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1. Introduction 

Mathematical modelling of welding phenomena is very complex: involving melt pool 
phenomena, solidification, weldability analysis, microstructure evolution in the heat 
affected zone, welding heat-flow simulation, electrical-thermal-mechanical simulation etc. 
Some interactions between these processes are included in Fig. 1. Each topic alone can be 
intellectually challenging and too hard to be investigated by classical methods. With the 
increasing power of modern computer systems, numerical modelling and especially finite 
element analyses make it possible to produce excellent solutions to satisfy engineering 
demands.  

 

Fig. 1. Interrelated physical phenomena that arise in arc welding of ferritic steels [1, 2] 
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Finite element analysis offers a powerful technique for elaborating on the factors that affect 
the formation and distribution of residual stresses in engineering components. For the 
useful application of this technique for welds in pressure vessel components it is necessary 
that developments be made to allow analyses of large complex structures and with the 
successful management of metallurgical effects (e.g. phase transformations and micro-
structural evolution). 

2. Finite element analysis of welding 

This section is concerned with simulations of temperatures, displacements, stresses and 

strains in welded structure [3] without solid-state phase transformations. Detailed literature 

review in finite element analysis of welding (2001 and before) can be found in a paper by 

Lindgren [4]. 

2.1 Heat conducting equations 

Consider a particle with a differential volume d  at the position x at time t. Let u denote its 

internal energy, KE the kinetic energy, Qc, the net rate of heat flow by conduction into the 

particle from its surroundings, Qs , the rate of heat input due to external sources (such as 

radiation) and P the rate at which work is done on the particle by body forces and surface 

forces (i.e., P is the mechanical power input). Then, in the absence of other forms of energy 

input, the fundamental postulate of conservation of energy states that [5] 

 ( ) c s

d
U KE P Q Q

dt
      (1) 

And as shown by Lai [5], the energy equation at each point of the continuum reduces to 

 ( )
du

tr div
dt

    sTD q q   (2) 

where qs is the rate of heat input (known simply as the heat supply or heat flux vector) per 

unit mass by external sources, q is a vector whose magnitude gives the rate of heat flow 

across a unit area by conduction and whose direction gives the direction of heat flow, then 

by Fourier’s law, k T  q grad , k(T) is the thermal conductivity, T is the temperature. The 

term ( ) str PTD  is known as the stress power (per unit volume). It represents the rate at 

which work is done to change the volume and shape of a particle of unit volume. Finally, T 

is the Cauchy stress and D is the tensor describing the rate of deformation. 

Equation (2) represents the energy equation for two-way coupling. The stress power Ps 

couples the mechanical state to the thermal state; i.e., mechanical work causes heating. 

In one way coupling, the stress power term is assumed negligible compared to the heat input 
terms on the right-hand side of equation (2), and it is also assumed that the internal energy is 
only a function of the temperature, i.e., independent of strains. Thus, equation (2) becomes: 

 
du

div
dt

    sq q  (3) 
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Now using Fourier’s law k T  q grad , we have 

  ( )
du

div k T
dt

    sgrad q   (4) 

where ( )T  is the density, and T is the temperature. Introducing the specific heat, C, of the 

medium define by 

 
du

C
dt

   (5) 

We can write equation (4) as  

 ( )
T

C div k T
t

 
  

 sgrad q    (6) 

T

t




 is the change in temperature over time, k(T) is the thermal conductivity, the product C 

reflects the capacity of the material to store energy.  

For a constant pressure process the change of specific enthalpy is equal to the heat transfer, 

i.e., specific heat, p

dH
C

dT
 , where H is the specific enthalpy, the subscript ‘p’ refers to 

constant pressure. The equation (4) now becomes 

 ( )
dH

div k T
dt

    sgrad q  (7) 

H is a function of temperature.  

In gas tungsten arc (GTAW or TIG) welding, the area-specific density of heat flow to the 

weld pool by the welding arc over a small area of the work-piece is of the order of 05 10  to 
25 10  W/mm2 [6]. As a result of this intense local heat flux, there are high temperature 

gradients in the neighbourhood of the weld pool. It is therefore assumed that the stress 

power term is small compared to the heat input terms of the energy equation, and that 

modelling the welding process as one-way coupling, neglecting coupling between 

mechanical and thermal problems, is reasonable. 

