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Bacteriophages of Clostridium perfringens 

Bruce S. Seal et al.* 
Poultry Microbiological Safety Research Unit, Agricultural Research Service, USDA,  

USA 

1. Introduction 

Bacterial viruses were first reported in 1915 by Fredrick William Twort when he described a 
transmissible “glassy transformation” of micrococcus cultures that resulted in dissolution of 
the bacteria (Twort, 1915). Subsequently, Felix Hubert d’Hérelle reported a microscopic 
organism that was capable of lysing Shigella cultures on plates that resulted in clear spaces 
in the bacterial lawn that he termed “plaques” (d’Hérelle, 1917). The term “bacteriophage” 
was introduced by d’Hérelle (1917) as he attributed the replicate nature of this phenomenon 
to bacterial viruses. During 1919 d’Hérelle utilized phages isolated from poultry feces as a 
therapy to treat chicken typhus and further utilized this approach to successfully treat 
dysentery among humans (Summers, 2001). Prior to the discovery and widespread use of 
antibiotics, bacterial infections were treated by administering bacteriophages and were 
marketed by L’Oreal in France (Bruynoghe & Maisin, 1921). Although Eli Lilly Co. sold 
phage products for human use up until the 1940’s, early clinical studies with bacteriophages 
were not extensively undertaken in the United States and Western Europe after the 1930’s 
and ‘40’s. Bacteriophages were and continue to be sold in the Russian Federation and 
Eastern Europe as treatments for bacterial infections (Sulakvelidze et al., 2001). 

Bacteriophages have been identified in a variety of forms and may contain RNA or DNA 
genomes of varying sizes that can be single or double-stranded nucleic acid (Ackermann, 
1974; 2003; 2006; 2007). Of all the bacteriophages examined by the electron microscope, 95% 
of those reported are tailed with only 3.7% being filamentous, polyhedral or pleomorphic 
(Ackermann, 2007). The tailed bacteriophages contain a linear, double-stranded DNA 
genome that can vary from 11 to 500 kb in the order Caudovirales which is further divided 
into three families based on tail morphology (Ackermann, 2003; 2006). These bacterial 
viruses have icosohedral heads while those phages with contractile tails are placed in the 
Myoviridae, those phages with a long non-contractile tail are placed in the Siphoviridae and 
phages with short tail structures are members of the Podoviridae. Although bacteriophages of 
the Caudovirales (tailed-phages) may be physically similar it has been difficult to classify 
them by use of DNA or protein sequences due to the tremendous diversity because of 
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horizontal gene transfer (Casjens, 2005). Also, Unlike the case for Bacteria and Archaea, both 
of which can be classified using the 16S rRNA gene (Woese and Fox, 1977), due to the 
mosaic nature of bacteriophage genomes (Hendrix et al., 1999), there appears not to be one 
candidate conserved gene that can be utilized to categorize all phages for a suitable 
classification scheme (Nelson, 2004). One approach has been to construct a “phage 
proteomic tree” based on predicted protein sequences of a bacterial virus (Rohwer and 
Edwards, 2002) while another approach is to divide bacteriophages based on genome type 
(ssRNA or DNA) with a further demarcation by physical characteristics such as tailed or 
filamentous types (Lawrence et al., 2002). Proux et al. (2002) proposed a phage taxonomy 
scheme based on comparative genomics of a single structural gene module (head or tail 
genes). This partially phylogeny-based taxonomical system purportedly parallels many 
aspects of the current International Committee on Taxonomy in Virology (ICTV) classification 
system. 

2. Antibiotics, antibiotic resistance and the future role of bacteriophages 

There is worldwide concern over the present state of antimicrobial resistance (AMR) issues 
with zoonotic bacteria potentially circulating among food-producing animals, including 
poultry (McDermott et al., 2002; Gyles, 2008). This has resulted in the general public’s 
perception that antibiotic use by humans and in food animals selects for the development of 
AMR among food-borne bacteria that could complicate public health therapies (DuPont, 
2007). A major issue is that antibiotic resistance may not only occur among disease-causing 
organisms but also become an issue for other resident organisms in the host which may 
accumulate in the environment (Yan & Gilbert, 2004).  Sub-therapeutic use of antibiotics as 
growth promoters has been discontinued in the European Union (Regulation EC No. 
1831/2003 of the European parliament and the council of 22 September 2003 on additives for 
use in animal nutrition; Castanon, 2007). This concern is justified due to the increase in 
antibiotic resistance among bacterial pathogens (NAS, 2006; Gyles, 2008), including bacteria 
from healthy broiler chickens (Persoons et al., 2010). Consequently, there is a need for 
developing novel intervention methods including narrow-spectrum antimicrobials and 
probiotics that selectively target pathogenic organisms while avoiding killing of beneficial 
organisms (NAS, 2006). 

There has been a resurgent interest in bacteriophage biology and their use or use of phage 
gene products as antibacterial agents (Merril et al., 1996; Wagner and Walder, 2002; Liu et al., 

2004; Fischetti, 2010). The potential use of lytic bacteriophage and/or their lytic enzymes is 
of considerable interest for medicine, veterinary and bioindustry worldwide due to 
antibiotic resistance issues. Recently, the U.S. Food and Drug Administration approved a 
mixture of anti-Listeria viruses as a food additive to be used in processing plants for 
spraying onto ready-to-eat meat and poultry products to protect consumers from Listeria 

monocytogenes (Bren, 2007). In veterinary practice, experimental alimentary E. coli infections 
in mice and cattle were controlled by bacteriophage therapy (Smith & Huggins, 1982; 1987). 
Similarly Barrow et al. (1998) reported the use of lytic bacteriophages to protect against E. 

coli septicemia and meningitis in chickens and young cattle. Huff et al. (2002a,b; 2003) 
reported the use of a lytic bacteriophage to reduce effects of E. coli respiratory illness in 
chickens and bacteriophages have been proposed as a strategy for control of food-borne 
pathogens (Hudson et al., 2005). Joerger (2002) reviewed the literature for application of lytic 
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bacteriophage to control specific bacteria in poultry and concluded that evidence from 
several trials indicated that phage therapy may be effective under certain circumstances. 
However, obstacles for the use of phage as antimicrobials remain due to reasons such as 
limited host-range for many bacteriophages (Labrie et al., 2010). 

