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1. Introduction 

Improvement of efficiency as well as speed and accuracy in the step of identification of 
chemicals that excerpt in vitro or in vivo activity would help reduce the huge investments 
made by pharmaceutical companies in drug development projects. Traditionally, in silico 
high-throughput screening techniques, either based on protein binding site fitting (docking) 
or ligand similarity, are used to select the most promising molecules from large chemical 
libraries.(Ling & Xuefeng, 2008; Stahura & Bajorath, 2004; Tuccinardi, 2009; Villoutreix et al., 
2009) Nonetheless, these computational techniques are hampered by high rates of false 
positives and high demand in computational resources.(Ghemtio et al., 2010) To avoid these 
shortcomings, predictive three-dimensional (3D) quantitative structure–activity relationship 
(3D-QSAR) combined with pharmacophore computational models coupled to ligand-based 
three-dimensional virtual screening (3D-VS) are becoming increasingly popular.(Clark, 2009; 
Ekins et al., 2007; Ghemtio et al., 2010; Kirchmair et al., 2008; Kirchmair et al., 2008; Langer & 
Hoffmann, 2001; Lengauer, 2004; Rognan, 2010; Sippl, 2002; Spitzer et al., 2010; Tropsha & 
Golbraikh, 2007). For example, previously, combination of 3D-QSAR studies and 3D-VS have 
been successfully applied for screening large collection of natural products and synthetic 
chemicals.(Clark, 2009; Liu et al., Nagarajan et al., 2010; Sippl, 2002; Spitzer et al., 2010) 

The general idea is that after building a 3D-QSAR model that predicts usually the binding 
constant or in vitro biological activities of compounds from their 3D chemical properties, the 
3D pharmacophoric representation of the shared chemical features that are most important 
towards activity can be used as a constraint for 3D-VS. Generally, a binding constant is 
accurately measured experimentally, relates to a single type of molecular event, and 
therefore is a suitable source of data for 3D-QSAR modeling. There is however a large gap 
between the binding constant to given protein and any therapeutic effect that may be 
provided by a compound. In vitro activities relate in many cases to a compound binding to 
several target proteins or to other cellular effects but can still be useful for 3D-QSAR. In vivo 
activities on the other hand are the sum of so many complex and mechanistically different 
processes that they are not a reasonable source of data for 3D-QSAR modeling.  

Here, we aim to interpret the in vitro anti-leishmanial activities of a set of 24 betulin 
derivatives (BDIs), i.e. compounds derived from a betulin scaffold, as well as to screen for 

www.intechopen.com



 
Virtual Screening 

 

56

novel potentially interesting chemicals. Leishmaniases are diseases caused by protozoan 
parasites that affect millions of people in more than 88 countries worldwide.(Alakurtti et al., 
2010) Several drugs are available for the treatment of these diseases, for example 
pentavalent antimony compounds derived from the heavy metal antimony (Sb), 
pentamidine or amphotericin B, and miltefosine compounds. However, these drugs present 
severe side effects, parasite resistance, are too expensive for use in less-developed countries, 
and for some are dangerous to use in pregnant women.(Pink et al., 2005) There is therefore 
an urgent need for the development of safe chemicals for the treatment of all clinical forms 
of leishmaniasis. For this purpose, betulin derivatives are one of the most investigated 
classes of compounds. While the molecular mechanism of the inhibitory action of betulin 
derivatives on Leishmania donovani growth is to date unknown, several protein targets have 
been suggested including the Topoisomerase 2 enzyme. Betulins present several advantages 
that make them a very suitable class of compounds to run quantitative structure–activity 
relationship (SAR) studies and, despite their large size and hydrophobicity, to be 
investigated as a therapeutic class of compounds: a five-ring chemical scaffold allows a 
straightforward three dimensional superimposition, while the parent molecule can be 
extracted easily and in large quantities from the bark of birch tree, and is easily chemically 
modifiable at three sites. In addition to anti-Leishmania activity, betulin derivatives have 
shown anti-inflammatory, antimalarial and especially cytotoxic activity against several 
tumor cell lines by inducing apoptosis in cells.(Alakurtti et al., 2010; Alakurtti et al., 2006) 
Structure–activity relationship studies and pharmacological properties of betulin and its 
derivatives have been reviewed recently.(Alakurtti et al., 2006) 

In this chapter, we have developed predictive 3D-QSAR models that help to interpret the in 
vitro anti-leishmanial activities of a small but consistent set of 24 betulin derivatives (the 
chemical structures are shown in Table 1). (Alakurtti et al., 2010). We first use two popular 
and well-studied 3D-QSAR methods; comparative molecular field analysis 
(CoMFA)(Cramer et al., 1988), and comparative molecular similarity indices analysis 
(CoMSIA)(Klebe et al., 1994) implemented in Sybyl-X to construct predictive 3D-QSAR 
models that predict the activities of betulin derivatives from a small but consistent dataset. 
In these methods the proper alignment of molecular structures across the series and the 
selection of the bioactive conformation are critical yet often problematic. The 3D-QSAR 
models developed here should serve as a useful tool to predict the inhibitory properties of 
untested compounds and therefore help to guide synthesis for the further development of 
more potent anti-leishmanial inhibitors. Secondly, the 3D-QSAR models together with 
compound 3D structures were used to develop 3D pharmacophore models that describe the 
chemical features most important for activity, using the GALAHAD (Genetic Algorithm 
with Linear Assignment of Hypermolecular Alignment of Database)(Richmond et al., 2006) 
implemented in Sybyl-X. Only the five most active molecules well predicted by the 3D-
QSAR models were used for pharmacophore development. Thirdly, these pharmacophore 
models were used as 3D constraints to query two libraries for new chemical structures, one 
containing 120.000 compounds and the other containing 240.000 compounds.  