2.2 Thermal boundary and initial conditions 

Initial and boundary conditions need to be specified to solve equation (7). Various types of 

conditions are necessary to transform the real physical conditions into mathematical models 

[5]. Consider an arbitrary fixed volume,  , of the medium which is bounded by a closed 

surface S. 

a. Temperature conditions  

Initial conditions are required only when dealing with transient heat transfer problems in 

which the temperature field in the material changes with time. 
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 ( ,0),T T X X   (8) 

Specified boundary conditions are required in the analysis of all transient or steady-state 
problems.  

 ( , ),T T t S X X   (9) 

b. Surface heat flux 

 ( , ),t S q q X X   (10) 

c. Volumetric heat flux 

 ( , ),T t r X X   (11) 

d. Convection 

 0( ),h T T S  q X  (12) 

where ( , )h h t X  is the film coefficient and 0 0( , )T T t X  is the sink temperature. 

e. Radiation 

 4 0 4(( ) ( ) ),z zA T T T T S    q X   (13) 

where A is the radiation constant (emissivity multiplied by the Stefan-Boltzmann constant) 
and TZ is the temperature corresponding to absolute zero on the scale used. For example TZ 

=-273°C or 0 k. 

2.3 Moving heat sources 

Chemical processes occurring in the weld pool, at elevated temperatures, and the choice 
of welding consumables affect the weld metal composition [6]. During the heating stage, 
heat energy has to be supplied to the solidus area. This solidus area includes weld nugget 
and a portion of the work pieces (weld pool). If the size and shape of a solidus area of the 
moving molten pool (equivalent heat source) is not determined, then an analytically 
specified volumetric heat source is used. The parameters of the heat sources are adjusted 
in a way that the result is approximately the shape of the molten zone. For each welding 
process a specific type of heat source is most effective. In MIG, TIG, welding residual 
stresses analysis, most researchers use a simplified 3D double ellipsoid model (see Fig. 2) 
developed by Goldak [7] for modelling of the heat source [8, 9]. It should be noted that the 
double ellipsoid heat source uses a Gaussian distribution of heat input. Whatever heat 
source is used, the mesh must be fine enough to capture the total amount of heat 
deposited.  

In the Goldak model, the fractions of heat deposited in the front and rear of heat source are 

denoted by ff and fr, respectively, and these fractions are specified to satisfy ff + fr =2. Let q 

denote the power density in W/m3 within the ellipsoid, and let a, b, and c denote the semi-

axes of the ellipsoid parallel to the x, y, z axes. Then the power distribution inside the front 

and rear quadrant can be specified by 
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   (14) 

In equation (14), Q is the heat available at the source, v is welding speed, τ is a lag time 
necessary to define the position of the heat source at time t = 0. For an electric arc the heat 
available is  

 Q=ηVI  (15) 

Where η is the heat source efficiency, 0 1  , V is the arc voltage, and I is the arc current. 

The parameters a, b, c1, and c2 are independent, and can take on different values for the front 

and rear quadrants of the source to properly represent the weld arc.  

In the case the moving heat load is applied on the top surface of the model, some 
researchers [10, 11] employed a modified Gaussian distribution model of the arc heat flux. 
This states that [11]:   

 

2
2

22
1,2

3( ( ))3
,

1,2

3
( , , ) exp exp

z v tx
f r ca

Q
q x z t

ac





  

   (16) 

It should be noted that in the case of the modelling of high energy welding process like 
laser, electron beam, a conical heat source would be more satisfactory [12]. 

 

Fig. 2. Goldak double ellipsoid heat source model [6]. 

2.4 Latent heat effect 

Latent heat has to be taken into consideration in case of microstructure transformations and 
melting solidification. Latent heat influences the formation of the transient temperature 
field. The metallurgical transformations depend on the thermal history. The thermal 
properties can be derived from the proportions of phase using mixture rule. 

www.intechopen.com



 
Neutron Diffraction 54

 ( , ) ( )i i i
phases

k p T p k T  ( , ) ( )i i i
phases

T p T    ( , ) ( )i i i
phases

H H T p H T   (17) 

For a two-phase transformation, we have 1 2 1 1 2 2( , , ) ( ) ( )H p p T p H T p H T   and p1+p2=1. 

