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1. Introduction 

Based on the physics of global circulation, many expect an enhanced greenhouse effect to 

lead to a more active hydrological cycle with more precipitation on average (Hennessy et al. 

1997). This expected increase has been found in observations (Zhang et al. 2007) and has also 

been suggested by climate models, although these models are not consistent with respect to 

the spatial and temporal variability about this change. An increase in mean precipitation 

depth, assuming no change in the shape of the frequency distribution, would imply an 

increased frequency of heavy-precipitation events. However, some studies (Hennessy et al. 

1997, Allen and Soden, 2008) also suggest the increase in these extreme events could be 

disproportionate to the change in the mean, with a greater fraction of the total precipitation 

being delivered by such heavy precipitation events. Such a shift towards heavy events is a 

common conclusion of climate models (Cubasch et al. 2001, Meehl et al. 2007) as well as 

analyses of observed rainfall data at the continental scale (Easterling 2000, Kunkel 2003, 

Groisman 2005, Min et al. 2011). However, there is great spatial variation of this average 

pattern. This study aims to establish likely future projections for how extreme precipitation 

frequency and magnitude could change in the Midwestern region of the United States, and 

investigate the spatial variation of such changes within the area. 

Present global climate models (GCMs) typically produce results at the spatial resolution of 
150-300 km. This level of spatial resolution of GCMs is insufficient for establishing localized 
future climate projections and examining their spatial variations at the scale of a state. For 
increased spatial resolution, we used a set of Regional Climate Models (RCMs) run by 
National Center for Atmospheric Research (NCAR) under the North American Regional 
Climate Change Assessment Program (NARCCAP). RCMs involve nesting a higher 
resolution climate models within a coarser resolution GCM. The GCM output is used to 
define boundary conditions around a limited domain, within which RCM further models 
the physical dynamics of the climate system. These RCMs are designed to produce high 
resolution climate change simulations in order to investigate uncertainties in regional scale 
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projections of future climate and generate climate change scenarios for use in regional and 
local impacts research (Mearns et al, 2009).  

This study aims to achieve two main objectives. First, we evaluate the performance of 
NARCCAP models in terms of whether they capture the frequency distribution of daily 
precipitation data.  This evaluation is based on a comparison of retrospective model runs 
with observed station-based daily precipitation data. Second, based on the evaluation, we 
correct the bias in mean precipitation and frequency distribution of precipitation output 
from RCMs. After the model biases have been corrected, we then project future changes of 
mean and extreme precipitation patterns in the Midwest Region. 

2. The Midwestern Region 

The definition of the Midwestern region of the USA differs in literature.  The Midwestern 
U.S. defined for the National Climate Change Assessment program (Easterling and Karl, 
2000) includes the upper eight states south of the Great Lakes (Figure 1). We expanded the 
region to include Kentucky because of its similarities in both physical and socio-economic 
characters to the rest of the region. Based on 2010 census, the nine states contain about 21% 
of the nation’s population. Their cumulative gross state product is approximately 20% of 
national gross domestic product of 2010. Therefore it is an area of great economic 
importance. Situated at the heart of the Corn Belt, the region’s economy is dominated by 
farming, with 89% of the land area being used for agricultural purposes. As a result, climate 
variability and extreme weather play a key role in the economic productivity of the region. 
In recent decades, the Midwest region has observed a noticeable increase in average 
temperatures despite the strong year-to-year variations (Union of Concerned Scientists, 
2009). The largest increase has occurred in winter. Both summer and winter precipitation 
has been above average for the last three decades, making it the wettest period in a century. 
Heavy rainfall events are also significantly more frequent than a century ago. The Midwest 
has experienced two record-breaking floods in the past 15 years (Union of Concerned 
Scientists, 2009). It can be seen from these already observed changes that climate change will 
have a profound impact on the region. As a result it is very important to investigate how 
precipitation pattern will change for the region in the near future. 