2. Materials and methods 

2.1 Compounds and biological data 

The molecular structures and biological data used in this study were retrieved from a series 
of 24 betulin derivatives developed by Alakurtti et al. The chemical structures and 
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experimental activities are shown in Table 1.(Alakurtti et al., 2010) The biological activities 
are reported as the percent inhibition of Leishmania donovani axenic amastigotes growth at 50 
μM of betulin derivatives and were used as dependent variables in this study. These 
represent the percentage of growth reduction of Leishmania donovani axenic amastigotes 
associated with adding 50 μM of betulin derivatives to the cells. 

Other type of data, such as growth rate constants, would have been perhaps been more 
reliable for 3D-QSAR modeling but were not accessible to us at time of this study. 

All pharmacological data were obtained from the same laboratory, eliminating the potential 
noise that might have been introduced by the pooling of data sets from different sources. 
The inhibition (I50) percentage values were converted in negative logarithmic units (pI50, M) 
using Sybyl-X. The CoMFA/CoMSIA models were developed using 16 compounds as 
training set, and externally validated using 8 compounds as test set (see Table 1). The 
compound set was randomly divided into a training set and a test set (distributed using a 
2/3 and 1/3 rule). After this division, we checked that both sets represent equally well the 
chemical and biological properties of the whole data set. The range of pI50 values for both 
the training and test set spans at least three orders of magnitude (2.30-5.91), and in addition 
the biological activity values are well distributed over the entire range. The compound 18 is 
later used as a reference, since it is the most active. 

Accounting for outliers, either activity outliers, i.e. similar compounds for which different 
activities have been recorded, or leverage outliers, i.e. compounds chemically dissimilar from 
the rest of the set, is an important step in any type of QSAR modelling. One of the main 
deficiencies of some chemical datasets is that they do not satisfy the hypothesis that similar 
compounds share similar biological activities or properties. Outliers may originate from 
genuine effects, i.e. activity cliffs, may be due to artifacts and errors in structure representation, 
may result from a poor identification of chemical similarity, or may come from a poor 
annotation of biological activity. In addition, outliers may originate from different molecular 
mechanisms of action that may involve seemingly similar compounds. Outlier detection and 
removal before proceeding to model development is the best way to avoid model instability 
with significant differences in external predictive power of models. (Tropsha, 2010).  

In this study, the compounds in the dataset are based on the same betulin chemical scaffold 
and therefore should be chemically similar one to another. As we will show below, there is a 
chemical reason to suspect that a few compounds can use a mechanism of action based on 
formation of covalent adducts, a mechanism that is quite different from the other molecules 
in the set. Removing these outliers from training and test set clearly led to improved models. 
Interestingly enough, we first noticed these compounds being outliers based on 
CoMFA/CoMSIA modeling and only afterwards identified a reasonable molecular 
explanation for this behaviour.  

R1

R2

R3
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Compound R1  R2  R3 pI50exp 
Prediction 

CoMFA 
pI50pred 

CoMSIA 
pI50pred 

   Training set    

1* OH CH2OH CH3-C=CH2 4.03 4.11 3.94 

2* OH CO2H CH3-C=CH2 4.12 4.03 4.11 

4* OH CHO CH3-C=CH2 4.55 4.60 4.49 

6 OH CH3-C=CH2 2.30  -  - 

9 OH CH3-C=CH2 3.49  3.44 3.49 

10 OH CH3-C=CH2 3.60  3.69  3.60 

12 OH CH3-C=CH2 5.08  -   - 

14 OAc CH2OAc CH3-C=CH2 2.30  2.30  2.20 

15 
 

CH3-C=CH2 2.30 2.19 2.42 

17* O= CHO CH3-C=CH2 4.23 4.72 4.16 

18* O= CO2H CH3-C=CH2 5.91 4.72 5.79 

20* O= CO2Me CH3-C=CH2 4.12 4.67 4.28 

21 O= CH3-C=CH2 4.65 4.81 4.67 

23*  - CH2OH CH3-C=CH2 3.48 3.82 3.41 

24* OH CH=NOH CH3-C=CH2 4.65 4.59 4.77 

25* =NOH CH=NOH CH3-C=CH2 4.73 4.44 4.80 

   Testing set    

7 OH CH3-C=CH2 3.28 3.91 3.75 
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8 OH CH3-C=CH2 3.37 3.62 3.83 

11 OH CH3-C=CH2 4.46 4.63 4.04 

13* OAc OH CH3-C=CH2  4.07 4.05 3.95 

16* O= CH2OAc CH3-C=CH2 4.13 4.28 3.85 

19* O= CO2H CH3CHCH2 4.71 4.34 5.01 

22 O= CH3-C=CH2 2.30 2.64 2.34 

26* OAc CN CH3-C=CH2 4.52 4.18 4.05 

Table 1. Experimental and predicted Leishmanial growth inhibitory activities of Betulin 
derivatives used in the study. The first group is the training set and the second group is the 
test set. Compounds used for pharmacophore modelling are shown in bold. When the set 
was used as control (see section 3.3) in pharmacophore based virtual screening 3D search, 
the compounds marked with (*) were retrieved. 