Substituting them into equation (7), it gives: 

 1 2
1 2 2 2 1( ) ( ) ( )

dH dH
p p T div k T p H H

dT dT
       sgrad q   (18) 

where 1 2
1 2( )

dH dH
p p

dT dT
  represent an equivalent specific heat and 2 2 1( )p H H   is latent 

heat of transformation. 

The finite element method for thermal computation involves the solution of the system of 
differential equations as follow [28]: 

    C T K T Q  (19) 

where T is a vector of nodal temperature, C is the specific heat matrix, K is the conductivity 
matrix and Q is the vector of nodal powers equivalent to internal heat sources and 
boundary conditions. 

2.5 Mechanical analysis 

One important aspect in weld modelling is melting/re-melting effect. The strains in a weld 

are annealed at high temperatures. To understand material behaviour at elevated 

temperature, Dong et al [13] examined a simple one dimension (1D) thermo-plasticity 

problem. It shows that continuum and structural mechanics based FE codes are not 

intended to deal with material state (e.g., from solid to liquid) change. As a result, the 

standard FE computation results in accumulated plastic strains and gives wrong solutions. 

Therefore, a material point going through melting or re-melting should lose memory (prior 

plastic strain annihilation) on cooling. It was stated that [13], among all phase change effects, 

melting/re-melting effects are the most important in residual stress analysis.  

As the weld torch moves, weld material is laid down below and behind the torch. Material 

deposition is another important aspect of finite element modelling of the weld process. 

Typically the finite element model of the weld joint contains the parent metal plate and all 

the weld passes in a single mesh. Welding of each pass is simulated in separate steps or sub-

analyses. To simulate the first pass of a multi-pass weld the future weld passes are removed 

using a feature available within the finite element code. Feng et al. [14] use a special user 

material property subroutine within ABAQUS [15] where elements representing the weld 

metal are assigned the thermal properties of air during the thermal analysis. The weld bead 

elements always exist during the thermal analysis, but the thermal conductivity and the heat 

capacity of these elements are assigned small values to represent air, but then switched to 

the actual metal properties when the element enters the moving weld pool. For the 

mechanical analysis, a similar approach is used where the elements to be welded are first 

assigned a set of artificial, very soft properties. As the elements solidify from the weld pool 

the actual properties of the metal are reassigned. 
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SYSWELD [16], a specific welding simulation code use a special process called ‘the chewing 
gum method’. The filler material is declared as an artificial phase which differs from hot but 
not yet molten material in the property; the modulus of elasticity is a fixed low value, for 
example 1.0N/mm2 for solids and 5.0N/mm2 for shells; the thermal strains are zero; this 
material – called ‘chewing gum’ - does not disturb the overall answer of the structure, and it 
behaves in a purely elastic manner; above the melting temperature, the chewing gum phase 
transfers to molten material within a small temperature range. 

2.6 Case study: bead on plate analysis 

This section describes the finite element analyses of an austenitic single bead on plate (BoP) 
specimen, the geometry and other properties are the same as a paper presented by Dennis et 
al [17]. A 3D half model, invoking symmetry along the centre of the weld bead is 
constructed. The ABAQUS finite element mesh consists of 45024 8-node brick elements and 
55013 nodes. Based on this mesh, two analyses have been carried out: 

Analysis A: Surface flux moving heat source; isotropic hardening assumed; torch 
moving along the centre line of the weld. 

Analysis B: Volumetric flux moving heat source; both mixed isotropic/kinematic 
hardening and kinematic hardening are investigated; “dynamic fusion boundary 
method” [17] is adopted and a specific torch path has been derived via trial and error in 
order to match the observed fusion boundary. 

PATRAN and ABAQUS/CAE are used to generate the numerical model; 
ABAQUS/Standard is used to simulate the welding process. There are two major features in 
welding simulation with ABAQUS: combined thermal-mechanical analysis procedures in 
sequentially coupled form; definition of moving torch and weld material deposition via user 
subroutines (*DFLUX, *GAPCON, *FILM)[15]. 