In the European Union (EU) antimicrobial growth promoters have been banned from animal 
feeds because of concerns over the spread of antibiotic resistances among bacteria (Bedford, 
2000; Moore et al.,2006) and the EU-wide ban on the use of antibiotics as growth promoters 
in animal feed entered into effect on January 1, 2006 (Regulation 1831/2003/EC). Removal 
of these antimicrobials will induce changes within the chicken intestinal microbial flora, 
dictating the need to further understand the microbial ecology of this system (Knarreborg et 

al., 2002; Wise and Siragusa, 2007), so that appropriate antibiotic alternatives may be 
developed based on this knowledge (Cotter et al., 2005; Ricke et al., 2005). There has been a 
limited number of new antibiotic drugs marketed recently with only two, linezolid which 
targets bacterial protein synthesis and daptomycin wherein the mechanism of action is 
unknown, appearing since 2000. This is disconcerting considering that this is happening at a 
time when there is an increasing emergence of antibiotic resistant bacteria with a meager 
number of new drugs being developed active against such agents (Projan et al., 2004). The 
view that there is no compelling reason to pursue development of novel therapeutic agents 
is unwise (Projan & Youngman, 2002), especially considering emergence of “pan-resistant” 
or multiple-antibiotic resistant strains of Gram-positive bacteria (French, 2010). 
Consequently, bacteriophage or perhaps more importantly their gene products may provide 
us with new antimicrobials to combat antibiotic resistant bacteria or that could be used 
synergistically with traditional antibiotics. 

3. Biology of Clostridium perfringens, human and veterinary medical issues 

Clostridium perfringens is a Gram-positive, spore forming, anaerobic bacterium that is 
commonly present in the intestines of people and animals. C. perfringens is classified into 
one of five types (A, B, C, D, or E) based on toxin production (Smedley et al., 2004; Sawires & 
Songer, 2006). Spores of the pathogen can persist in soil, feces or the environment and the 
bacterium causes many severe infections of animals and humans. The bacterium can cause 
food poisoning, gas gangrene (clostridial myonecrosis), enteritis necroticans and non-
foodborne gastrointestinal infections in humans and is a veterinary pathogen causing 
enteric diseases in both domestic and wild animals (Smedley et al., 2004; Sawires & Songer, 
2006). Spores of the pathogen can persist in soil, feces, and in the environment causing many 
severe infections in humans and animals. Clinical symptoms and pathogenesis of the 
infection is determined by enterotoxins produced by C. perfringens strains of type A (CPE 
strains). If a sufficient number of pre-formed C. perfringens cells are ingested from 
contaminated food, these cells are capable of passage from the stomach to the intestinal tract 
where upon sporulation (spore formation) CPE is released causing the disease state of C. 

perfringens food poisoning (Smedley et al., 2004; Sawires & Songer, 2006). Many heat 
processes are incapable of inactivating the C. perfringens endospores. Survival of spores in 
these products allows the subsequent outgrowth where spores can germinate and 
commence growth at temperatures of 43 to 47˚C. In foods such as meats with gravy, heating 
reduces the oxygen tension (lowered redox) to cause sufficient anaerobiosis in which greater 
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numbers of C. perfringens will rapidly divide. Importantly, C. perfringens has been 
documented to have very rapid doubling times, in some cases as low as 7 to 9 minutes in 
beef broth (Smedley et al., 2004; Sawires & Songer, 2006). 

Clostridium perfringens plays a significant role in food-borne human disease and is among the 
most common food-borne illnesses in industrialized countries (Brynestad & Granum, 2002; 
Lindström et al., 2011). It can be the second or third most frequent cause of bacterial foodborne 
illness in the United States and is responsible for approximately one million domestic cases 
annually (Mead et al., 1999; Scallan et al., 2011). Outbreaks are frequently associated with 
temperature-abused meat or poultry dishes and typically involve a large number of victims 
(Lindström et al., 2010). If a sufficient number of C. perfringens cells are ingested from 
contaminated food, these cells are capable of passage from the stomach to the intestinal tract 
where, upon sporulation, CPE is released causing the disease state of C. perfringens food 
poisoning (Wen & McClane, 2004). In addition to food poisonings, CPE-positive C. perfringens 
type A has been implicated in other diseases such as antibiotic-associated and sporadic 
diarrhea in humans that also may be food-related or non-food sources (Lindström et al., 2010). 
The Centers for Disease Control and Prevention (CDC) collects data on food-borne disease 
outbreaks (FBDOs) from all states and territories through the Food-borne Disease Outbreak 
Surveillance System (FBDSS). The 12 June 2009 issue of Morbidity and Mortality Weekly 
Report (http://www.cdc.gov/mmwr/preview/mmwrhtml/mm5822a1.htm) states that one 
of the pathogen-commodity pairs responsible for the most outbreak-related cases was C. 
perfringens in poultry (902 cases). Although C. perfringens is considered in the "medium" risk 
category, it can become a high risk pathogen/product combination with temperature 
abused poultry-meat products during extended shelf life or when cross-contaminated by 
Listeria monocytogenes (Mataragas et al., 2008). It was reported that improper retail and 
consumer refrigeration accounted for approximately 90% of the C. perfringens illnesses 
(Crouch et al., 2009) and poultry meat can be a frequently implicated food vehicle during 
outbreaks (Gormley et al., 2010; Nowell et al., 2010). 