2.2 Generating the molecular structures and conformational analysis 

The molecular structures of betulin derivatives were sketched using Sybyl-X v1.2 
software(Tripos International, St. Louis). The fragment libraries in Sybyl-X database were used 
as building blocks to build three-dimensional structures of functional groups added to the 
betulin scaffold. A single conformation for each chemical was randomly picked, but it should 
be noted that conformational space is available for the R groups while the betulin scaffold is 
rigid. All the structures were assigned Gasteiger-Huckel charges and energy minimized using 
the standard Tripos force field (Powell method and 0.05 kcal/(mol.Å) energy gradient 
convergence criteria) (Tripos International, St. Louis). These conformations were used as 
starting conformations to perform the following 3D-QSAR and pharmacophore studies.  

2.3 3D-QSAR models 

3D-QSAR methodologies such as CoMFA/CoMSIA, aim to correlate biological activities 
with the three dimensional structures of compounds. Among these, comparative molecular 
field analysis (CoMFA) is widely used and historically the first, and has been improved 
since. CoMFA is restricted to electrostatic fields and therefore accounts only for the 
enthalpic contribution of binding(Klebe et al., 1994), with the underlying idea that if the 
aligned molecules share global shape and location in the 3D lattice, the entropic 
contributions to the free energy of binding to a molecular target are expected to be 
similar.(Perkins et al., 2003) The CoMFA Lennard-Jones and Coulomb potentials are sharp 
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and may introduce errors in scaling, alignment sensitivity, and interpretation of contours. 
(Bostrom et al., 2003) In order to improve these shortcomings, the comparative molecular 
similarity indices (CoMSIA) methods have been developed that make usage in addition to 
the electrostatic fields of hydrophobic fields, supposed to account better for differences in 
the entropic contribution to binding free energy, hydrogen bonding fields, as well as use 
smoother potentials based on Gaussian functions, which are less sensible to variation in 
alignment and lead to more interpretable contours.(Buolamwini & Assefa, 2003) 

CoMFA/CoMSIA alignment rules 

The three-dimensional alignment of chemical structures is one of the most important steps 
in 3D-QSAR methodologies. For a set of congeneric chemicals, an optimal alignment of a set 
of molecules can be defined as the alignment that achieves the maximum superposition of 
steric and electrostatic fields. In CoMFA/CoMSIA modeling, significant and relevant results 
should be expected only for valid alignments. There are multiple strategies available in the 
literature depending on the specificity of each dataset for compound alignment as well as 
resources. Commonly used among commercial solutions are Sybyl-X 1.2 database 
alignment, Sybyl-X 1.2 atom fit alignment, SYBYL-X 1.2 Surflex-Sim(Jain, 2004), 
BRUTUS(Rönkkö et al., 2006; Tervo et al., 2005), or for freely available softwares 
ShaEP(Vainio et al., 2009). These tools can be used separately or together to identify the 
effect of the alignment on the final prediction. In reality, the alignment that we aim to 
recreate should reflect the superimposition that the set of compounds adopt when binding 
to a given molecular target; however a given set of molecules may bind in different ways 
when confronted to another binding site. In the present study, no binding site is available to 
guide the molecular alignment of betulin derivatives. We can however take advantage from 
the fact that the compounds used in our study are very similar and share a common five-
member ring scaffold while they vary with the attached functional groups.  

In this study, the alignment of training set was made with database alignment algorithms 
(Sybyl-X 1.2 database alignment) by using template compound (compound 18) as the basis 
for the alignment. Database alignment corresponds to the superposition of the common 
substructure shared by all molecules (Fig. 1). For superposition, compound 18 with the 
highest pI50 (5.91) was used as template molecule. All the five rings of the betulin scaffold 
were selected for superimposition and a rigid body superposition performed. The 
substituent R3 is highly conformational flexible, however we did not select the individual 
conformations that would lead to an optimal superimposition of R3. Optimizing this region 
would have required further work but could have lead to more predictive models. 

CoMFA/CoMSIA fields calculation 

The aligned training sets of molecules were positioned inside grid boxes with grid spacing 
value of 2 Å (default distance) in all Cartesian directions and CoMFA fields were 
calculated using the QSAR module of Sybyl-X(Tripos International, St. Louis). The 
interaction energies for each molecule were calculated at each grid point using probe 
atom: an sp3 hybridized carbon atom with a van der Waals (vdW) radius of 1 Å and a +1 
charge (default probe). The steric (vdW interaction) and electrostatic (Coulombic values) 
fields were calculated at each intersection on the regularly spaced grid. The cutoff value 
for both steric and electrostatic interaction was set to 30 kcal/mol. CoMSIA similarity 
index descriptors was derived using the same lattice boxes as those used in CoMFA 
calculations. Five physicochemical properties steric, electrostatic, hydrophobic, hydrogen 
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bond donor and acceptor were evaluated using a common probe atom of 1 Å radius. In 
CoMSIA, the steric indices are related to the third power of the atomic radii, the 
electrostatic descriptors are derived from atomic partial charges, the hydrophobic fields 
are derived from atom-based parameters developed by Viswanadhan and co-
workers(Viswanadhan et al., 1989), and the hydrogen bond donor and acceptor indices 
are obtained from a rule-based method derived from experimental values. Similarity 
indices were calculated using Gaussian-type distance dependence between the probe and 
the atoms of the molecules of the data set. This functional form requires no arbitrary 
definition of cutoff limits, and the similarity indices can be calculated at all grid points 
inside and outside the molecule. The value of the attenuation factor was set to 0.30. 