The Midwestern region has a typical continental climate, although the Great Lakes have a 
great influence on nearby areas for both temperature and precipitation. The total annual 
precipitation of the region averages at 950 mm (1895-2005). In fall and winter, the precipitation 
is largely produced by mid-latitude wave cyclones. In spring and summer, it is dominated by 
varying amount of convective thunderstorm rainfall. In most part of the region, precipitation is 
highly seasonal, with most of the rainfall concentrated in spring and summer. However in the 
Ohio River Valley in the southeastern part of the region, the amount of precipitation is fairly 
constant throughout the year. Spatially, annual precipitation ranges from 600 mm in northwest 
to 1200 mm in southeast, because of the increasing proximity to the Gulf of Mexico source of 
moisture (Figure 1). The slight deviation to this precipitation gradient is leeway shores of the 
Great Lakes, where lake effect precipitation, particularly from August to December, generates 
relatively wet conditions that lead to an annual precipitation depth around 900 - 1000 mm 
(Huff and Angel, 1992). Most of extreme precipitation events occur in spring and summer. 
Heavy precipitation in spring, when evaporation is relatively low due to lower temperature, 
can lead to severe flooding.  
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Fig. 1. Study area: annual mean precipitation in the Midwest United States 

3. Data and methodology 

3.1 Data 

For model evaluation, observed daily precipitation data 1971-2000 were obtained from US 

Historical Climatology Network (USHCN) for climate stations in the Midwest Region. The 

time period was selected because it was the temporal domain of retrospective runs carried 

out by NARCCAP RCMs. We excluded years with less than 350 days of records to preserve 

frequency distribution of the data series, and any station with less than 25 complete years of 

records. We finally had 204 stations, with an average of 28.5 complete years of record per 

station. 

NARCCAP includes 6 RCMs driven by 4 GCMs over the domain of North America, and 

they typically have the spatial resolution of 50 km. Not all simulations are completed. At the 

time of this study, 6 of the 24 RCM-GCM combinations are finished and data distributed. 

Table 1 shows the RCM-GCM combinations used in this study. For model evaluation, we 

used RCM retrospective runs (1971-2000), which produce 3-hourly precipitation data series. 

This data was summarized into daily precipitation data series 1971-2000. For projecting 

future precipitation patterns, we summarized RCM output for 2040-2070 into future daily 

precipitation data series.  All model runs are driven with A2 emission scenario defined by 

the Intergovernmental Panel on Climate Change (IPCC) Special Report on Emission 

Scenarios (SRES) (IPCC, 2000). A2 assumes a medium high level of CO2 emission based on a 

development pattern close to business-as-usual.  
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RCMs 
GCMs 

CCSM CGCM3 GFDL HADCM3 

CRCM  X X  
MM5I X    
HRM3    X 
RCM3  X   
WRFG X    

Table 1. GCM-RCM combinations used in this study 

3.2 Model evaluation methodology 

In order to examine the frequency and magnitude of extreme events, it is important for a 
model to capture an accurate distribution of the data series. We first computed and 
compared the statistics that describe the shape of distribution for observed and modeled 
daily precipitation data. We chose to use L-moments to characterize the frequency 
distributions based on methods developed in Hosking (1990). L-moments are similar to 
conventional moments in that they are calculated to summarize the shape of a probability 
distribution. L-mean is identical to the conventional mean, whereas L-scale, L-skewness and 
L-kurtosis are analogous to conventional standard deviation, skewness and kurtosis. L-
moments however are often considered superior to conventional moments in characterizing 
distribution shapes, because they are less sensitive to outliers (Ulrych et. al, 2000, Elamir 
et.al, 2003, and Hosking 2006).  

We then attempted to quantify the deviation of the distributions of daily data output from 6 

NARCCAP RCMs from observed daily precipitation distribution based on the following steps: 

 Establish the empirical cumulative distribution function (Fobs) for observed precipitation 
series for each station: xi , i=1,2…n 

 
1

1
( ) 1{ }

n

obs i
i

F t x t
n 

     (1) 

Where 1{A} is the indicator function of event A. 