Necrotic enteritis is a peracute disease syndrome and the subclinical form of C. perfringens 
infection in poultry are caused by C. perfringens type A producing the alpha toxin, and some 
strains of C. perfringens type A produce an enterotoxin at the moment of sporulation that are 
responsible for food-borne disease in humans. The mechanisms for colonization of the avian 
small intestinal tract and the factors involved in toxin production are largely unknown. 
Unfortunately, few tools and strategies are available for prevention and control of C. 
perfringens in poultry. Vaccination against the pathogen and the use of probiotic or prebiotic 
products has been suggested, but are not available for practical use in the field at the present 
time (Van Immerseel et al., 2004). Since most poultry harbor intestinal C. perfringens 
commensally as a component of the gut microflora, these issues lend credence to the 
hypothesis that as subtherapeutic usage of antibiotics is discontinued during poultry 
production, food-borne illness associated with C. perfringens will likely increase. This could 
potentially become a greater problem for the U.S. poultry industry as antibiotics are 
withdrawn from animal feeds as has been done in the European Union (Casewell et al., 2003; 
Van Immerseel et al., 2004). Control of clostridia in commercial poultry has traditionally 
been accomplished by feeding sub-therapeutic amounts of antibiotics in feed (Jones & Ricke, 
2003; Collier et al, 2003). Antibiotics have been utilized for over thirty years (Maxey and 
Page, 1977; George et al., 1982; Engberg et al., 2000; Brennan et al., 2003) and resistance of C. 
perfringens to growth-enhancing antibiotics has been detected among isolates from poultry 
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(Diarra et al., 2007). Consequently, there is a need for developing on-farm interventions to 
reduce populations of this bacterial pathogen that lead to peracute flock disease and 
possibly greater numbers of CPE+ isolates of C. perfringens entering the human food chain.  

4. Early literature reporting bacteriophages of Clostridium perfringens 

There is a paucity of genomics data for C. perfringens bacteriophages, but it has been known 
that both temperate and lytic phages are associated with the pathogen, while the Russian 
literature compiled by Spencer (1953) reported the use of clostridial bacteriophages to treat 
gas gangrene. Investigators at the Institute Pasteur reported bacteriophages that could be 
induced from lysogeny among isolates of C. perfringens that were long-tailed viruses of the 
Siphoviridae (Kreguer et al., 1947; Guelin & Kreguer, 1950; Guelin, 1953; Elford et al., 1953; 
Hirano & Yonekura, 1967). Subsequently, a member of the Podoviridae designated 
bacteriophage 80 was isolated with a distinct tail structure that was considered 
morphologically different from previously reported viruses of anaerobic bacteria (Vieu et al., 
1965). Intracellular replication of this virus was examined by Bradley & Hoeniger (1971) 
who reported that the bacteriophage had a head of approximately 40 nm in size with a 30 
nm tail. Intact viruses could be detected within the bacterial cell by 75 minutes post-
infection (p.i.) with cell lysis beginning at 105 to 115 min p.i. 

Gaspar & Tolnai (1959) published isolation of a virulent C. perfringens phage, while Ionesco 
et al. (1974) reported isolation of lysogenic bacteriophages. Lysogenic cultures could be 
induced by UV irradiation, nitrogen mustard [mechlorethamine; 2-chloro-N-(2-chloroethyl)-
N-ethyl-ethanamine, a nonspecific DNA alkylating agent] and to a lesser extent by 
mercaptoacetic acid. Twelve bacteriophages were induced from type A C. perfringens strains, 
ten from type B and 26 from type C strains of the bacterium, many of the phages were 
highly host specific with a high proportion of the C. perfringens strains resistant to infection 
by the viruses (Smith, 1959). Smith (1959) also reported that several viruses were apparently 
unable to enter into lysogeny and hence those were classified as ‘virulent’ bacteriophages. 
Following UV irradiation one lysogenic strain of C. perfringens resulted in isolation of a long-
tailed, DNA-containing bacteriophage with a non-contractile tail, designated CPT1 that 
produced turbid plaques. This phage had an eclipse phase of approximately 45 min with a 
maximum rise in titer 45 min following initial release of progeny virus (Mahony and Kalz, 
1968). A second bacteriophage designated CPT4 with similar characteristics, but with a 
shorter tail as compared with CPT1, was also isolated by these investigators (Mahony & 
Easterbrook, 1970). However, U.V. irradiation did not result in release of viruses from the 
indicator strain and it was reported that spontaneous release of the virus occurred with all 
resultant plaques that were clear. 

Lysogenic bacteriophages were isolated specifically from C. perfringens type C that were 
induced using mitomycin C treatment on specific isolates of the bacterium (Grant & 
Riemann, 1976). All the viruses had a similar morphology with polyhedral heads of 55 nm 
and long flexible tails of 130 to 190 nm.  Paquette & Fredette (1977) reported four lysogenic 
phages from C. perfringens type A that were induced with UV irradiation for 5 sec and had 
0.5 mm plaques with outer lysis rings. One phage was a podovirus, while the others were 
siphoviruses (Paquette & Fredette, 1977). Stewart & Johnson (1977) reported that lysogenic 
phages can have a positive effect on C. perfringens sporulation and Canard & Cole (1990) 
demonstrated that two different lysogenic phages had separate attachment sites that did not 
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share sequence similarity. Also, Shimizu et al. (2002) reported at least 20 phage-related 
sequence elements in the complete C. perfringens Strain 13, a gas gangrene isolate.  