3D-QSAR models calculation, internal and external validation 

In order to generate statistically significant 3D-QSAR models, Partial Least Square (PLS) 
regression was used to analyse the training set by correlating the variation in the pI50 values 
(the dependent variable) with variations in their CoMFA/CoMSIA interaction fields (the 
independent variables). The grid was chosen with resolution of 2 Å and extended beyond 
the molecular dimensions by 4 Å in all directions. Column filtering was set to 4 kcal/mol. 
CoMFA and CoMSIA models were developed using the conventional stepwise procedure. 
The leave-one-out cross validation (LOO-CV) was performed to determine optimum 
number of component leading to the highest cross-validated coefficient q2 (equation 1) and 
the lowest standard error of prediction (SEP) that indicates the consistency and predictive 
ability of models. After that, non-cross-validation was performed to derive the final PLS 
regressions models with the explained variance r2, standard error of estimate (S) and F ratio. 
S represents the measure of the target property uncertainty still unexplained after the model 
has been derived, and F the ratio of r2 to 1- r2 weighted so that the fewer the explanatory 
properties and more the values of the target property, the higher the F-ratio. 

 q2 = 1 –
 
 

2

2

 

 

predict experimentaly

experimental meany

Y Y

Y Y








 (1) 

Where: 

 Ypredict = a predicted pI50 
 Yexperimental = an experimental pI50 
 Ymean = the best estimate of the mean of all values that might be predicted 
 The numerator is the sum of the squared deviations between predicted and 

experimental pI50 values for the training set compounds. 
 The denominator is the sum of the squared deviation between the experimental pI50 

values and the mean pI50 predicted value of the training set 

As the name suggests, leave-one-out cross-validation involves using a single observation 
from the original sample as the validation data, and the remaining observations as the 
training data. The coefficients of the independent variables of the original PLS model are 
calculated, excluding one compound (i.e., activity values and calculated properties) from the 
original training set at once, and this ‘‘new’’ model is used to predict the activity of the 
excluded compound. This procedure is repeated through the whole data set, until all 
compounds have been excluded once, and then, q2 values and SEP are calculated.  
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The CoMFA/CoMSIA results were graphically represented by field contour maps, where 
the coefficients were generated using the field type ‘‘Stdev*Coeff’’. Favored and disfavored 
levels were fixed at 80% and 20%, respectively.  

The models generated have to be validated. Even if the model is validated as high quality by 
internal cross validation, uncertainty will remain regarding its ability to predict chemicals 
not in the training set. To address this question, external validation data sets are used. 

External validation 

In order to assess the actual predictive ability of the best models generated by the 
CoMFA/CoMSIA approaches, the pI50 values of the external validation set (i.e., test set 
compounds not included in the training set) were calculated using the same 
CoMFA/CoMSIA parameters as those used to generate the models. The non cross validated 
analyses were used to make predictions of the percent inhibitions of the betulin derivatives 
compounds from the test set and to display the coefficient contour maps. The actual versus 
predicted percent inhibitions of the test betulin derivatives compounds were fitted by linear 
regression, and the “predictive” r2, S, and F ratio were determined. The quality of the 
external prediction is documented using the standard deviation of error prediction (r2 pred). 

 r2pred = 1 – 
PRESS

SD   (2) 

In Equation (2), PRESS is the sum of the squared deviations between predicted and actual 
pI50 values for the test set compounds and SD is the sum of the squared deviation between 
the actual pI50 values of the compounds from the test set and the mean pI50 value of the 
training set compounds. 

Establishing an applicability domain is a major step in QSAR analysis since an applicability 
domain allows to avoid trying to predict irrelevant molecules, i.e. molecules that differ too 
much from those included in the training set.(Tropsha, 2010) We have verified that several 
statistical criteria from activity/property of training and test set prediction defined by 
Tropsha and al are satisfied by our predictive model, including a correlation coefficient > 
0.50, coefficient of determination > 0.60.(Tropsha & Golbraikh, 2007)  

2.4 Pharmacophore models 

In this study, five compounds from the training set, whose functional R groups are 
matching well the molecular fields suggested by the CoMFA or CoMSIA models to be 
important for activity, were selected to generate pharmacophore models: compounds 4, 18, 
21, 24 and 25. In the case of the present study, these compounds are also the most active 
compounds and therefore could have been chosen without the help of the CoMFA/CoMSIA 
model, but this is not always the case. GALAHAD was run with default values to generate a 
set of pharmacophore models, used for screening, and molecular alignments, that we do not 
further use.  

GALAHAD is a proprietary pharmacophore module from Tripos Ldt, which generates 
pharmacophore models and alignments from sets of compounds (Tripos International, St. 
Louis). A pharmacophore model consist of a group of features located relatively close one to 
each other in 3D space, surrounded by a sphere of tolerance, which encode location-
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dependent chemical characteristics that account for activity. The sphere represents the 3D 
area that should be occupied by specific chemical functional groups for optimal activity. 
GALAHAD identifies a set of molecular conformations with an optimal combination of low 
strain energy, steric overlap, and pharmacophoric similarity. The search of conformations is 
performed in two steps. First, the ligands are aligned one onto each other in internal 
coordinate space. In this stage a genetic algorithm is used to identify a set of ligand 
conformations that both minimizes energy and maximizes pharmacosteric similarity. 
Simultaneously, pharmacophore multiplet similarity between ligands is maximized. This 
stage is fully flexible. The second step is a rigid-body hypermolecular alignment process in 
Cartesian space.(Richmond et al., 2004) GALAHAD uses a multi-objective (MO) function in 
which each term is considered independently for three different purposes: to assess 
reproductive fitness, to pick the candidates that survive to the next generation, and to rank 
models after Cartesian alignment of their constituent ligand conformers.(Gillet et al., 2002) 
The three MO functions (multi-objective triage approach) make use of Pareto ranking for 
each individual model, which is defined as the number of alternative candidates that are 
better than the model being assessed by all criteria. (Clark & Abrahamian, ). Among the 
selected models, the ones with the best energy, steric and pharmacophoric concordance 
values based on Pareto ranking were selected as the best model. 