 Based on Fobs, calculate the probability (p) for each observed precipitation value Pj 

 
1

1
( ) ( ) 1{ }

n

j obs j i j
i

p P F P x P
n 

     (2) 

 Find the corresponding value in the modeled daily precipitation data for the grid point 
closest to that station (Pjm) that has the same probability. That is, calculate the quantile 
(Qm)value at p in the modeled precipitation data series 

 
( )

( ( ))
n p Pm j

m m m
j jP Q p P x

 
 

    (3) 

Where nm is the number of data points in the modeled precipitation data series; xm is the 

sorted modeled precipitation data series where 1
mx  ≤ 

mx2 … ≤ m
nx ;⎾⏋is the ceiling 

function. 
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 Calculate the model error (E) for each station as the root mean squared difference 
between Pj and Pjm 

 

2

1

( )
n

m
j j

j

P P

E
n







 (4) 

Based this method, we evaluated E for complete precipitation data series, as well as the 
error for observed dry days (Ed) and wet days (Ew) separately at each climate station. We 
then calculated the mean error for all stations in the state for each model. 

3.3 Method for projecting future mean and extreme precipitation 

A Common approach to studying extreme events is to establish their probability 

distributions, upon which the magnitude and return intervals (frequency) of extreme events 

can be established. This can be achieved either by fitting a theoretical distribution functions, 

or based on the empirical distribution of the data. The advantage of using theoretical 

distributions is that they can smooth out outliers, particularly when data is only  

available for short time frame, and they can project beyond the time period when data is 

available.  

Before we can apply this approach, however, we need to correct biases of RCMs in the 

frequency distribution of their output daily precipitation data series (as evaluated based on 

the methods outlined in 3.2). It is important to correct the entire distribution, not just mean 

values. We propose a quantile mapping method to achieve this correction.  

3.3.1 Bias correction through quantile mapping 

This involves the following steps: 

 Establish an empirical cumulative distribution function (Fmf)for modeled future daily 

precipitation data series mf
ix  

 
1

1
( ) 1{ }

n
mf

mf i
i

F t x t
n 

   (5) 

 For each modeled future precipitation value mf
jP , find the corresponding quantile 

values of same probability in the observed and modeled current daily precipitation data 

series: obs
jP and mc

jP  

 
( )

( ( )) mf
obs mf j

mfobs obs obs
j mf j n F P

P Q F P x 
 

   (6) 

Where nobs is the number of data points in the observed precipitation data series; xobs is 

the sorted observed precipitation data series where 1
obsx  ≤ 2

obsx … ≤ obs
ix . 

 
( )

( ( )) mf
mc mf j

mfmc mc mc
j mf j n F P

P Q F P x 
 

     (7) 
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Where nmc is the size of the modeled current precipitation data series; xmc is the sorted 

modeled current precipitation data series where 1
mcx  ≤ 2

mcx … ≤ mc
ix . 

 We then use the ratio of obs
jP and mc

jP to correct the bias in future precipitation data 

series. 

 
( )

( )

ˆ
mf

obs mf j

mf
mc mf j

obs
obs

n F Pjmf mf mf
j j jmc mc

j n F P

x
P

P P P
P x

 
 

 
 

     (8) 

Based on this bias-correction, we derived a future daily precipitation data series from RCMs 
for each of the climate station.  

3.3.2 Frequency analysis 

After the bias in the distribution is corrected, we then fit a theoretical distribution function 
to both the observed and future modeled data, based on which the magnitude of 
precipitation events of certain return intervals can be established for comparison. A variety 
of distribution functions have been used to study extreme precipitation events, such as 
generalized extreme value (GEV), Weibull and Pearson III distributions for annual maxima 
data, generalized Pareto (GP) distribution for excesses over a high threshold, and 
generalized Logistic (GL), lognormal (LN) and Gamma distributions for full precipitation 
records. We used the L-moment ratio (L-skewness vs. L-kurtosis) diagram (Rao and Hamed, 
1999) to help select the best distribution for our data. Figure 2 plot the L-skewness and L-
kurtosis ratios for both observed and modeled data for all stations. Results show that 
Gamma distribution best approximate the distribution of daily precipitation totals. This 
selection is also supported by many previous studies (Crutcher et al. 1977, Buishand 1978, 
Guttman et al. 1993, Groisman et al. 1999). Gamma distribution has the following density 
function: 

 
( )

11
( )

( )

x

af x x e
 




    (9) 

The variable x has lower bound of zero, 0< x < ∞. For this family of distributions, the ǂ-

parameter defines the shape of the distribution, while ǃ-parameter characterizes the scale. 