A bacteriophage isolated from a C. perfringens fecal strain was adapted to a number of host 
strains from clinical swab and fecal isolates to develop a typing scheme using nine host 
modified phages (Yan, 1989). Of 109 strains, the phage types of 57 (52.3%) were identified, 
while nine (8.2%) other strains were sensitive to the phages at varying degrees. The 
remaining 43 (39.4%) strains were resistant and eleven of the 57 typable strains yielded cell-
surface mutants which belonged to different phage types from their parent strains (Yan, 
1989). Another phage-typing method for the bacterium was developed, but little or no 
information was available from the report (Satija & Narayan, 1980). 

 
Fig. 1. Plaques and bacteriophages of Clostridium perfringens isolated from a joint Russian 
Federation-USA collaborative research project. (A) Clear plaques produced by 
bacteriophages from a series of isolates reported in the text and references. (B) Long-tailed 
phages of the Siphoviridae. (C) Short-tailed phages of the Podoviridae. 

Initial screening for bacteriophages lytic for C. perfringens at the Poultry Microbiological 
Safety Research Unit, of the ARS, USDA and at the State Research Center for Applied 
Microbiology and Biotechnology in the Russian Federation was performed using filtered 
samples obtained from poultry (intestinal material), soil and processing drainage water 
(Figure 1). Bacterial viruses capable of lysing strains of C. perfringens type A and producing 
clear plaques were identified by spot-testing and titration of strains susceptible to the 
isolated phages (Fig. 1A). Lytic phage preparations were initially characterized 
morphologically utilizing plaque purified (3X) phage by electron microscopy using the 
modified method of Horne (1973) where both siphoviruses (Fig. 1B) and podoviruses (Fig. 
1C) have been discovered that are virulent for C. perfringens (Seal et al., 2011; Volozhantsev et 
al., 2011). 

5. Characteristics of Clostridium perfringens bacteriophage and prophage 
genomes 

Zimmer et al. (2002a) isolated two temperate bacteriophages by UV irradiation (phi3626 and 
phi8533) from lysogenic С. perfringens. The linear, double-stranded DNA genome of phi3626 
was reported to be 33.5 kb with nine nucleotide 3’ protruding cohesive ends and a G+C 
content of 28.4% (Zimmer et al., 2002a) which is essentially equivalent to its host DNA of 
28.6% (Shimizu et al., 2002; Myers et al., 2006). The phage phi3626 had a 55 nm diameter 
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isometric capsid with a 170 nm flexible, non-contractile tail (Zimmer et al., 2002a) that 
conformed to the Siphoviridae phage family in the order Caudovirales (Ackermann, 2006). 
Phage phi3626 was reportedly easier to propagate, so no genomics data were provided for 
phi8533 (Zimmer et al., 2002a). Physical characteristics of other C. perfringens bacteriophages 
are similar to phi3626 in that they were reported to have polyhedral heads of 55 nm in 
diameter with long flexible tails (Grant & Riemann, 1976; Paquette & Fredette, 1977) that 
also presumably had double-stranded DNA genomes. Only nineteen gene products could 
be assigned to the phage phi3626 genome based on bioinformatics analyses. Those were 
identified as encoding DNA-packaging proteins, structural components, a dual lysis system, 
a putative lysogeny switch, and proteins involved with replication, recombination, and 
modification of phage DNA. Several of the genes potentially influence cell spore-formation 
due to availability of the phage genes in the bacterial genome. Also, the phi3626 attachment 
site, attP, lies in a non-coding region immediately downstream of int encoding the integrase 
protein. Integration of the viral genome occurred into the bacterial attachment site attB, 
which is located within the 3' end of a C. perfringens guaA gene homologue. Subsequently, a 
phage-specific enzyme, a murein hydrolase, was expressed which had lytic activity against 
forty-eight test cultures of С. perfringens, but was not active against other clostridial species 
or bacteria belonging to other genera (Zimmer et al., 2002a). 

Bacteriophage genomes from viruses isolated from broiler chicken offal washes (O) and 
poultry feces (F), designated phiCP39O and phiCP26F, respectively, produced clear plaques 
on host strains (Seal et al., 2011). Both bacteriophages had isometric heads of 57 nm in 
diameter with 100-nm non-contractile tails characteristic of members of the family 
Siphoviridae in the order Caudovirales. The double-strand DNA genome of bacteriophage 
phiCP39O was 38,753 base pairs (bp), while the phiCP26F genome was 39,188 bp, with an 
average GC content of 30.3%. Both viral genomes contained 62 potential open reading 
frames (ORFs) predicted to be encoded on one strand of the DNA (Table 1). Among the 
ORFs, 29 predicted proteins had no known similarity to other reported proteins while others 
encoded putative bacteriophage capsid components such as a pre-neck/appendage, tail, 
tape measure and portal proteins. Other genes encoded a predicted DNA primase, single-
strand DNA-binding protein, terminase, thymidylate synthase and a potential transcription 
factor. Lytic proteins such as a fibronectin-binding autolysin, an amidase/hydrolase and a 
holin were encoded in the viral genomes. Several ORFs encoded proteins that gave BLASTP 
matches with proteins from Clostridium spp. and other Gram-positive bacterial or 
bacteriophage genomes as well as unknown putative Collinsella aerofaciens proteins that were 
detected in the virion. Proteomics analysis of the purified viruses resulted in the 
identification of the putative pre-neck/appendage protein and a minor structural protein 
encoded by large open reading frames. Variants due to potential phosphorylation of the 
portal protein were identified in the virion, and several mycobacteriophage gp6-like protein 
variants were detected in large amounts relative to other virion proteins. The predicted 
amino acid sequences of the pre-neck/appendage proteins had major differences in the 
central portion of the protein between the two phage gene products indicating that it may be 
the potential anti-receptor for the virus. Based on phylogenetic analysis of the large 
terminase protein, these phages were predicted to be pac-type phages, using a head-full 
DNA packaging strategy. Table 1 summarizes the gene products common to currently 
known C. perfringens siphoviral bacteriophages. 
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Function ID Function Name 
 