2.5 Database searching and compound selecting 

Database searching and compounds selection from the resulting 3D pharmacophore models 
was carried out on a Linux Pentium (2 CPUs). The private FIMM library (119027 
compounds) of Institute for Molecular Medicine Finland and the public NCI library (234054 
compounds) of National Cancer Institute were chosen for virtual screening; compounds 
from these libraries are easily accessible to us for experimental testing. All compounds in 
these databases were first converted from 2D (sdf format) to 3D using the Concord module 
in Sybyl-X, and one representative 3D conformation, (lowest energy) selected. Then, for all 
of these representative conformations, Gasteiger-Huckel charges were assigned and the 
compounds energy minimized using the standard Tripos force field (Powell method and 
0.05 kcal/(mol.Å) energy gradient convergence criteria).  

A 3D query was defined based on the best 3D pharmacophore model derived by 
GALAHAD in Sybyl-X. The query was used to perform virtual screening experiment, by 
using the Unity 3D database search protocol with all options set to default. In the default 
option, in order to save screening and hit selection time, the oral bioavailability drug-
likeness rule (Lipinski’s rule of five with one violation) was applied as a pre-filter with 
following criterion: molecular weight < 500, -4 < logp < 5, number of donor/acceptor < 10, 
the numbers of rotable bond < 10 and the number of rotatable bonds < 10. This should be 
also beneficial for the quality of selected compounds at the end of screening. 

During the Unity search procedure, the conformations of the compounds in the screened 
database were generated on the fly by means of the Directed Tweak method.(Hurst, 1994) 
This procedure attempts to determine if a candidate structure can reasonably flex into a 
conformation that matches the query. In this way, the data storage problem and the search 
time are minimized, since only the relevant conformations are dynamically generated. If the 
query uses spatial constraints, then the query is aligned to the target values for the 
constraints. If the query contains normal constraints, then the query is aligned to the target 
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for the features. As a result, two hit lists were generated, one for the FIMM and one for the 
NCI library, which contain compounds with chemical functionalities and spatial properties 
similar to those of the 3D pharmacophore query. For each compound, a fit value was 
returned that represented how well the compound fit into the pharmacophore model. The 
molecular conformations that have been identified by UNITY as hits are not necessarily the 
lowest possible energy conformations. In some cases, UNITY returns highly strained 
conformations that energetically cannot exist. The post-processing ranking, relaxing, and 
tightening functionality allows to rank the hits after the search. In addition, predicted values 
of the inhibition (I50) percentage and the water-octanol partition coefficients LogP for each 
compound in the hit lists are computed with CoMSIA predictive model and the Sybyl-X 
software respectively. LogP is linked to solubility and we may encounter experimental 
problems to solubilize these compounds. In addition, betulin derivatives are exetrmily 
hydrophobic and not too much drug-like, where a logP <5 or often < 3 are recommended. 
Nonetheless, previous studies on betulin have shown it has other advantages that make this 
scaffold attractive to medicinal chemists. 

3. Results and discussion 

3.1 3D-QSAR results 

CoMFA/CoMSIA modeling and outlier removal 

The Fig. 1 shows how the training set molecules are aligned within the grid box (grid 
spacing 2 A˚). The summary of results from CoMFA and CoMSIA models using LOO-CV is 
presented in Table 2. The predictability of the models is one of the most important 
parameters for appreciation of 3D-QSAR methods. The first CoMFA/CoMSIA model 
generated with all compounds in the training set has a Q2 value of 0.27 and 0.30 respectively. 
The analysis of correlations between the calculated and experimental values of pI50 (Fig. 2) 
show the presence of two compounds, 6 and 12, poorly predicted. Compounds 6 and 12 are 
at extreme of experimental property/activity range from all others values: compound 6 is 
inactive and compound 12 is highly active. In addition, these compounds carry strong 
electrophilic centers that are good leaving groups (compounds 12) or Michael acceptors 
(compound 6). It is likely that the bioactivities of these compounds are due to their high 
reactivity, i.e. their tendencies to covalently attach to nucelophilic centers. In order to avoid 
mixing up different mechanistic effects, the CoMFA/CoMSIA models were rebuilt omitting 
these compounds, considering them as outliers. Compound 16, which present similarly to 
compound 12 a good leaving group, was accordingly deleted from the test set. On the other 
hand, compounds 4 and 22, which contain potentially reactive aldehydes in their 
substituent, were kept in the dataset since aldehydes are not very reactive groups and can be 
found in known drugs. 