Since it does not rain every day, a mixed distribution model is sometimes considered for 

daily precipitation totals (Groisman et al, 1999). Under this model, it is assumed that the 

occurrence of daily precipitation events has a binary distribution with the probability of a 

single event ppr, and the precipitation amount during this event is considered to have a 

gamma-distribution. The cumulative distribution function of precipitation totals F(x) is 

expressed as: 

 
0

( ) ( ) (1 ) ( , , )
x

pr prF x P X x p p f t dt         (10) 

with f(α,β,t)dt  being the probability density function of gamma-distribution. ppr can be 
estimated as the percentage of wet days in the data series. The maximum likelihood method 
is used to estimate the parameters ǂ and ǃ for each of the observed and future modeled 
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daily precipitation data series. After the cumulative probably density function F(x) is 
established we can derive the magnitude of precipitation events of various return intervals 
as: 

 1 1
(1 )

365
yP F

y
     (11) 

Where Py is the precipitation value with the return interval of y years, F-1(x) is the inverse 
function of the cumulative probability function F(x). 
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Fig. 2. L-moment ratio diagram for observed and modeled daily precipitation data in 
comparison to the L-moment ratio curves of theoretical distributions 
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4. Results and discussions 

4.1 Model evaluation: Frequency distributions of observed and modeled daily 
precipitation data 

Summary L-moment statistics for frequency distributions of observed and modeled daily 

precipitation data series are presented in Table 2. It can be seen that CCSM_WRFG daily 

precipitation series deviate most from the observed distribution of daily precipitation. The 

remaining models have comparable biases. They all have greater mean (except for 

CCSM_MM5I), less variance, skewness and kurtosis. This seems to indicate that the 

modeled data is less spread out, have higher values in small precipitation events and lower 

values in large events (hence less skewed than observed).  

Figure 3 illustrates the correlation between observed and modeled mean daily precipitation 

at all stations. The correlation coefficient (Pearson’s r) values are also presented in the figure. 

It should be noted that to evaluate a model’s performance at estimating mean precipitation, 

we should not only look at the correlation coefficient, but also how closely the points follow 

the x=y line. It can be seen that CCSM_WRFG model consistently under-estimate the mean 

daily precipitation. Most models slightly over estimate the mean daily precipitation (such as 

CGCM_RCM3, GFDL_RCM3 and HADCM3_HRM3). The model that performs best in terms 

of mean precipitation is CGCM3_CRCM, which has the highest correlation coefficient (0.81), 

and follows x=y line most closely. However, close estimate in mean precipitation does not 

mean the model also simulates well the whole distribution of daily precipitation data series. 

Figure 4 presents the quantile-quantile (Q-Q) plots between observed and modeled data for 

all stations for each of the 6 RCMs in order to show the deviation from observed distribution 

as well as the spread of different models. It can be seen from figure 4 that despite its close 

estimate of mean precipitation, CGCM3_CRCM performs the worst in estimating the 

complete distribution. It consistently underestimates most of the wet day quantile values. 

The close estimate of the mean is a result of over-estimation of small precipitation events 

offsetting this underestimation of larger quantile values. Figure 4 shows that majority of 

models underestimate large quantile values. All models overestimate days with no or small 

amount of precipitation. This can also be illustrated by the dry day quintile errors (Ed) 

presented in table 3. To some extent, this could be attributable to the fact that RCMs output 

average precipitation of a whole grid, which covers an area of 50 by 50 km, whereas station 

data are point-based.  