COG0629 Single-stranded DNA-binding protein 

COG0860 N-acetylmuramoyl-L-alanine amidase 

COG4722 Phage-related protein 

COG5412 Phage-related protein 

COG1351 Predicted alternative thymidylate synthase 

COG2333 Predicted hydrolase (metallo-beta-lactamase superfamily) 

COG3561 Phage anti-repressor protein 

COG3645 Uncharacterized phage-encoded protein 

COG5545 Predicted P-loop ATPase and inactivated derivatives 

COG5546 Small integral membrane protein 

COG3617 Prophage antirepressor 

COG3747 Phage terminase, small subunit 

COG4626 Phage terminase-like protein, large subunit 

COG4695 Phage-related protein 

COG0175 3'- PAPS reductase/FAD synthetase and related enzymes 

COG2369 Uncharacterized protein, homolog of phage Mu protein gp30 

COG2755 Lysophospholipase L1 and related esterases 

COG4926 Phage-related protein 

COG4974 Site-specific recombinase XerD 

COG0338 Site-specific DNA methylase 

COG0740 Protease subunit of ATP-dependent Clp proteases 

COG1476 Predicted transcriptional regulators 

COG3757 Lyzozyme M1 (1,4-beta-N-acetylmuramidase) 

COG5283 Phage-related tail protein 

COG5614 Bacteriophage head-tail adaptor 

COG0305 Replicative DNA helicase 

COG1191 DNA-directed RNA polymerase specialized sigma subunit 

COG1783 Phage terminase large subunit 

COG3064 Membrane protein involved in colicin uptake 

COG3740 Phage head maturation protease 

COG4824 Phage-related holin (Lysis protein) 

 
Note: Domains are observed in all Clostridium perfringens siphoviral genomes. 

Table 1. The Siphoviridae pan-genome encoded proteins representative of Clostridium 
perfringens bacteriophages. The table shows the union of all COGs present in the genomes of 
phages SM101, 3626, 9O, 13O, 26F, 34O, and 39O.  
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Function ID Function Name 
 

COG0417 DNA polymerase elongation subunit (family B) 

COG0739 Membrane proteins related to metalloendopeptidases 

COG0860  N-acetylmuramoyl-L-alanine amidase 

COG1196 Chromosome segregation ATPases 

COG2088 Uncharacterized protein, involved in the regulation of septum location 

COG3023 N-acetyl-anhydromuramyl-L-alanine amidase 

COG3772 Phage-related lysozyme (muraminidase)  

COG5434 Endopolygalacturonase 

pfam00246 Peptidase_M14 

pfam01391 Collagen 

pfam05352 Phage Connector  

pfam05894 Podovirus_Gp16 (DNA encapsidation) 

pfam12841 YvrJ protein family 

PHA00144 major head protein 

PHA00148  lower collar protein 

PHA00380 tail protein 
 

Note: Domains are observed in all Clostridium perfringens podoviral genomes. 

Table 2. Podoviridae pan-genome protein products representative of Clostridium perfringens 
bacteriophages. The table shows the union of all conserved domains present in the genomes 
of phages CPV1, CPV4, ZP2, CP7R, and CP24R.  

Other bacteriophages lytic for C. perfringens were isolated from sewage, feces and broiler 
intestinal contents and phiCPV1, a virulent bacteriophage, was classified in the family 
Podoviridae (Volozhantsev et al., 2011). The purified virus had an icosahedral head and collar 
of approximately 42nm and 23nm in diameter, respectively, with a structurally complex tail 
of 37nm lengthwise and a basal plate of 30nm. The phiCPV1 double-stranded DNA genome 
was 16,747 base pairs with a GC composition of 30.5%, similar to its host. Twenty-two open 
reading frames (ORFs) coding for putative peptides containing 30 or more amino acid 
residues were identified in the genome. Amino acid sequences of the predicted proteins 
from the phiCPV1 genome ORFs were compared with those from the NCBI database and 
potential functions of 12 proteins were predicted by sequence homology. Three putative 
proteins were similar to hypothetical proteins with unknown functions, whereas seven 
proteins did not have similarity with any known bacteriophage or bacterial proteins. 
Identified ORFs formed at least four genomic clusters that accounted for predicted proteins 
involved with replication of the viral DNA, its folding, production of structural components 
and lytic properties. One bacteriophage genome encoded lysin was predicted to share 
homology with N-acetylmuramoyl-l-alanine amidases and a second structural lysin was 
predicted to be a lysozyme-endopeptidase. These enzymes probably digest peptidoglycan of 
the bacterial cell wall and could be considered potential therapeutics to control C. 
perfringens. Table 2 summarizes the gene products common to currently known C. 
perfringens podoviral bacteriophage genomes. 
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Fig. 2. Protein gel profiles for purified virions from bacteriophages virulent for Clostridium 
perfringens representing the Siphoviridae and Podoviridae from a joint Russian Federation-USA 
collaborative research project. 

