 / 2( – ) – ]  F G G C C A  (27) 

    c
M 1 3 1 3 2541  2 / 2( )  i[ 2 / 2(– ) – ]   F G G C C A  (28) 

5.2 Representation analysis of magnetic structures  

Bertaut (Bertaut, 1963, 1968, 1971, 1972) has created a group theory method called 
“Representation Analysis” which has been widely used in the last four decades by the Bertaut 
himself and by other researchers. The essential role is plaid by the “Basis Vectors of Irreductible 

Representations” of the paramagnetic space group Ia 3 d of TbIG and its highest subgroups.  

5.2.1 Representation analysis of Ia 3 d 

The representation analysis of the cubic space group Ia  d was applied in the past (Bertaut 
et al., 1970; Tchéou et al., 1970a) in order to determine the spin configurations of the Tb3+ 
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ions in TbIG. In the point group hO ten possible irreductible representations Гig and Гiu (i = 
1-5) are present and listed usually on quantum mechanics text books (Flury Jr, 1980; Kahan, 
1972). The subscripts g and u refer to irreductible representations which are even (gerade) 
and odd (ungerade) respectively under the inversion I = ( 1 0,0,0). In their original works, 
two representations (Г4g = T1g) and (Г5g = T2g) were used. However, the coupling between 
the RE3+ in sites {24} and the two iron ions Fe3+ in sites [16a] and (24d) has not been taken 
account in their study. The representation analysis of Ia 3 d has been developed later 
completely by the author (Lahoubi, 1986) in order to choose the common irreductible 
representation which could be able to represent both the Néel model at high temperature 
below TN and the non collinear magnetic structures observed below 160 K. For both 
RE3+{24c} and Fe3+(24d) sublattices, we need the even Гig (i = 1-5) which appear only for 
Fe3+[16a] sublattice. Using the precedent linear combinations of the spins of equations (12), 
(13) and (14), the sets of magnetic basis vectors of the three sublattices belonging to Гig (i = 1-
5) which are formed by the functions lm (l = 1-dig, dig the dimension of Гig and m fixed)  are 
listed on Tables 2, 3 and 4. The letters A and E are assigned to one and two dimensional 
representations where (11)* belongs to the complex conjugate representation with Є = 
{exp(2 πi/3)}. Due to the equation (13), it can be show that (Г5g = T2g) is excluded and only 
(Г4g = T1g) may be used to describe formally in a first approximation all magnetic structures.  
 
 

1g = A1g  
2g = A2g 11 = G1x + G2 y + G3z 

3g = Eg 
11 = G1x + ЄG2 y + Є2G3z 

21 = - Є(11)* 

4g = T1g 
11 = F1x 12 = F2x + F3x 13 = G2z + G3y 
21 = F2y 22 = F1y + F3y 23 = G3x + G1z 
31 = F3z 32 = F1z + F2z 33 = G1y + G2x 

5g = T2g 
11 = F3x - F2x 13 = G3y  - G2z 
21 = F1y - F3y 23 = G1z  - G3x 
31 = F2z - F1z  33 = G2x  - G1y 

Table 2. Basis vectors of the RE3+ in site {24c} of Ia 3 d  

 1g = A1g 11 = G1x + G2 y + G3z 
 2g = A2g   

 3g = Eg 
11 = G1x + ЄG2y + Є2G3z 

21 = + Є(11)* 

 4g = T1g 
11 = F1x 12 = F2x + F3x 13 = G3y - G2z 
21 = F2y 22 = F1y +F3y 23 = G1z - G3x 
31 = F3z 32 = F1z + F2z 33 = G2x - G1y 

 5g = T2g 
11 = F3x - F2x 12 = G3y  + G2z  
21 = F1y - F3y 22 = G1z  + G3x  
31 = F2z - F1z  32 = G2x  + G1y  

Table 3. Basis vectors of the Fe3+ in site [24d] of Ia 3 d 
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1g = A1g 11 = (Ax + Cy + Gz) - (G'x + A'y + C'z) 
 2g = A2g   11 = (Ax + Cy + Gz) + (G'x + A'y + C'z) 

 3g = Eg 
11 = Ax + ЄCy + Є2Gz 12 = - (A'y + Є2G'x + ЄC'z) 
21 = - (A'y + ЄG'x + Є2C'z) 22 = Ax + Є2Cy +  ЄGz 