Table 3 summarizes root mean squared error of modeled quantile values for all data (E), dry 

days (Ed) and wet days (Ew) respectively. Based on RMSE, it seems that HADCM3_HRM3 

performs best in estimating the observed frequency distribution of daily precipitation data, 

as it has lowest E and Ew, and fairly low Ed. The calculated model errors again confirm that 

CCSM_WRFG and CGCM3_CRCM have the poorest performance in simulating the 

frequency distribution, and its model errors are above the other models. The rest of the 

models have comparable performance. The average RMSE for full record quantiles for all 

models is about 1 mm, or about 40% of mean precipitation amount. This ranges from 0.78 to 

1.65 mm, or 30 to 63% of mean daily precipitation. The average RMSE for wet day quantile 

values for all models is 3.04 mm, or 35% of the mean wet day precipitation. It ranges 

between 25-54% of mean wet day precipitation among different models.  
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Model 
Mean 

(mm/day) 
L-scale L-skewness L-kurtosis 

 Value % diff. Value % diff. Value % diff. Value % diff. 

Observed  2.62  0.88  0.77  0.53  

CCSM_MM5I 2.40 -8.38 0.84 -3.58 0.72 -6.18 0.46 -12.05 

CCSM_WRFG 1.96 -25.39 0.87 -0.73 0.77 0.14 0.55 4.17 

CGCM3_CRCM 2.65 0.92 0.76 -13.28 0.62 -19.55 0.36 -32.03 

CGCM3_RCM3 3.09 18.01 0.80 -8.28 0.67 -12.36 0.42 -19.97 

GFDL_RCM3 2.90 10.52 0.79 -9.56 0.66 -14.52 0.40 -24.14 

HADCM3_HRM3 2.95 12.49 0.83 -4.94 0.71 -7.71 0.46 -13.37 

Model  mean 2.66 1.36 0.82 -6.73 0.69 -10.03 0.44 -16.23 

Table 2. Summary statistics for frequency distributions of observed and modeled daily 
precipitation data series 

 

Model E 
E as % of mean 

daily precipitation 
Ed Ew 

Ew as % of mean 
wet day 

precipitation 

CCSM_MM5I 0.93 36 0.07 2.95 34 

CCSM_WRFG 1.11 42 0.05 3.63 42 

CGCM3_CRCM 1.65 63 0.36 4.65 54 

CGCM3_RCM3 0.85 32 0.27 2.16 25 

GFDL_RCM3 1.02 39 0.29 2.69 31 

HADCM3_HRM3 0.78 30 0.15 2.18 25 

Model mean 1.06 40 0.20 3.04 35 

Table 3. Root mean squared error of modeled quantile values for all data (E), dry days (Ed) 
and wet days (Ew) 

4.2 Projecting future precipitation patterns in the Midwest Region 

4.2.1 Mean daily precipitation 

After applying bias correction based on quantile mapping method, we calculated future 

mean daily precipitation for the Midwest region for the time period 2040-2070. Table 4 

summarizes how daily mean precipitation might change for the study area based on climate 

models. With the exception of CCSM_WRFG (which projects very slight decrease), all other 

models project increase in mean precipitation in the region. The average change for all 

models is 7.7%, ranging from 0-12%. Figure 5 shows the spatial pattern of precipitation 

change based on mean projection of all models. It seems that mean precipitation is likely to 

increase more in north and less in the south. This is likely due to increased evaporation from 

the Great Lakes under a warmer temperature. Spatial pattern of mean precipitation change 

varies among different models (Figure 6), but most models project increase in the northern 

part of the region. CCSM_WRFG is the only model that project decrease of precipitation in 

the south at the similar magnitude as the increase in the north. All other models project 

increase in all Midwest region. 
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Fig. 3. Correlation between observed and modeled mean daily precipitation at all stations. 
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Fig. 4. Q-Q plots for all stations for each of the RCMs 
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Models Mean daily precipitation (mm/d) % change 

Observed (1971-2000) 2.62  

Future (2040-2070)   