Three structural proteins were identified in the lysogenic phi3626 by N-terminal sequencing 
of proteins following SDS-PAGE of the purified virions (Zimmer et al., 2002a). The major 
capsid component was estimated to be 43.3% of total phage protein and was determined to 
be post-translationally processed resulting in a decrease in size from 47.7 to 34.3 kDa. The 
major tail protein represented approximately 12.7% of the total protein, with an apparent 
size of 27 kDa while a minor structural protein composing 2.1% of the virion protein was 
reported with a predicted size of 55.1kD. More recently the proteins of virulent 
bacteriophages infecting C. perfringens have been described in detail (Seal et al., 2011; 
Volozhantsev et al., 2011). From the siphoviruses (Seal et al., 2011), four principle virion 
protein regions were identified (Fig. 2) that included a portal protein, mycobacteriophage 
gp6-like protein which was the major virion protein, a pre-neck appendage protein and 
several lower molecular weight minor structural proteins with no known function. The 
portal protein was identified as a protein that was also highly variable with respect to 
isoelectric point and size at approximately 50kDa. This was attributed to potential 
differences in phosporylation and myristilation of the portal protein due to the large 
number of post-translational modification sites on the molecule. The podoviruses identified 
to date have virion proteins essentially indicative of those types of bacteriophages 
(Volozhantsev et al., 2011). These viruses encode for a collar protein with a predicted size of 
approximately 27kDa and a connector protein with a predicted size of approximately 
35.9kDa. The major head or major capsid protein was predicted to have a size of 43.3kDa 
and was found in the greatest abundance in the purified virus. A large pre-neck protein of 
75 kDa and a tail protein of a size similar to the major capsid protein were also identified in 
C. perfringens phages of the Podoviridae (Fig. 2). 
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C. perfringens is an important agricultural as well as human pathogen and because 
biotechnological uses of bacteriophage gene products as alternatives to conventional 
antibiotics will require a thorough understanding of their genomic context, we sequenced 
and analyzed the genomes of four more closely related viruses isolated from the bacterium, 
then compared the known phage genomes (Oakley et al., 2011).  Phage whole-genome tetra-
nucleotide signatures and proteomic tree topologies correlated closely with host phylogeny. 
Comparisons of our phage genomes to 26 others revealed three shared COGs of which one 
of particular interest within this core genome was an endolysin (PF01520, an N-
acetylmuramoyl-L-alanine amidase) and a holin (PF04531). Comparative analyses of the 
evolutionary history and genomic context of these common phage proteins revealed two 
important results. One was a strongly significant, host-specific sequence variation within the 
endolysin and secondly is the protein domain architecture apparently unique to our phage 
genomes in which the endolysin is located upstream of its associated holin among certain 
members of the Siphoviridae (Oakley et al., 2011). Endolysin sequences from our viruses were 
one of two very distinct genotypes distinguished by variability within the putative 
enzymatically-active domain. The shared or core genome was comprised of genes with 
multiple sequence types belonging to five pfam families, and genes belonging to 12 pfam 
families, including the holin genes, which were nearly identical. 

6. Potential use of bacteriophages or their gene products to control 
Clostridium perfringens 

Bacteriophages have been utilized experimentally in an attempt to control a variety of 
pathogens and there has been increased interest to control disease among poultry (Joerger, 
2002). In vivo studies were conducted to determine if a cocktail of C. perfringens 
bacteriophages (INT-401) would be capable of controlling necrotic enteritis (NE) caused by 
C. perfringens (Miller et al., 2010). The first study investigated the efficacy of INT-401 and a 
toxoid-type vaccine in controlling NE among C. perfringens-challenged broiler chickens 
reared until 28 days old. Compared with the mortality observed with the bacterium-
challenged, but untreated chickens, oral administration of INT-401 significantly reduced 
mortality of the C. perfringens-challenged birds by 92%. Overall, INT-401 was more effective 
than the toxoid vaccine in controlling active C. perfringens infections of chickens. When the 
phage cocktail was administered via oral gavages, feed, or drinking water it significantly 
reduced mortality due to the bacterium and weight gain as well as feed conversion ratios 
were significantly better in the C. perfringens-challenged chickens treated with 
bacteriophages than in the C. perfringens-challenged, phage-untreated control birds (Miller et 
al., 2010). 

In order to repeat a similar study by Miller et al., (2010) and to determine optimal schemes 
for application of bacteriophage formulations to cure or prevent disease from C. perfringens 
infection in poultry, investigators at the State Research Center for Applied Microbiology and 

Biotechnology (Obolensk, Moscow Region, Russian Federation) completed a series of 
experiments to monitor the persistence of C. perfringens lytic bacteriophage phiCPV1 in 
broiler gastrointestinal tracts (GIT). The phage suspension was administered per os once to 
14-17 days old chicks (6×108 pfu/bird). To determine concentrations of the phage, materials 
from each section of the gastrointestinal tract (the crop, glandular stomach, the upper 
department of the small intestine, ileum, cecum, and the large intestine) were suspended in  
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Note: Fourteen-day old broilers were inoculated with a suspension of two phiCPV1-sensitive C. 
perfringens RifR-strains in the volume of 0.2ml (3×107 - 1×108 CFU for broilers) given per os to each broiler 
at day 19 (Groups 1 and 2) and at days 19, 20, 21 and 22 (Groups 4 and 5). The phiCPV1 in the volume 
of 0.2ml was administered per os twice a day to birds of Group 2 (108 pfu/bird) when they reached the 
age of 19 days, and to broilers of Groups 3 and 5 (109 PFU/bird) at days 19, 20, 21 and 22. 

Fig. 3. Titres of Clostridium perfringens and phiCPV1 in lower sections of the gastrointestinal 
tract (ileum/cecum) of broiler chickens experimentally infected with the bacterium. 

phage buffer followed by agar layer titration on a lawn produced by a C. perfringens 
phiCPV1- susceptible strain. Two independent experiments revealed that the highest 
concentration of the phage titer at 7×107 pfu/g was in the crop one hour after the 
administration. In the glandular stomach its concentration varied between 2×103 and 3×105 
pfu/g. In the interval between 3 and 12 hours after treatment, phage concentration reached 
107pfu/g both in cecum and ileum of all birds. Such high concentrations of the phage in the 
GIT are extremely important from the standpoint of the phage therapy for C. perfringens-
associated infection. Ileum and cecum are known to be main sites for the bacterium to 
colonize and proliferate. In the ileum and cecum, as well as in the large intestine, the 
maximal phage concentration (>106 pfu/g) was detected 6 hours after the administration of 
viruses and retained at a rather high level (>105 pfu/g) at least for the next 6 hours. The 
following day after administration of the phage in the GIT, the concentration decreased 
markedly. However, the phage was not fully eliminated even from the crop and was 
detected at the concentration of 500 pfu/g 48 hours later. The assessment of therapeutic and 
prophylactic effects of bacteriophage formulations in broilers during model experiments has 
demonstrated that phiCPV1 reduced intestinal colonization of the phage-sensitive C. 