 4g = T1g 
11 = Fx + F'x 12 = Cz + C'y 13 = Gy + A'z 
21 = Fy + F'y 22 = Gx + G'z 23 = Az + C'x 
31 = Fz + F'z 32 = Ay + A'x 33 = Cx + G'y 

5g = T2g 
11 = Fx - F'x 12 = Cz - C'y 13 = Gy - A'z 
21 = Fy - F'y 22 = Gx - G'z 23 = Az - C'x 
31 = Fz - F'z 32 = Ay - A'x 33 = Cx - G'y 

Table 4. Basis vectors of the Fe3+ in site (16a) of Ia 3 d 

In the high temperature region, the observed spectra which are well interpreted within the 
ferrimagnetic model of Néel are easily identified to the magnetic modes Fj, F and F'. At Tcomp 

= 243.5 K the mean exchange field acting on the Tb3+ ions by the iron sublattices is too 
strong (~ 174 kOe) by comparison with the Tb3+–Tb3+ exchange field (~ 8 kOe) (Lahoubi, 
1986); this last coupling beetwen the Tb3+ ions will be not able to decouple at low 
temperature the two sublattices. This remarkable property excludes permanently the 
intervention of the three-dimensional irreductible representation (Г5g = T2g) where the 
magnetic modes of the rare earth sublattice are along the <0 1 1> directions. Using the basis 
vectors of (Г4g = T1g), we present in Fig. 10 the four cubic models of "double umbrella” of type 
II (Lahoubi, 1986) in the irreductible representation (Г4g = T1g) of Ia 3 d  

    1 7 4 10"     II" : f,  F G,  F G ; f,  F – G,  F – G ;  c.p.Double umbrella of type        S S S S (29) 

 
Fig. 10. Four cubic “double umbrella’’ models of type II for (Г4g = T1g) of Ia 3 d. 
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In these four models, the angles and the modulus of the moments m1 and m’1 are different. 
They must to respect some requirements: the components of the moments m1, m’1 along the 
cubic axis [100] are necessary equals; also for the components of the moments m2, m’2 and 
m3, m’3 respectively along [010] and [001]. The components of the moment m1 along the 
cubic axes [010] and [001] must be equals; also for m2 and m’2 along [100] and [001]; also for 
m3 and m’3 along [100] and [010]. The first refinements at 4.2 K (with ma = md = 5 B) lead to 
values of the moment m’1 (~ 10 B), i.e., above the free Tb3+ ion value (9 B). The reason of 
this discrepancy is associated to the deviation of the cubic description which imply a 
rhombohedral distortion observed on powder sample by X-ray diffraction at 6 K (Bertaut et 
al., 1970, Sayetat, 1974, 1986 and refs. herein) and neutron diffractions at 5 K (Hock et al., 
1990) where two subgroups of Ia 3 d have been proposed respectively: R 3 c and R 3 .  

5.2.2 Representation analysis of R 3 c 

A detailed description of the representation analysis of the subgroup R 3 c is presented here. 
According to the earlier precise X-ray diffraction measurements of the rhombohedral 
distortions carried out on single crystals of the terbium-yttrium iron garnet system  

x 3 x 5 12Tb Y Fe O  with 0 ≤ x ≤ 3 (hereafter x 3 xTb Y IG ) (Levitin et al., 1983), the choice of the 
subgroup R 3 c seems more appropriate. This choice will be confirmed later by our high field 
magnetization measurements and the use of the method of “the symmetry lowering device” 
(Bertaut, 1981) which is connected with representation analysis of Bertaut (Bertaut, 1968, 1971, 
1972). From the International Tables (Hahn, 1983), the Bravais lattice of the crystallographic 
space group R 3 c-( 6

3dD ) No. 167 is defined in the system of the rhombohedral directions 
[ 111 ], [ 111 ], [ 111 ] with the three fundamental vectors: A1, A2, A3 with the same parameter 
ARh and an angle αRh # 90° and < 120° respectively along the unit vectors gj, j = 1-3). There are 
related to the cubic axes by unit vectors {i, j, k} 

      1 2 3
1 1 1– ; – ; –

3 3 3
        g i j k g i j k g i j k  (30) 

 X  y  z;  Y  x  z;  Z  x  y       (31) 