A typical sequentially coupled thermal-stress analysis consists of two ABAQUS/Standard 
runs: a heat transfer analysis and a subsequent stress analysis. To capture the weld 
deposition, one can use the element birth [14] technique; another approach is to use the 
GAPCON user subroutine. In the thermal analysis, a thermal contact between the weld and 
the base plate will be established. The GAPCON subroutine will switch the energy transport 
across the contact pair from zero to a value representative of welding conditions. The 
GAPCON subroutine can be written to activate the conductivity across the contact pair. By 
controlling the torch energy input into the joint using the DFLUX user subroutine, the 
moving torch can be simulated. The GAPCON subroutine can be used to model continuous 
deposition along the bead. 

The UFILM subroutine should also be considered, the subroutine captures variable 
convection coefficients. For welding, this subroutine is used to describe the variable 
convection as the weld metal is laid on the parent material, and to activate convection on the 
top surface of the weld material as it is deposited. 

Once the thermal analysis complete, the structural analysis can be executed. The structural 
analysis uses the thermal analysis (temperature) results as the loading. Boundary conditions 
are applied to restrain the system against rigid body motion. The thermal contact between 
the weld material and base plates is converted to 'tied constraints'. As the weld material 
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cools and becomes stiffer based on temperature dependent material properties, the tied 
constraint will capture the proper constraint between the weld material and the parent 
material plate.  

In the thermal analysis, it’s clear that the penetration at start is much deeper than the rest 

of the plate, to generate enough penetration, a smaller moving Gaussian ellipse used at 

start, 1.0 second start dwell assumed in analysis A. It should be noted that the same heat 

input was applied, regardless of the Gaussian ellipse shape & size used. Figures 3 and 4 

provided temperature contour plots showing the 1400°C isotherm along a longitudinal 

section through the middle of the bead, and a transverse section at weld mid-length, 

respectively. Figures 5 and 6 show 800°C peak temperature isotherms along the 

longitudinal section of the plate through the middle of the bead, and a transverse section 

at weld mid-length, respectively. Figure 7 shows a contour plot of von Mises stresses 

within the plate. 

 

Fig. 3. 1400°C peak temperature profile along the centre surface (Analysis A). 

 

Fig. 4. Weld fusion boundary at weld mid-length (Analysis A). 
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Fig. 5. 800°C peak temperature isotherms along the centre surface (Analysis A) 

 

Fig. 6. 800°C peak temperature isotherms at weld mid-length (Analysis A). 

 

Fig. 7. Residual von Mises stress (MPa); isotropic hardening (Analysis A). 
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In analysis B, because a half model is used, the power density used in equation (14) is 
multiplied by a coefficient Kq so that only half of the total heat flux deposited on the 
modelled plate upon integration equals the effective power from the torch, i.e. 

 
  

2
1,2

3 ²3 ²3 ²
,

² ²

1,2

6 3
( , , , )

z tyx
f r

a b cq

f Q
q x y z t k

a b c
e e e

 

 

       
   

   
 (20)  

Figure 8 presents fusion boundary as a longitudinal section along the middle of the bead, 
showing both start and stop ends of the bead. 

 

Fig. 8. 1400°C peak temperature profile along the centre surface; torch moved along a 
specific path, 1.0s start dwell (Analysis B). 

While Fig.  9 presents fusion boundary as 5 transverse sections, which shows ‘double-lobed’ 
effect at some sections. Figures 10-14 show the predicted 1400°C isotherms compared with 
the macrographs in 5 transverse sections, respectively. Figure 15 shows the thermocouple 
measurements of the plate. Figure 16 shows the predicted transient temperature profiles.  

The previous part detailed the thermal results from the bead on plate thermal analyses. This 
part presents the as-welded residual stress results from the subsequent mechanical analyses. 
Contour plots of the as-welded residual stresses results are similar between the kinematic and 
mixed hardening model and so contour plots are only presented for the latter in Figs. 17 and 
18. These figures present longitudinal and transverse stresses on the bead symmetry plane. 

A detailed comparison of the residual stresses has been performed by examination of line 
plot stresses along a number of sections. Here results are presented for a section on the 
symmetry plane, parallel to the bead but 2mm below the top surface of the plate. Results are 
shown in Fig. 19 for longitudinal stresses and Fig. 20 for transverse stresses. 
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Fig. 9. Fusion boundary at different sections, thermal couples are highlighted (Analysis B). 