perfringens in broiler chickens, with the phage titer being increased (Fig.3). At the same time 
experiments on phage therapy of broilers carrying natural C. perfringens infection by means 
of a phage cocktail were not successful and this was associated with the narrow lytic spectra 
of the phages. Consequently, natural C. perfringens isolated from the broiler chickens were 
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resistant to the bacteriophages used during the experimentation, demonstrating the need for 
libraries of bacteriophage isolates to therapeutically eliminate the bacterium in animals. 

Zimmer et al. (2002b) investigated the cell wall lysis system of C. perfringens bacteriophage 
phi3626, whose dual lysis gene cassette consisted of a holin gene and an endolysin gene. The 
Hol3626 had two predicted membrane-spanning domains (MSDs) and was designated a 
group II holin. A positively charged beta turn between the two MSDs indicated that both the 
amino-terminus and the carboxy-terminus of Hol3626 protein might be located outside the 
cell membrane which is a very unusual holin topology (Young, 2002). The holin function 
was experimentally demonstrated by using the ability of the peptide to complement a 
deletion of the heterologous phage lambda S holin in lambda delta-Sthf. The endolysin gene 
ply3626 was cloned into an E. coli expression system. However, protein synthesis occurred 
only when the E. coli were supplemented with rare tRNA(Arg) and tRNA(Ile) genes 
required for proper codon usage of Gram+ genes in a Gram- system (Kane, 1995). Amino-
terminal modification by a six-histidine tag did not affect enzyme activity and enabled 
purification by Ni-chelate affinity chromatography. The Ply3626 had an N-terminal amidase 
domain and a unique C-terminal portion that was hypothesized to be responsible for the 
specific lytic range of the enzyme. A total of 48 C. perfringens strains were sensitive to the 
murein hydrolase, whereas other clostridia and bacteria belonging to other genera were 
generally not affected by the lysin (Zimmer et al., 2002b). 

Two putative phage lysin genes (ply) from the clostridial phages phiCP39O and phiCP26F 
were cloned, expressed in E. coli and the resultant proteins were purified to near 
homogeneity (Simmons et al., 2010). Gene and protein sequencing revealed that the 
predicted and chemically determined amino acid sequences of the two recombinant proteins 
were homologous to N-acetylmuramoyl-L-alanine amidases. The proteins were identical in 
the C-terminus cell-wall binding domain, but only 55 per cent identical to each other in the 
N-terminal catalytic domain. Both recombinant lytic enzymes were capable of lysing both 
parental phage host strains of C. perfringens as well as other type-strains of the bacterium in 
spot and turbidity reduction assays. The observed reduction in turbidity was correlated 
with up to a 3 log cfu/ml reduction in viable C. perfringens on brain heart infusion agar 
plates. However other member species of the clostridia were resistant to the enzymes by 
both assay methods. Interestingly, diversity exists even among closely-related 
bacteriophages, holins and endolysins represent conserved functions across divergent phage 
genomes and endolysins can have significant variability with host-specificity even among 
closely-related genomes. Endolysins of phage genomes in the presented study may be 
subject to different selective pressures than the rest of the genome and these findings may 
have important implications for potential biotechnological applications of phage gene 
products (Oakley et al., 2011). Interestingly, a variety of encoded potential gene products 
have been detected in the genomes of C. perfringens bacteriophages that could potentially be 
utilized as antimicrobials to control the bacterium (Fig. 4). 

The number of known genes encoding these peptidoglycan hydrolases has increased 
markedly in recent years, due in large part to advances in DNA sequencing technology. As the 
genomes of more bacterial species/strains are sequenced, lysin-encoding open reading frames 
(ORFs) can be readily identified in lysogenized prophage regions such as in the genomes of C. 

perfringens (Shimizu, et al., 2002; Myers et al., 2006). The genomes of nine C. perfringens strains 
were computationally mined for prophage lysins and lysin-like ORFs, revealing several dozen  
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Fig. 4. Lytic proteins discovered in Clostridium perfringens bacteriophages from a joint 
Russian Federation-USA collaborative research project. 

proteins of various enzymatic classes (Schmitz et al., 2011). Of these lysins, a muramidase from 
strain ATCC 13124 (termed PlyCM) was chosen for recombinant analysis based on its 
dissimilarity to previously characterized C. perfringens lysins. Following expression and 
purification, various biochemical properties of PlyCM were determined in vitro, including 
pH/salt-dependence and temperature stability. The enzyme exhibited activity at low μg/ml 
concentrations, a typical value for phage lysins. It was active against 23 of 24 strains of C. 

perfringens assayed, with virtually no activity against other clostridial or non-clostridial species 
(Schmitz et al., 2011). Also, an endolysin predicted to encode an N-acetylmuramidase was 
identified as encoded by the episomal phage phiSM101 of C. perfringens (Nariya et al., 2011). 
Homologous genes were identified in the genomes of all five C. perfringens toxin types and the 
phiSM101 muramidase gene (psm) was cloned, then expressed in E. coli as a protein histidine-
tagged at the N-terminus (Psm-his). Similar to other C. perfringens phage lysins the purified 
protein lysed cells of all C. perfringens toxin types, but not other clostridial species tested as 
demonstrated by a turbidity reduction assay (Nariya et al., 2011). Consequently, more potential 
antimicrobials remain to be discovered utilizing genomics approaches. 