CoMFA model, predictivity 

As a result, the CoMFA model without compounds 6 and 12 describing Betulin derivatives 
inhibition used both steric and electrostatic fields and had a Q2 value of 0.58, and using two 
components. This CoMFA model indicated different contributions of both steric and 
electrostatic fields of 0.33 and 0.66, respectively. The model had cross-validated r2 = 0.58, non 
cross-validated r2 = 0.81 and Fischer ratio (F = 24.11). The predictions of pI50 values for the 14 
BDIs in the training set using CoMFA models are shown in Table 1. The correlations 
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between the calculated and experimental values of pI50 (from training and LOO cross-
validation) are shown in Fig. 2. 

This model was validated by an external test set of eight compounds not included in the 
model construction. We found that this model was able to describe the test set variance with 
predictive r2 = 0.78. The predicted activity values of test set are listed in Table 1, and the 
correlations between the predictions and experimental values are represented in Fig. 2. This 
analysis revealed that the proposed model is able to predict successfully compounds that 
were not used in the training process.  

CoMFA model, contour plots 

The contour plots of the CoMFA steric and electrostatic fields are presented in Fig. 3 for the 
modeled BDI activities. For simplicity, only the most active compound (compound 18) 
contour map is shown. In this figure, green and yellow contours indicate regions where 
steric bulk groups favored and disfavored the activity, respectively. A green contour, shown 
in Fig. 3, indicates that large substituents near C2 of the compound 18 (substituent R1) are 
important for a high BD inhibitory activity. The red contours at the same position indicate 
regions where an increase of positive charge decreases the activity. The R1 substituents are 
therefore preferably large and negatively charged. Green contours are also located near the 
R2 substituent at C16 (Fig. 3) that therefore prefers large substituents too. Overall, polar 
groups are favored at R2. Red contours indicate that functional groups containing with an 
electronegative character, such as carboxylic acid (COO-) and OH, are beneficial at R2. 
Positively charged groups, such as bases and OH groups, are also beneficial at R2 for 
gaining BDI activity, as seen by the blue contours. It seems that the R3 substitution does not 
have any effect on compound activity according the steric and electrostatic field contours, 
but as mentioned before the conformational alignment of this substituent was not 
optimized. 

CoMSIA model, predictivity 

In comparison to CoMFA, CoMSIA is less affected by changes in molecular alignment and 
provides smoother and interpretable contour maps as a result of employing Gaussian type 
distance dependence with the molecular similarity indices it uses. Furthermore, in addition 
to the steric and electrostatic fields, CoMSIA defines explicit hydrophobic and HBD and 
HBA descriptor fields. A more statistically robust model was obtained from the CoMSIA 
study. The CoMSIA model has a better cross-validated r2 value of 0.662 using five 
components, non cross-validated r2 value of 0.991 and a Fischer ratio (F = 179.83). CoMSIA 
model indicated contributions of steric, electrostatic, hydrophobic, H bonds donor and 
acceptor field contributions of 0.03, 0.31, 0.07, 0.34 and 0.22 respectively. Thus, in contrast to 
CoMFA, the steric contribution to the CoMSIA model is almost neglictible. The predictions 
of pI50 values for the 14 BDIs in the training set using CoMSIA model are shown in Table 1. 
The correlations between the calculated and experimental values of pI50 (from training and 
LOO-CV are shown in Fig. 4. The CoMSIA model was also used to predict the inhibitory 
activities of the external test set compounds, and this model was able to describe the test set 
with predictive r2 = 0.91. The external test set predicted values are listed in Table 1, and the 
correlations between the predicted activity values and experimental values are represented 
in Fig. 4. As for CoMFA, the model is therefore able to predict successfully compounds that 
were not used in the training process. 
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CoMSIA model, contour plots 

The contour plots of the CoMSIA steric, electrostatic, hydrophobic, HB acceptor and HB 
donor fields are presented in Fig. 5. Generally, the steric and electrostatic field contributions 
respectively are similar to those one in CoMFA analysis (Fig. 5a). They were interpreted in 
the same manner as in the above-mentioned CoMFA model and therefore not described 
here.  

CoMSIA models present, in addition to CoMFA models, hydrophobic and hydrogen-bond 
fields. The hydrophobic contributions are presented in Fig. 5b. An orange contour covering 
the area near substituent R2 indicates that hydrophobic groups are favoured at R2. Instead, 
the presence of black contours at R1 substitution, near C3, suggests that hydrophilic groups 
are useful to increase activity. The hydrogen bond donor and acceptors contours are 
generally in agreement with the contours based on negative/positive charges, as seen on 
Fig. 5c and 4d, however giving more precise information. A large magenta contour near R2 
shows that HB donor groups are favourable to activity at R2. A significant volume red 
contour is present near to C16 indicates a detrimental effect of HB acceptor groups at R1, an 
information that was not given by the CoMFA model. Red contour near the R1 substituent, 
that hydrogen bond acceptor groups at R1 decrease the activity.  

Performance comparison 

The superior performance of CoMSIA relative to CoMFA with this dataset may be 
attributed to the smoother potentials or to the higher contributions from the HBD and HBA 
fields to the CoMSIA models (Table 2). Unlike CoMSIA, CoMFA does not have explicit 
hydrogen-bonding descriptors, which are assumed to be implicitly treated in the CoMFA 
steric and electrostatic fields, respectively. The CoMSIA steric and electrostatic PLS contours 
were similarly placed as those of the CoMFA model. The HBD fields made the highest 
contribution to the CoMSIA models (Table 2), which suggest that among the descriptors 
considered, the HBD is the most important factor influencing the activity of the betulin 
derivatives in the training set. 