 

Fig. 10. Transverse section 1 (start-end) through weld bead (Analysis B). 

Welding direction 
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Fig. 11. Transverse section 2 (~25% along bead) through weld bead (Analysis B). 

 

Fig. 12. Transverse section 3 (mid-length) through weld bead (Analysis B). 
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Fig. 13. Transverse section 4 (~75% along bead) through weld bead (Analysis B). 

 

Fig. 14. Transverse section 5 (stop-end) through weld bead (Analysis B). 
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Fig. 15. Thermocouple measurements 

 

Fig. 16. Temperature predictions (Analysis B). 
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Fig. 17. Longitudinal stress (MPa); mixed hardening (Analysis B). 

 

 

Fig. 18. Transverse Stress (MPa); mixed hardening (Analysis B). 

Two separated analyses were completed to examine different heat source and hardening 

models. The first analysis utilize 2D Gaussian ellipse moving heat source with isotropic 

hardening. The second analysis utilize 3D Gaussian ellipsoidal moving heat source with 

both linear kinematic hardening and nonlinear isotropic/kinematic hardening, with an 

annealing temperature of 850°C. 

The predictions of transient temperatures and the extent of the melted zone are first 

compared with thermocouple measurements made during welding, and with the results of 

destructive metallography. The predicted residual stresses are then presented in order to 

identify the effects on the predicted residual stresses of the material hardening model, 

global heat input, mechanical and thermal boundary conditions, and the handling of high 

temperature inelastic strains.  

Due to the absence of an effective heat source fitting tool within ABAQUS, the Gaussian 

ellipsoidal arc parameters a, b, c1, and c2 were calibrated by performing a set of manual 

iterative transient temperature analyses, which were labour intensive and not very effective.  

It appears that the use of isotropic hardening leads to over-conservative predictions of 

stresses, particularly in the longitudinal direction (refer to Fig. 19). Moving from isotropic to 

nonlinear isotropic/kinematic or linear kinematic hardening reduces the predicted stresses.  
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Fig. 19. Longitudinal stresses along section 2mm below top surface of plate (Analyses A and B). 

 

Fig. 20. Transverse stresses along section 2mm below top surface of plate (Analyses A and B). 
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3. Austenite decomposition kinetics for steels 

The estimation of welding residual stresses in thick-section ferritic steel has been less 

successful than in austenitic stainless steel, largely due to the complexities associated with 

the solid state phase transformations that occur in multipass welding [1-3, 18-22]. To predict 

residual stresses in ferritic steels, a phase transformation kinetics model is therefore required 

for prediction of microstructure evolution. There is more than one model available to 

address phase transformations in ferritic steels [23-27]. In this section, we focused on one 

kind of model, namely, Li’s model [25]. Li’s model is a semi-empirical model for hardenable 

steels developed by Kirkaldy and Venugopalan [23, 27], and later refined by Li et al. This 

model is based on a phenomenological approach and on equations of the kinetic-chemical 

type. The equation is generally written as follow: 

The austenite can, during cooling, transform into ferrite, pearlite, bainite and martensite. 

According to the Li’s model, austenite decomposition is characterised as follows: 

 0.4(1 ) 0.4( , , ) (1 )X XdX
F G T C X X

dt
   (21) 

Where X is the volume fraction of the transformation product at a given instant of time, G is 

the ASTM grain size number, C is chemical composition, and and T the absolute 

temperature. 

Austenite is stable at temperatures above the Ae3 (equilibrium temperature for 

austenitization end) and is unstable below the Ae3 line. As the temperature drops below the 

Ae3, ferrite begins to form. For the austenite-ferrite decomposition, the function F is 

expressed by: 

 
0.41 3

32 ( ) exp( 27500 / )
( , , )

exp( 4.25 4.12 4.36 0.44 1.71 3.33 5.19 )

G Ae T RT
F G T C

C Mn Si Ni Cr Mo

 


      
 (22) 

Where, R is the gas constant. For temperatures below eutectoid, and depending upon the 

cooling rate, the untransformed austenite will tend to decompose to pearlite. For the 

austenite-pearlite decomposition, the function F is expressed by: 