CCSM_MM5I 2.87 9.51 

CCSM_WRFG 2.61 -0.44 

CGCM3_CRCM 2.79 6.59 

CGCM3_RCM3 2.89 10.11 

GFDL_RCM3 2.86 8.95 

HADCM3_HRM3 2.93 11.67 

Model mean  2.82 7.73 

 

Table 4. Changes in the Midwest mean daily precipitation in 2040-2070 

 
 
 
 
 

 
 
 

Fig. 5. Changes in mean daily precipitation in 2040-2070 (model mean). 
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4.2.2 Extreme precipitation events 

We used the mixed probability model (eq. 10) to project extreme precipitation events. We 

used the wet day frequency as an estimate for precipitation probability (ppr), and fit a 

Gamma distribution to the wet day precipitation data using maximum likelihood method. 

Applying the same methodology on the observed and bias-corrected future daily 

precipitation data, we derived the magnitudes of extreme events of return interval of 1, 5, 10, 

15, 20 and 25 years for both present (1970-2000) and future (2040-2070). Table 5 summarized 

the results. All models show increase in precipitation depths of extreme events. In general, 

extreme precipitation events increase at greater magnitudes than mean precipitation. The 

increase is greater for more extreme events. For average results of all models, compared 

with 8% increase in mean precipitation, precipitation event of 1 year return interval is likely 

to increase by 13%, and that of 25 year could increase by 19%. There are variations among 

models in how they project spatial distribution of such changes. Our model evaluation 

suggests that mean of all models seems to capture the spatial variation of precipitation best. 

Based on this observation, we used mean values of all models to interpolate the spatial 

distribution of how extreme precipitation could change in the Midwest (Figure 7). It can be 

seen that in general the intensity for extreme precipitation increase disproportionately  

 
 
 

Return interval  1 year 5 year 10 year 15 year 20 year 25 year 

Observed (1970-2000) mm/day 55 82 96 103 108 112 

Future (2040-2070)        

CCSM_MM5I  mm/day 62 93 108 117 124 128 

 % change 12.59 13.26 13.19 13.72 14.51 14.70 

CCSM_WRFG mm/day 62 93 108 116 124 129 

 % change 11.80 12.70 12.90 12.87 14.31 14.86 

CGCM3_CRCM mm/day 61 91 106 114 121 125 

 % change 9.90 10.96 10.94 10.86 11.82 12.11 

CGCM3_RCM3 mm/day 64 100 117 127 135 141 

 % change 16.11 20.86 22.45 23.21 24.98 25.69 

GFDL_RCM3 mm/day 61 94 111 122 132 137 

 % change 9.72 13.61 16.01 18.56 21.43 22.76 

HADCM3_HRM3 mm/day 64 98 114 126 134 139 

 % change 15.94 19.44 19.48 22.15 23.75 24.37 

Model mean mm/day 62 95 111 120 128 133 

 % change 12.68 15.14 15.83 16.90 18.47 19.08 

 
 

Table 5. Present and future magnitudes of extreme precipitation events. 
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Fig. 6. Changes in mean daily precipitation in 2040-2070 from 6 RCMs 

www.intechopen.com



Projecting Changes in Extreme Precipitation in the Midwestern United States Using North  
American Regional Climate Change Assessment Program (NARCCAP) Regional Climate Models 

 

351 

 

 

Fig. 7. Changes in extreme precipitation (2040-2070). 
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more for more extreme events. Similar to the pattern of mean precipitation change, there 

seems to be more increase in extreme events in the northern part of the region. Since a lot of 

extreme precipitation events occur in spring, this increase could be attributed to decreased 

ice cover during the winter, early melt of lake ice, and consequent increased evaporation of 

the great lakes under a warmer climate. 