The correspondence between the ion positions in the two space groups Ia 3 d and R 3 c is 
reported on Table 5. For TbIG, the values of the parameters found at 6.75 K (Sayetat, 1974, 
1986) are: ARh = 10.7430 Å; αRh = 109°24’40’’. The rhombohedral unit cell contains only the 
half atoms of the cubic unit cell. In order to use the representation analysis to determine the 
magnetic basis vectors, we choose the following generators of the space group R 3 c: the 
identity E = (10,0,0), the inversion I = ( 1 0,0,0), a ternary axis 3 = (30,0,0) and a diagonal 
binary axis 2d = (2 XY 1/2,1/2,1/2). This axis is perpendicular to the glide plane c = I. 2d of 
the symbol R 3 c. The wave vector being k = 0, the six irreductible representations of the 
space group R 3 c are those of the point group D3d, Гjg and Гju with j = 1-3. The previous 
three-dimensional irreductible representation (Г4g = T1g) of hO is reduced to: Г2g = A2g + Eg. 
Only the one-dimensional irreductible representation will be chosen in our study (the two-
dimensional irreductible representation Eg being complex, she is not considered). It appears 
that the previous linear combinations of the spin vectors F, G, C and A are not in reality 
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 Ia 3 d R 3 c 
Ions Sites Symmetry Positions Sites Symmetry Positions 

RE3+ 24c 222 
±(1/8,0,1/4); c.p. 

 
±(3/8,0,3/4); c.p. 

6e 
 

6e 

2 
 

2 

±(X,1/2-X,1/4) 
X ≈ 3/8; c.p. 

±(X,1/2-X,1/4) 
X ≈ 7/8; c.p. 

Fe3+ 24d 4  

 

±(3/8,0,1/4); c.p. 
 

±(1/8,0,3/4); c.p. 
 

12f 1 

±(X,Y,Z); c.p. 
 

±(Y+1/2,X+1/2,Z+1/2); 
c.p. 

X≈5/8,Y≈3/8,Z≈1/4 

Fe3+ 16a 3  
 

0,0,0; 1/4,1/4,1/4 
0,1/2,1/2; c.p. 

1/4,3/4,3/4; c.p. 

2b 
 

6d 

3  
 

1  

0,0,0; 1/2,1/2,1/2 
0,1/2,1/2; c.p. 

1/2,0,0; c.p. 

O2- 96h 1  12f 1 OI OII OIII OIV 

Table 5. Correspondence between the positions of the ions in Ia 3 d and R 3 c 

adapted to describe the magnetic structures of the three magnetic ions. For the RE3+ ions, the 
preceding magnetically inequivalent sublattices  Cj and Cj (j = 1-3) become crystallographic 
inequivalent sites 6e and 6e; they are described in the rhombohedral axis X, Y, Z by a new 
linear combination for the ferromagnetic mode fj = Sj + Sj+6 (j = 1-3). Concerning the iron ions 
sublattices Dj and D'j of the 24d site, they will be associated to a new 12f site where the basis 
vectors are described with the ferromagnetic mode Vj = Sj + Sj+6 (j = 1-3). The associated basis 
vectors of (Г2g = A2g) are presented here on Table 6. A new combination of these basis 
vectors is proposed and four modified double umbrella models are presented for the six 
sublattices Cj and Cj on Table 7. In this description, the first part (fn) of the moment mj 
represents the collinear ferromagnetic mode of the component along the [111] direction. 
 

  R 3 c 
Ions Sites Basis vectors 

RE3+ 
6e 

 
6e 

11(I) = f1X + f2Y + f3Z 
11(II) = f1Y + f1Z + f2Z + f2X + f3X + f3Y 

 
11(IV) = f4X + f5Y + f6Z 

11(V) = f4Y + f4Z + f5Z + f5X + f6X + f6Y 

Fe3+ 12f 
11(I) = V1X + V2Y + V3Z + V4X + V5Y + V6Z 
11(II) = V2X + V3Y + V1Z + V6X + V4Y + V5Z 
11(III) = V3X + V1Y + V2Z + V5X + V6Y + V4Z 

Fe3+ 

 

 

 

2b 
 

6d 
 
 

11(I) = (S1  + S5) X + (S1  + S5) Y + (S1  + S5) Z 
 

11(II) = (S2  + S6) X + (S3  + S7) Y + (S4  + S8) Z 

11(III) = (S3  + S8) X + (S4  + S6) Y + (S2  + S7) Z 
11(IV) = (S4  + S7) X + (S2  + S8) Y + (S3  + S6) Z 

Table 6. Basis vectors of ions in the irreductible representation A2g of R 3 c 
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Four A2g models in R 3 c  
with f  f  and a  a 