 

Fig. 1. Database alignment superposition of training set compounds used for 3D-QSAR 
analysis 
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 Parameter Contributions 
r2cv NC r2ncv SEE F-value r2pred S E H D A 

CoMFA 0.27 1 - - - - - - - - - 
CoMSIA 0.30 2 - - - - - - - - - 
CoMFA* 0.58 2 0.81 0.44 24.11 0.78 0.33 0.66 - - - 
CoMSIA* 0.66 5 0.99 0.11 179.83 0.91 0.03 0.31 0.07 0.34 0.22 

Table 2. Summary of Analysis Results of the CoMFA and CoMSIA Models. NC is the 
number of components from PLS analysis, r2cv are the correlation coefficients of the leave-
one-out (LOO) cross-validation, r2ncv are the correlation coefficients for training set without 
cross-validation analysis. S = Steric, E = Electrostatic, H = Hydrophobic, D = H bond donor, 
A = H bond acceptor 

 
Fig. 2. Scatter plot of the experimental activities versus predicted activities for the CoMFA 
model. Empty circles: LOO cross-validated predictions on the full training set. Black circles: 
LOO cross-validated predictions on training set predictions without compound 6 and 12. 
Red circles: training set without cross validation, Blue circle: test-set predictions. 

 
Fig. 3. Contour maps for CoMFA with compound 18 shown as a representative structure. 
Green contours indicate regions where bulky groups enhance the activity. Blue contours 
indicate regions where an increase of positive charge enhances the activity, and red contours 
indicate regions where more negative charges are favourable for activity. 
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Fig. 4. Scatter plot of the experimental activities versus predicted activities for CoMSIA 
model. Empty circles: LOO cross-validated predictions on full training set, Black circles: 
LOO cross-validated predictions on training set predictions without compound 6 and 12, 
Red circles: training set without cross validation, Blue circles: test-set predictions.  

3.2 Pharmacophoric representations 

GALAHAD pharmacophore models were derived, by using the 5 most active ligands in the 
training set (these 5 compounds are shown in bold in Table 1). Ten pharmacophore models 
were retained after the GALAHAD runs. All these models present eight to nine 
pharmacophoric features. Seven hydrophobic moieties of the pharmacophore reflect the 
presence for a large hydrophobic structure as the skeleton of the BDIs. It would be possible 
for us to reduce the number of these pharmacophoric points if we wished to retrieve 
chemical compounds more distant from the betulin scaffold. The remaining 2 to 3 
pharmacophoric points corresponds to the three R groups. In Fig. 7, the pharmacophore for 
model 3 is represented. It includes 8 pharmacophore features: 7 hydrophobes (HY_2, HY_3, 
HY_4, HY_5, HY_6, HY_7 and HY_8) and 1 HD donors (DA_1). The HB donor moieties 
reflect the importance of OH groups at these positions of the betulin for BD inhibitory 
activity. In Fig. 7, cyan and magenta spheres represent indicate hydrophobes and HB 
donors, respectively. 

Each of the obtained models represents a different trade-off among the conflicting demands 
of maximizing steric consensus, maximizing pharmacophore consensus, and minimizing 
energy. They had Pareto rank 0; this means no one model is superior to any other. During 
GALAHAD runs, it is recognized that high-energy values are due to steric clashes.(Dorfman 
et al., 2008) The algorithm retains these models to keep good characteristics to be passed on 
to less strained offspring during genetic algorithm process. All the GALAHAD models are 
derived from at least 4 ligands of the training set and were compared according to Pareto 
ranking. Table 3 shows energy, steric and pharmacophoric concordance values for models 
with all the 5 ligands. Minimum and maximum values for each characteristic between all the 
obtained twenty models are also reported in this table. The model ten had energy very high 
than the other nine models and is not included in the statistic. Small value of energy and 
high values of steric and pharmacophoric concordance are desired for the best model. Now, 
the higher energy value between all the models is 6149; the models containing all the five 
ligands had values between 41.79 (the minimum) and 6149.39 (the maximum), in this sense 
energy value varies widely distributed among the considered models. Steric had a small 
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(D) 

Fig. 5. Contour maps for the CoMSIA model, shown with compound 18 as a 
representative structure. (A) Steric field: green contours indicates region where bulky 
groups enhance the activity. Electrostatic field: Blue indicates regions where positive 
charge is favoured and enhances activity and red the regions where it decrease it. (B) 
Hydrophobic field: orange contours indicate regions where hydrophobic/hydrophilic 
groups enhance/decrease the activity, and black contours indicate regions where 
hydrophobic/hydrophilic groups decrease/enhance the activity. (C) HB acceptor field: 
Magenta represents areas where HB acceptors favor the activity and red, area where it 
disfavour it. (D) HB donor field: Cyan represents areas where HB donors favor the 
activity and purple the area where it decrease it. 

variation between the minimum (20978.80) and the maximum (21538.59) considering all the 
models. Finally, pharmacophoric concordance had a small variation between the minimum 
(325) and the maximum (392.50). With the intention to select the best model, we constructed 
a 3D plot to visualize the Pareto surface (Fig. 6).  