 
0.32 3

12 ( ) exp( 27500 / )
( , , )

exp(1.0 6.31 1.78 0.31 1.12 2.70 4.06 )

G Ae T RT
F G T C

C Mn Si Ni Cr Mo

 


     
 (23) 

where Ae1 is quilibrium temperature for austenitization start. When the bainite-start 

temperature Bs is reached, in this empirical theory, the pearlite is assumed to continue to 

form bainite at a rate given by: 

 
0.29 22 ( ) exp( 27500 / )

( , , )
exp( 10.23 10.18 0.85 0.55 0.90 0.36 )

G Bs T RT
F G T C

C Mn Ni Cr Mo

 


     
 (24) 

The martensite transformation is described by the Koistinen-Marburger [28] relationship.  

 ( ) 1 exp( ( )sX T b M T     for T<Ms  (25) 
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There are only two parameters (exponent b and martensite start temperature Ms) for this 

model.  

The critical temperatures Ae3, Ae1, Ms and Bs are calculated either from thermo-dynamic 

software, such as MTDATA [29] or from empirical formula [25]. Figures 21 and 22 show two 

typical phase diagram calculated by MTDATA. 

Other researchers have used Kirkaldy based equations to model microstrural evolutions 

during welding or forming processes, for example Watt et al. [26], Henwood et al. [30] and 

Akerstrom et al. [31], Lee et al. [32, 33].  

Traditionally, the kinetics of transformation is typically described by a standard equation 

known as the Kolmogorov-Johnson-Mehl-Avrami equation [34-38], named after the individual 

researchers who derived it. The KJMA equation has been used by many authors to describe 

phase fraction change [39, 40]. Other methods to model phase transformation include phase-

field simulation [41], neural network [42], Monte Carlo simulation [43], etc. 

In Li’s model a constant grain size is used. Figures 23-25 show continuous cooling 

transformation (CCT) diagram predicted by using Li’s model for SA508 Grade 3 for three 

different grain sizes [2]. It can be seen that the austenite grain size has significant effect on 

CCT curves. Further work is in progress in which the author is investigating the phase 

transformation kinetics incorporating austenite grain growth.  

4. Weld residual stress analysis including phase transformation effects 

The volume changes that occur in steels as they are heated and cooled can be inferred from 

dilatometry, where the change in length of an unloaded specimen is measured as a function of 

temperature. Figure 26 illustrates such an experiment - the upper straight line represents the 

expansion of the body-centred cubic phase (ferrite, bainite, martensite) and the lower line that 

of austenite (). Data at locations between the upper and lower lines correspond to the co-

existence of the parent and product phases. The transformations occurred at different 

temperatures upon heating and cooling. The transformation temperature is a function of the 

cooling rate, steel composition and austenite grain size. The measured coefficient of thermal 

expansion is larger for austenite (~ 23 × 10-6 K-1) than for ferrite (~ 15 × 10-6 K-1). As a 

consequence, the volume change due to transformation is greater during cooling than during 

heating. The volume expansion due to the transformation of austenite can partly compensate 

for thermal contraction strains arising as a welded joint cool. In this section, some finite 

element modelling cases have been presented. Predictions are compared and rationalised 

alongside measurements obtained by neutron diffraction. 

The thermal analysis is followed by a mechanical analysis in a sequentially coupled model. 

The total strain rate can be partitioned as follows: 

 p tpe th tr                 (26) 

where  , e , p , th , tr , tp are total strain rate, elastic strain rate, plastic or viscoplastic 

strain rate, thermal, transformation (i.e., volume change) and transformation plasticity, 

strain rates, respectively.  
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Fig. 21. Equilibrium mole fractions of phases versus temperature for SA508 

 

Fig. 22. Equilibrium mass fractions of phases versus temperature for SD3 
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Fig. 23. Predicted CCT curve for SA508, grain size is 10 micrometers 

 

Fig. 24. Predicted CCT curve for SA508, grain size is 50 micrometers 
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Fig. 25. Predicted CCT curve for SA508, grain size is 100 micrometers 

 

Fig. 26. Dilatometric diagram of SA508 steel heated at 30 K s-1 and cooled at 2 K s-1 [1, 2]. 
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The thermal strain rate th and transformation strain rate tr can be expressed as:  

 ( ) 1th
A A F FX X T       (27) 

 
*

1tr tr
FX      (28) 

Where, XA, XF are the volume fractions of austenite and ferrite phases, respectively, ,  A F   

are the thermal expansion coefficients of the corresponding phases, 
*tr is the dilatation due 

to austenite decomposition, 1 is the second order identity tensor. 