New model for TbIG with f  f  and a  a –  
(  0 at T > 5 K) 

(6e): Cj : Sj = Sj+ 6 = fn  agj C1 : m1 = S1 = S7 = (f – a/3)n – ( 2 2
3 )ap1 

(6e): Cj : Sj = Sj+ 6 = f n  agj C1 : m1 = S4 = S10 = (f  + a/3)n + ( 2 2
3 )ap1 

Table 7. Four rhombohedral models in A2g of R 3 c and new model for TbIG (Lahoubi, 2012)  

The second part ( agj) represents the non collinear antiferromagnetic modes of the 
components of the moment mj along the three rhombohedral axes {[ 1 11], [1 1 1], [11 1 ]}. 
Some requirements from the previous “cubic description” are now ignored in the “rhombohedral 

description”: the axis [100] and equivalent directions cease to be principal axes. In the four 
models of non collinear arrangements for the RE3+ ions around the ternary axis [111], the 
sublattices Cj, Cj are situated in the three glide planes c, c.3 and c.32 of the subgroup R 3 c: each 
plane containing [111] (unit vector n) and one of the rhombohedral directions {[ 1 11], [1 1 1], 
[11 1 ]} represented by the unit vectors gj, j = 1-3. In this condition, we have: c = (n, g3); c.3 = (n, 
g1) and c.32 = (n, g2) (Fig. 11a). Furthermore, the projection on the plane (111) of the 
rhombohedral direction [ 1 11] (g1) for example, is equivalent to the low symmetry axis [ 2 11] 
(with the unit vector p1); the local axis [0 1 1] (W) is also chosen. If one takes into account the 
smallness superstructure lines (200)* and (600,442)* at 5 K (D1B), new parameters are found for 
C1 (m1, 1, 1) and C1 (m1, 1, 1) sites (Lahoubi, 2012) (Fig. 11b). The moments of C1 and C1 
are drawed in the (π) plane which corresponds to glide plane c.3: this plane remains a 
principal plane of the magnetic tensor g of the earlier “cubic description”. A good reliability 
factor R of the order of 6.7 % is found for a refinement based on all the reflections and the 
method of validation of the magnetic structures (Wills, 2007 and refs. herein): 

    
Fig. 11. a. The three glide planes of R 3 c, b. New model for C1 and C'1 at 5 K (D1B) 

a b 
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Fig. 12. a. Local axes of the D2(222) symmetry, b. Novel “double umbrella“at 5 K  

 C1: m1 = 8.07 B ; 1 = 32° ;  1 = 180° (32) 

 C'1: m'1 = 8.90 B ; '1 = 27° ;  '1 =  0° (33) 

where, 1 and 1 are the angles from p1 in the (111) plane and  = 0.20 B; with (MS)<111> = 
MScal – MSmes = 0.03 B/mol. For a better presentation one can show the novel “double 

umbrella “(Fig. 12b) in the local axes of the D2(222) symmetry (Fig. 12a). These results are in 
good agreement with our recent high magnetic field magnetizations performed at 4.2 K 
(Lahoubi, 2012) where a third low critical field Hc0 (Fig. 13) is observed along the <100> 
direction and added to the previous Hc1 and Hc2 (Lahoubi et al., 1984). They confirm 
unambiguously the presence of the three magnetic glide planes c' of the symbol R 3 c'. The 
earlier results at 5 K described in the subgroup R 3 (Hock et al., 1990) lead to values of the 
components m1x and m’1z above the value (9 B) of the free Tb3+ ion.  

6. Temperature evolution of the double umbrella structure 

The parameters for the sites C1 (m1, 1, 1 = 180°) and C1 (m1, 1, 1 = 0°) are refined with 
the same model found at 5 K with the condition   0 (m1  = -m1  ) due to the absence of 
the superstructure lines (200)* and (600,442)* above 13 K (D1B) (Fig. 4). The magnetic 
moments ma and md of the iron sublattices were not concerned by the refinements for all 
reflections of the patterns and the observed values found by N.M.R. experiments (Gonano et 
al., 1967) are used. Good agreement is obtained with the reliability factors R varying 
between 6 and 10 % in the 4.2−283 K temperature range. 

a b 
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Fig. 13. MT(H) versus H at 4.2 K along the <111> and <100> directions (Lahoubi, 2012) 