5. Conclusion 

In this study, we first evaluated the performance of NARCCAP regional climate models in 

terms of its ability to capture the frequency distribution of daily precipitation data in the 

Midwest region of the United States. We found all models have biases. In general, they tend 

to overestimate small events, and underestimate large events. Based on such evaluation, we 

corrected model biases based on quantile-mapping method. We then used the bias-corrected 

future daily precipitation output from NARCCAP RCMs to project future changes in 

precipitation using a mixed probability model based on Gamma distribution. Based on the 

models, on average, the mean precipitation could increase by 7.7% by 2040-2070 for the 

Midwestern Region. Magnitudes of extreme precipitation are likely to increase more than 

average. The increase could be disproportionately larger for more extreme precipitation 

events.  Spatially, northern part of the study area could see more increase in both mean and 

extreme precipitation, likely due to increased evaporation of the Great Lakes from a 

combination of higher temperature and less ice cover both spatially and temporally under a 

warmer climate. 

6. References 

Allan RP, Soden B J. 2008. Atmospheric warming and the amplification of precipitation 

extremes. Science 321:1481–1484. 

Buishand, TA. 1978. Some remarks on the use of daily rainfall models. Journal of Hydrology, 

36:295-308. 

Crutcher, HL, McKay, GF, Fullbright, DC. 1977. A note on a gamma distribution  

computer program and computer produced graphs. NOAA Technical Report 

EDS24, Environmental Data Service, NOAA, Department of Commerce, 

Washington DC. 

Cubasch U, Boer GJ, Stouffer RJ, Dix M, Noda A, Senior CA, Raper S, Yap KS. 2001. 

Projections of future climate change, in Climate Change 2001: The Scientific Basis. 

Contribution of Working Group I to the Third Assessment Report of the Intergovernmental 

Panel on Climate Change. Edited by J.T. Houghton et al., pp. 525-582. Cambridge 

University Press, New York.  

Easterlin DR and Karl TR. 2000 Potential consequences of climate variability and change for 

the Midwestern United States. In Climate Change Impacts on the U.S.: The Potential 

Consequences of Climate Variability and Change, ed. National Climate Assessment 

Team, p 167-188. 

Easterling DR, Evans JL, Ya P, Groisman PY, Karl TR, Kunkel KE, Ambenje P. 2000. 

Observed variability and trends in extreme climate events: a brief review. Bulletin of 

the American Meteorological Society 81(3): 417-425. 

www.intechopen.com



Projecting Changes in Extreme Precipitation in the Midwestern United States Using North  
American Regional Climate Change Assessment Program (NARCCAP) Regional Climate Models 

 

353 

Elamir, EAH, Seheult, AH. 2003. “Trimmed L-moments". Computational Statistics & Data 

Analysis 43 (3): 299–314. doi:10.1016/S0167-9473(02)00250-5. 

Groisman PY, Karl TR, Easterling DR, Knight RW, Jamason, PF, Hennessy, KJ, Suppiah, R. 

Page, CM, Wibig, J, Fortuniak, K, Razuvaev VN, Douglas A. Forland, E, Zhai PM. 

1999. Changes in the probability of heavy precipitation: Important indicators of 

climate change. Climatic Change 42:243-283. 

Groisman PY, Knight RW, Easterling DR, Karl TR, Hegerl GC, Razuvaev VN. 2005. Trends 

in intense precipitation in the climate record. Journal of Climate 18:1326-1350. 

Guttman, NB, Hosking, JRM, Wallis, JR. 1993. Regional precipitation quantile values for the 

Continental United States computed from L-moments. Journal of Climate, 6:2326-

2340. 

Hennessy KJ, Gregory JM, Mitchel JFB. 1997. et al. 1995. Changes in daily precipitation 

under enhanced greenhouse conditions. Climate Dynamics 13: 667-680. 

Hosking JR. 1990. L-moments: analysis and estimation of distributions using  

linear combinations of order statistics. Journal of Royal Statistical Society B, 52: 105-

124. 

Hosking, JRM. 2006. "On the characterization of distributions by their L-moments". Journal of 

Statistical Planning and Inference 136: 193–198. 

Huff, FA, Angel JR. 1992. Rainfall Frequency Atlas of the Midwest. Midwestern Climate Center 

Bulletin 71. 

Intergovernmental Panel on Climate Change. 2000. Special Report on Emission Scenarios. 