Each phase has its own mechanical properties for plasticity, i.e., yield stress and a strain 
hardening law. Generally, applying a linear mixture law to the mixture of all phases gives: 

 i
  phases

( ) X ( )y y
iT T     (29) 

Leblond et al [44] considered two types of phases, one is a hard phases or alpha phase 
(mixture of ferrite phases); the other is a soft phase or gamma phase (austenite). A non linear 
mixture law was used between hard phases and soft phase. 

4.1 Case study: single pass weld  

This section describes the finite element analyses of two rectilinear single pass welding 

plates (375×200×12 mm) prepared from the high strength steel Weldox 960 [2, 18]. A 5-mm-

deep "V" groove was machined along the center of each plate, with an included angle of 60 

deg, into which a single weld bead of either OK75.78 or LTTE was deposited using manual-

metal arc welding. The welding was performed in the down hand position with a heat input 

between 2.2 and 2.5 kJ mm -1, while a preheat temperature of 125°C was used and the plates 

were restrained by clamping during welding. The compositions of the two filler materials 

and the parent material are given in Table 1. 

 

Table 1. Approximate compositions of base plate and filler metals in weight percent 

In this work, prior to running SYSWELD models, the transformation temperatures of the 

parent steel and weld metals were estimated according to software available via MTDATA 

[29]. Estimates for the elevated-temperature yield stress of each weld metal were obtained 

by examining the results of the Satoh tests and assuming that once the stress level had 

reached yield, and prior to the commencement of a transformation, the stress that is 

recorded in a Satoh test can be assumed to be representative of the yield locus. A room-

temperature value for the yield stress of the parent material was obtained from the 

manufacturer’s data sheets. At intermediate temperatures, values for the yield stress were 

www.intechopen.com



 
Modelling Residual Stress and Phase Transformations in Steel Welds 71 

either interpolated or extrapolated. For each weld, a transient 3-dimensional analysis was 

carried out. A 3D half model, invoking symmetry along the centre of the weld bead is 

constructed, as shown in Fig. 27. Complex arc and weld pool phenomena were not 

considered, as is generally the case for the numerical prediction of weld residual stresses. 

However, a double-ellipsoid heat source was used to represent the welding arc, and this 

was calibrated using the in-built heat-source fitting tool within SYSWELD, by comparing 

the predicted geometries for the fusion zones and HAZ’s with those measured from 

macrograph sections through each welded plate. In each case, a 3-dimensional simulation 

was carried out using 48,240 eight-noded brick elements in both the transient-thermal and 

mechanical analyses. In order to account for the effects of annealing, the history of any 

element, including any plastic strain, was erased if the peak temperature exceeded the 

temperature of fusion. Otherwise, the model was configured to simulate the welding 

conditions as accurately as possible. Figure 28 presents fusion boundary at mid-length 

transverse section through weld pass on the plate. 

 

Fig. 27. Mesh of the plate being welded 

 

Fig. 28. Fusion zones produced for both cases. 
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A comparison of the longitudinal residual stress distributions predicted by SYSWELD with 
those that were measured by neutron diffraction is given in Fig. 29. The neutron diffraction 
results (top) show that, when compared to OK75.78, the LTTE weld metal introduces 
significant longitudinal compressive residual stresses within the fusion zone. As discussed 
above, this is consistent with LTTE having a lower transformation temperature than 
OK75.78. Furthermore, the peak tensile residual stresses, which for both welds appear to 
arise just outside the HAZ, are somewhat lower in the weld made with LTTE, and they arise 
over a smaller region. In the weld made with the OK75.78 filler material, the phase 
transformations that have taken place within the HAZ and fusion zone still have 
significantly reduced the residual stresses to levels that are below the peak tensile stresses 
found immediately outside the HAZ. Since the transformation temperatures of the weld 
metal and parent material are similar in this case (Weldox transforms at around 460 °C 
compared to 440 °C for diluted OK 75.78 [18]), these zones appear to behave similarly, and 
there is no discernible variation in residual stress with distance down the weld centre-line. 