The equation (5) in the section 3, permit us to deduce the magnetic intensities IM by 
assuming negligible the T-variations of IN with a rather good precision for the reflections 
(hkl) which have a great magnetic contribution such as (211), (321), (521) and (532, 611) 
where the ratio (IM/IN)cal is equal respectively to: 200, 20, 4 and 2. Consequently, the high 
magnetically reflections with a small nuclear contribution are only (211) and (321). The 
thermal variations of these two magnetic reflections which are responsible of the collinear 
ferrimagnetic ordering are reported in Fig. 14. They appear at TN and present a first 
increase below 160 K with a second rapid increase at 68 K. Different and complex 
temperature dependences are observed for the reflections (220) and (440). At first, the 
values of (IM)cal are higher than those observed for (IM)obs. These two reflections increase 
simultaneously between 4.2 and 160 K and present an inflexion point near 68 K. Above 
160 K, they tend to a plateau until room temperature after which they decrease 
progressively and reach zero at TN. The possible explanation of this characteristic 
behavior seems to be related to the magnetic contribution of the irons in the octahedral 
site [16a] to the total intensity I, which is not the case for the reflections (211) and (321). 
Another good agreement between (IM)obs and (IM)cal is found in the thermal variations of 
the superstructure lines (310)*, (110)*, (411, 330)* and (530, 433)* plotted in Fig. 15 where a 
rapid variation is observed at 68 K. Two distinct magnetic behaviors separated by the 
specific temperature 160 K are clearly evidenced. 

The refined values of the parameters (mj, mj) and (┠j, ┠j) listed on Table 8 in the 4.2−283 K 
temperature range lead to a good agreement between MScal and MSmes. During the 
refinement at 109 ± 2 K, two different results related to the set {a, b} are found and lead to 
identical values of MScal and reliability factor R. The same feature is observed for the set {c, 
d} at 127 ± 5 K. We observe in the thermal variations of the parameters (mj, mj) and (┠j, ┠j) 
plotted in Fig. 16 a broad variation between 54 K and 80 K which disappears beyond 160 K. 
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Fig. 14. Thermal variations of (IM)obs and (IM)cal for the reflections (211), (321), (220) and (440)  

 
Fig. 15. Thermal variations of (IM)obs and (IM)cal for the superstructure lines (310)*, (110)*, 
(411, 330)* and (530, 433)*  
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 Sites  C1 ; C1 MScal                                                                                 MSmes     (μB/mol) 

T(K) m1(μB) 
m‘1(μB) 

┠1(°) 
┠‘1(°) 

[111] [110] [100] [111] [110] [100] 

4.2 8.18 
8.90 

30.79 
28.07 

34.64 28.28 20.00 34.53 28.35 20.17 

5 
8.07 
8.99 

32.00 
27.00 34.56 28.22 19.95 “ “ “ 

20 7.49 
8.77 

30.11 
25.39 33.21 27.12 19.18 33.34 27.21 19.56 

54 4.79 
6.27 

22.57 
17.03 21.32 17.41 12.31 21.24 17.24 12.80 

68 4.23 
5.21 

19.57 
15.76 17.10 13.97 9.87 17.01 13.44 10.05 

80 3.57 
4.72 

16.72 
12.56 14.25 11.63 8.23 13.97 11.70 8.38 

109      
± 2 

2.76 a 
3.79 

15.04 
10.86 

9.48 7.74 5.47 8.78 7.20 5.26 
2.78 b 
3.78 

15.23 
11.20 

127 
± 5 

2.59 c 
3.12 

14.94 
12.30 

7.13 5.82 4.12 6.52 5.40 3.88 
2.71d 
3.00 

14.52 
13.08 

160 2.30 
2.31 

0.11 
0.00 4.65 3.80 2.68 4.61 3.76 2.66 

208      
± 2 

1.74(3) 
1.75(7) 

0.05 
0.00 1.92 1.56 1.11 1.97 1.36 1.12 

244      
± 10 

1.34(4) 
1.35(8) 

0.08 
0.00 0 0 0 0 0 0 

283 1.15 
1.15 

0 
0 0.66 0.54 0.38 0.79 0.59 0.63 

Table 8. Values of the parameters mj, mj, ┠j and ┠j in the 4.2−283 K temperature range with a 
comparison between the calculated MScal and measured MSmes magnetizations. 