UN Environment Program, Nairobi, Kenya. 

Kunkel KE. 2003. North American trends in extreme precipitation. Natural Hazards 29: 291–

305. 

Mearns LO, Gutowski WJ, Jones R, Leung L-Y, McGinnis S, Nunes AMB, and Qian, Y. 2009. 

A regional climate change assessment program for North America. EOS 90(36): 

311-312.  

Meehl GA, Stocker TF, Collins WD, Friedlingstein P, Gaye AT, Gregory JM, Kitoh A. Knutti 

R, Murphy JM, Noda A, Raper SCB, Waterson IG, Weaver AJ, Zhao Z-C. 2007. 

Global climate projections. In: Climate Change 2007: The Physical Science Basis. 

Contribution of Working Group I to the Fourth Assessment Report of the 

Intergovernmental Panel on Climate Change. Edited by S. Solomon et al. pp. 749-845. 

Cambridge University Press, New York. 

Min SK, Zhang X, Zwiers FW, Hegerl GC. 2011 Human contribution to more-intense 

precipitation. Nature 470:378-381. doi:10.1038/nature09763. 

Rao, AR, Hamed KH. 2000 Flood Frequency Analysis. CRC Press, Boca Raton,  

Florida. 

Ulrych, T J, Velis, DR, Woodbury, AD, Sacchi, MD. 2000. “L-moments and C-moments”. 

Stochastic Environmental Research and Risk Assessment, 14 (1), 50–68. 

Union of Concerned Scientists. 2009. Confronting Climate Change in the U.S. Midwest.  

 http://www.ucsusa.org/global_warming/science_and_impacts/impacts/climate-

change-midwest.html. Accessed Nov. 1, 2011. 

www.intechopen.com



 
Greenhouse Gases – Emission, Measurement and Management 

 

354 

Zhang X, Zwiers FW, Hegerl BC, Lambert FG, Gillett NP, Solomon S, Stott PA, Nozawa T. 

2007. Detection of human influence on twentieth-century precipitation trends. 

Nature 448: 461-465. doi:10.1038/nature06025 

www.intechopen.com



Greenhouse Gases - Emission, Measurement and Management

Edited by Dr Guoxiang Liu

ISBN 978-953-51-0323-3

Hard cover, 504 pages

Publisher InTech

Published online 14, March, 2012

Published in print edition March, 2012

InTech Europe

University Campus STeP Ri 

Slavka Krautzeka 83/A 

51000 Rijeka, Croatia 

Phone: +385 (51) 770 447 

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai 

No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 

Fax: +86-21-62489821

Understanding greenhouse gas sources, emissions, measurements, and management is essential for capture,

utilization, reduction, and storage of greenhouse gas, which plays a crucial role in issues such as global

warming and climate change. Taking advantage of the authors' experience in greenhouse gases, this book

discusses an overview of recently developed techniques, methods, and strategies: - A comprehensive source

investigation of greenhouse gases that are emitted from hydrocarbon reservoirs, vehicle transportation,

agricultural landscapes, farms, non-cattle confined buildings, and so on. - Recently developed detection and

measurement techniques and methods such as photoacoustic spectroscopy, landfill-based carbon dioxide and

methane measurement, and miniaturized mass spectrometer.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Shuang-Ye Wu (2012). Projecting Changes in Extreme Precipitation in the Midwestern United States Using

North American Regional Climate Change Assessment Program (NARCCAP) Regional Climate Models,

Greenhouse Gases - Emission, Measurement and Management, Dr Guoxiang Liu (Ed.), ISBN: 978-953-51-

0323-3, InTech, Available from: http://www.intechopen.com/books/greenhouse-gases-emission-measurement-

and-management/future-changes-in-precipitation-pattern-in-the-midwest-region-of-usa



© 2012 The Author(s). Licensee IntechOpen. This is an open access article

distributed under the terms of the Creative Commons Attribution 3.0

License, which permits unrestricted use, distribution, and reproduction in

any medium, provided the original work is properly cited.