 

Fig. 29. Comparison of neutron diffraction measurements of longitudinal residual stress 
(top) in the near weld region as reported in Ref. 10 with the stress distributions predicted by 
SYSWELD (middle) for welds made using the OK75.78 filler metal (left) and the LTTE filler 
metal (right).The predicted proportions of bainite formed as a consequence of welding 
appear for each weld at the bottom of the figure. Note that very little bainite exists in the 
LTTE weld metal, because this is a martensitic alloy. Beyond the HAZ boundary, the bainite 
fractions are equal to zero, because no phase transformations took place at these locations 
during welding. All dimensions are in mm and all stresses are in MPa. 
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It is evident from Fig. 29 that the major features of the stress distributions have been 
predicted correctly for both filler metals. For example, it appears that the location of the 
peak tensile stresses is approximately correct in each case. Furthermore, the models have 
predicted that the OK75.78 filler metal will lead to relatively low stresses within and directly 
underneath the weld bead, and that the LTTE filler metal will introduce highly compressive 
residual stresses to the weld metal region at about the right level (~ -400MPa). The 
magnitude of the tensile peak stresses, however, appears to be somewhat over-estimated by 
the SYSWELD models. This may be related to the limitations associated with using data 
from Satoh tests to estimate the yield locus. In both cases, isotropic hardening was assumed, 
but the authors also created models that assumed kinematic hardening and it was found 
that, for the single welding thermal cycle, there did not appear to be any notable sensitivity 
to the hardening model adopted. 

Interestingly, SYSWELD predicts that the transformation temperature of the weld metal 
does not have a significant effect on the magnitude of the peak stresses beyond the HAZ, 
although a small reduction in the extent of the peak-stress region does appear to have been 
captured. It is possible, however, that the effects of the weld metal transformation 
temperature would have been predicted more accurately if the transformation strains within 
the fusion zone and HAZ had been represented faithfully. In this respect it should also be 
noted that variant selection has not been incorporated in the SYSWELD model. This means 
that only the volume part of the transformation has been accounted for. The anisotropic 
shear component may be significant, especially for transformations at low temperature, 
where the stress just prior to transformation will be large and thus may bias variant 
selection. This would increase the effectiveness of the transformation in reducing the 
residual stress. This effect will be reported subsequently. 

While the overall agreement between the simple SYSWELD model trained only on the basis 
of Satoh tests and the neutron results is encouraging, the discrepancies between the models 
and the neutron diffraction measurements highlight the need for validation and improved 
understanding of the transformation behaviour. In this respect further in-situ synchrotron 
X-ray diffraction experiments, such as those described in another article [18], offer the 
potential for the quantification of phase fractions during any simulated welding thermal 
cycle that may be of interest, and they can also reveal the extent to which stress-induced 
transformation texture (or variant selection) may contribute to anisotropy in macroscopic 
transformation strains. 

5. Conclusion 

Mathematic modelling of austenitic (non-transforming) and ferritic (transforming) steel 

welds has been investigated by using finite element codes ABAQUS and SYSWELD. This is 

part of a research programme the author carried out at the University of Manchester, UK. 

The aim of the work is to understand welding residual stress by numerical modelling and 

neutron diffraction measurements.  

Numerical studies of a single bead on plate austenitic steel weld suggest that the use of 
isotropic hardening leads to over-conservative predictions of stresses, particularly in the 
longitudinal direction. Moving from isotropic to nonlinear isotropic/kinematic or linear 
kinematic hardening reduces the predicted stresses. 
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Numerical studies of a single pass ferritic steel welds show that phase transformation and 
transformation temperature have significant effects on residual stress. Neutron diffraction 
measurements supported numerical results. Utilities were developed within the finite 
element code ABAQUS to incorporate solid state phase transformations (micro-structural 
evolutions, phase dependent properties and volume changes) in welding residual stress 
analysis. 
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