The thermal variations of the parallel (mj//, mj//) and perpendicular (mj  , mj  )  components 
are also reported in Fig. 17. The double umbrella magnetic structure appears to close slowly 
around the <111> direction in the three magnetic glide planes c' near 160 K with an abrupt 
increase between 54 and 68 K. Previous temperature dependences of the calculated non 
collinear magnetic structure in TbIG (Druzhinina & Shkarubskii, 1988) and the recent 
neutron scattering on TbIG single crystal, (Louca et al., 2009) are not consistent with these 
thermal variations. In another recent study of the magnetic and magneto-optical properties 
of the Tb3+ ions in TbIG and in the mixed system of terbium-yttrium ferrites garnets TbxY3-

xIG (x < 1) (Zhang et al., 2009) the differences between the two non collinear magnetic 
structures which exist at low temperature were not taken account in their calculations. 
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Fig. 16. Thermal variations of the parameters (mj, mj) and (┠j, ┠j) 

The <111> direction ceases to be the easy axis of magnetization and changes below 140 K to 
the <100> direction up to 4.2 K in Tb0.37Y2.63IG for example with the appearance of the low 
symmetry phases <uuw> (Lahoubi et al, 2000) in the spontaneous spin reorientation phase 
transitions.  

These results are in good agreement with the previous observed rhombohedral distortion 
below 190 K (Rodić & Guillot, 1990) and 200 K (Sayetat, 1974, 1986). They are also in good 
agreement with the anomalous behaviors observed previously below 200 K on TbIG single 
crystals without applied magnetic fields, in the acoustic properties (Kvashnina et al., 1984; 
Smokotin et al., 1985) and in the elastic constant measurements (Alberts et al., 1988) along the 
[100], [110] and [111] crystallographic directions, precisely in the temperature ranges, 60–140 K 
and 50–165 K respectively.  

It seems that the behavior around 160 K has a relation with the previous predicted 
momentum angular compensation point TJ (Nelson & Mayer, 1971) localized at 150 and 190 
K by assuming the free and quenched ion value respectively.  

The large magnetodielectric (MD) effects which have been recently revealed on TbIG single 
crystal at low temperature as well when a very small external magnetic field (Hex < 0.2 T) is  
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Fig. 17. Thermal variations of the parameters (mj//, mj  ) and (mj//, mj  ) 

applied (Hur et al., 2005) could be combined with the previous huge spontaneous 
magnetostriction measurements (Sayetat, 1974, 1986; Guillot et al., 1980) where a peak near 
70 K has been observed in the thermal variations of ┣ε, 2(Tb3+)exp/┣ε, 2(Tb3+)cal, the ratio of the 
experimental values of the magnetostriction constant to the theoretical values derived from 
the one ion model. It correspond to the abrupt change in the long-range magnetic order in 
the Tb3+ sublattice near the previous predicted low-temperature point TB = 58 K (Belov, 1996 
and refs. herein) which is situated between 54 and 68 K in this study. More recently, some 
magnetoelectric (ME) and MD effects in weak and high external magnetic fields (Hex up to 2 T 
and Hex up to 10 T respectively) have been reported (Kang et al., 2010). A possible coupling 
between the magnetic exchange and the ligand-field excitations which occurs at a specific 
temperature situated between 60 and 80 K has been discovered without external magnetic 
field (Hex = 0) with two distinct behaviors above and below another characteristic temperature 
(~ 150 K). All results confirm that Landau’s theory of second order phase transitions does not 
apply to TbIG in the 5 K–TN temperature range without applied external magnetic field and 
the magnetic space group is R 3 c’ (Bertaut, 1997; Lahoubi et al., 1997).  
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7. Conclusion 

In this chapter, the temperature evolution of the magnetic structure in TbIG is studied by 
neutron diffraction experiments below TN (568 K). The “double umbrella” structure 
observed at 5 K appears below a specific temperature (~ 160 K) which could be related to the 
previous predicted TJ-point situated in the 150–190 K temperature range. The rapid 
variation of the Tb3+ moments is observed between 54 and 68 K where the predicted value 
(58 K) of the TB-point is located. The magnetic symmetry doesn’t change with the 
temperature and the magnetic space group is R 3 c’. The author is convinced that the 
symmetry considerations of the Representation Analysis of Bertaut presented in this chapter 
have demonstrated their usefulness in the determination of the thermal variation of the 
double umbrella magnetic structure in TbIG below TN. It is hoped that these results which 
are in good agreement with the magnetization measurements will facilitate a better 
understanding of the possible correlations between the magnetic properties via the double 
umbrella magnetic structure and the recent ME and MD effects found in this ferrite garnet. 
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