Immobilization and separation of bacterial cells by replacing antibodies with cell wall-
binding domains (CBDs) of bacteriophage-encoded peptidoglycan hydrolases (endolysins) 
has been accomplished for use as a potential diagnostic (Kretzer et al., 2007). Paramagnetic 
beads coated with recombinant phage endolysin-derived CBD molecules and bacterial cells 
could be immobilized and recovered from diluted suspensions within 20 to 40 min. The 
CBD-based magnetic separation (CBD-MS) procedure was evaluated for capture and 
detection of Listeria monocytogenes from contaminated food samples and this approach was 
demonstrated by using specific phage-encoded CBDs specifically recognizing both Bacillus 
cereus and C. perfringens cells (Kretzer et al., 2007). Consequently, the use of bacteriophage 
lysin cell-wall binding domains could be utilized for other applications as well as for 
improving diagnostic detection of Gram+ bacteria. 

7. Conclusions 

Bacteriophages have been utilized as potential interventions to treat bacterial infections. 
However, the development of bacterial resistances to their viruses occurs that include 
evolution of phage receptors, super-infection exclusion, restriction-modification systems 

www.intechopen.com



 
Bacteriophages of Clostridium perfringens 

 

229 

and abortive infection systems such as genomic CRISPR sequences (Labrie et al., 2010). 
These phenomena substantiate the inevitable need to constantly search for new 
bacteriophage isolates to use therapeutically. Also, it should be noted that although 
bacteriophage therapy has been utilized and examined as a treatment, it was pointed out 
early on by Smith (1959) that a large proportion of C. perfringens strains remained 
insusceptible to many of the bacteriophages isolated during those studies. This has routinely 
been observed during our investigations wherein most bacteriophages virulent for C. 

perfringens have a restricted host range (Fig. 5). Host specificity has routinely been observed 
relative to the bacteriophages isolated from various C. perfringens isolates that is most likely 
due to evolution of the receptor and anti-receptor molecules (Seal et al., 2011; Volozhantsev 
et al., 2011; Oakley et al., 2011). Therefore, selection of appropriate ‘bacteriophage cocktails’ 
may not necessarily be effective against many of the various bacterial isolates that exist in 
the environment and cause disease. 

 
Fig. 5. Spot-assay with Clostridium perfringens bacteriophages on their respective hosts. Note 
that most all phages are restricted in their respective host-ranges. 

Many enzymes are added to monogastric animal feeds to increase the digestibility of 
nutrients, leading to greater feed efficiency during the production of meat animals and eggs. 
Enzymes are added to monogastric animal feed for digesting carbohydrates and for 
metabolizing phytate to produce free phosphorus (Cowieson et al., 2006; Olukosi et al., 2010). 
There are a wide variety of enzymes marketed commercially for poultry feed additives, 
many of which are produced as a recombinant proteins in yeast and sold as a lysate which 
argues for the economic feasibility of developing enzyme additives (see DSM: 
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http://www.dsm.com/en_US/html/dnp/anh_enzymes.htm; Bio-Cat: http://www.bio-
cat.com/applicationDetails.php?application_id=8; Ultra BioLogics: 
http://www.ublcorp.com/; Danisco: http://www.danisco.com/; Novozymes: 
http://www.novozymes.com/en/solutions/agriculture/animal-nutrition/). Consequently, 
production of enzymes by Pichia pastoris can serve as a potential source for structural or 
animal feed studies (Johnson et al., 2010) and lysozyme can be encapsulated (Zhong & Jin, 
2009) which has been utilized as a feed additive in the diet of chickens to significantly 
reduce the concentration of C. perfringens in the ileum and reduce intestinal lesions due to 
the organism (Liu et al., 2010). Therefore, it is conceivable that bacteriophage proteins 
capable of lysing C. perfringens could be expressed in yeast and added as lysates to animal 
feed for reducing the bacterium to improve health and food safety for monogastric animals. 

Clostridium perfringens (formerly known as C. welchii) is a ubiquitous Gram+ anaerobic, 
spore-forming bacterium that causes debilitating diseases in both humans and a wide 
variety of animals resulting in both personal tragedy and economic losses. Although the 
bacterium can cause severe diseases in most animals including domestic chickens, non-
virulent forms of the bacillus are commonly found in the intestinal tracts of warm-blooded 
species as well as the environment. Several antibiotics can be utilized to treat clostridial 
diseases and sub-therapeutic amounts of antibiotics have been used in animal feeds as 
antibiotic growth promoters (AGP). Removal of AGP’s from animal feed has resulted in the 
need for increased use of antibiotics therapeutically to treat diseases among food-producing 
animals, in particular necrotic enteritis in poultry. Consequently, this situation along with a 
concern as how to treat antibiotic resistant bacteria has provided the impetus to develop 
alternative antimicrobials or new antimicrobials that can be used synergistically with 
antibiotics. Prior to the discovery and widespread use of antibiotics, bacterial infections 
were often treated with bacteriophages, which were marketed and sold commercially for 
human use up until the 1940’s. Following discovery of antibiotics, the use of phages to treat 
bacterial diseases was discontinued in Western Europe and the United States. 
Bacteriophages continue to be sold in the Russian Federation and Eastern Europe as 
treatments for bacterial infections and there is renewed interest in utilizing bacterial viruses 
to prevent or treat bacterial infections. Bacteriophages which infect C. perfringens that are 
both lysogenic and virulent have been discovered that have long tails, members of the 
Siphoviridae, and those with short tails, members of the Podoviridae. If these bacteriophages 
or their gene products are to be used as antimicrobials, it is essential to have a blueprint of 
the genomic machinery underlying phage-mediated bacterial lysis. As genome sequencing 
costs are reduced in price, genomics-enabled approaches to utilizing bacteriophages, or 
perhaps more importantly their gene products, as naturally occurring antimicrobials will 
become increasingly more common. 
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