Considering only the energy and steric criteria, the best of all models lies in the upper left 
hand corner of the graph in Fig. 6a, where the energy (x axis) is low and the steric (y axis) 
score is high. In terms of pharmacophoric concordance and steric criteria, the best of all 
models lies in the upper right hand corner of the graph in Fig. 6b, where the HBond (x axis) 
score is high and steric (y axis) is high. Finally, in terms of pharmacophoric concordance and 
energy scores, the best of all models now lies at the lower right corner, where HBOND (x 
axis) are high and energy (y axis) are low both (Fig. 6c). According Fig. 6, there is only one 
model (Model 3), which filled all the three requirements described above and was selected 
for the next of study. This model is represented in Fig. 7. Model 3 has low energy, the higher 
steric but with high pharmacophoric concordance values. All conformers aligned represent 
low-energy conformations of the molecules, and it can be seen that the final alignment 
shows a satisfactory superimposition of the pharmacophoric points.  

We evaluated how well the model identifies active compounds in virtual screening 
experiment of a larger database. For this, the model was used to screen a large database 
constituted by FIMM database, NCI database and the set of 24 compounds from the 
previous 3D-QSAR studies. This indicates how these models can be used as a theoretical 
screening tool and how they were able to discriminate between active and inactive 
molecules, and consequently, to predict whether a new molecule inhibits BD. 
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(A) 

 
(B) 

 
(C) 

Fig. 6. Plot of the strain energy, steric overlap and pharmacophoric concordance values for 
GALAHAD models with all the 5 ligands with contribution to the consensus feature.  

Plot of steric overlap vs. energy. (B) Plot of steric overlap vs. pharmacophoric concordance 
(HBOND). (C) Plot of HBOND vs. steric overlap. 
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MODEL Features ENERGY STERICS HBOND 
MODEL 1 9 6074.6299 21377.9004 388.1 
MODEL 2 8 41.79 21258.1992 325 
MODEL 3 8 210.97 21538.5996 385.1 

MODEL 4 9 75.67 21181.9004 357.9 
MODEL 5 8 126.38 21289.6992 377.3 
MODEL 6 9 5978.9502 20978.8008 386.4 
MODEL 7 9 279.49 21061.1992 375 
MODEL 8 9 56.97 21009 362.5 
MODEL 9 8 6149.3901 21483.5 392.5 
MODEL 10 9 132872792 21596.6992 366 
Mina  41.79 20978.8008 325 
Maxa  6149.3901 21538.5996 392.5 

Table 3. Summary of Analysis Results of the CoMFA and CoMSIA Models. The selected 
model (MODEL 3) is indicated in boldface. aMinimum and maximum values between all the 
obtained 21 models. 

 
Fig. 7. Selected pharmacophore model 3 and molecular alignment of the compounds used to 
elaborate the models. Cyan, and magenta spheres are represented for hydrophobes, and HB 
donors, respectively.  

3.3 Virtual screening results 

Before screening a virtual database it is important to verify the (dis)similarity of compounds 
present in the database. This enables us to visualize the chemical space covered by the 
compounds inside the database and the level of diversity of these compounds. The diversity 
of a library of compounds denotes the degree of heterogeneity, structural range within the 
set of compounds. Such exploration of yet unknown chemical space might help to solve the 
problem of the high attrition rates in drug development by giving more diverse compounds 
to choose, a broader range of structures at the hit prioritization level, which should increase 
the chances of success at later stages and also may allow us to avoid target promiscuity that 
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is apparent in many drugs and allow the design of safer drugs. The chemical space of 
chemical (diversity/similarity) of chemical structure libraries can be characterized by the 
distribution of Tanimoto coefficients (equation 3). The Tanimoto coefficient is the most 
commonly used coefficient in chemical similarity/diversity work, following a study of the 
performance of a range of similarity coefficients by Willet and Winterman.(Willett & 
Winterman, 1986) It firstly requires that the molecules are represented by appropriate 
structural descriptors. Many different structural descriptors have been developed for 
similarity searching in chemical databases including 2D fragment based descriptors, 3D 
descriptors, and descriptors that are based on the physical properties of molecules.(Downs 
et al., 1994) The Tanimoto coefficient is usually calculated from the 2D structure fingerprint, 
or the 3D shape/feature similarity. A fingerprint is an ordered list of bits. Each bit 
represents a Boolean determination of, or test for, the presence of, for example, an element 
count, a type of ring system, atom pairing, atom environment (nearest neighbors), etc., in a 
chemical structure. 

The Tanimoto score equation: 

 T(A,B) = 2 2
AB

A + B -AB
  (3) 

Where: 
T(A,B) is the similarity score, a fraction between 0 and 1. 
A is the count of bits set in fingerprint A 
B is the count of bits set in fingerprint B 
AB is the count of bits set in common in fingerprints A and B 

The Unity module generates a binary substructure fingerprint for chemical structures of our 
screening libraries. These fingerprints are used by Unity for similarity neighboring and 
similarity searching. As shown in Fig. 8 and Fig. 9, when we calculated the matrix of 
pairwise similarity based on 2D structure for the FIMM and NCI libraries. This 2D 
fingerprints is based on a combination of a hashing function (which represents connected 
molecular fragments in a efficient but unintelligible manner) and an explicit count of specific 
fragments, such as rings. The histograms of the Tanimoto indices show diverse distribution 
of the compounds in the databases and relative distribution of type of compounds inside. A 
2D Tanimoto mean of 0.88 and 0.87 are indicative of a suitable range of diversity within each 
of the two databases. 

The Model shown in Fig. 7 was used to generate the query for 3D search virtual screening 
via the 3D search method implemented in UNITY module encoded in Tripos. Compounds 
had to map at least 6 features in the pharmacophore model.  

<< 
DONOR_ATOM[NAME=DA_1;TARGET=(-6.205,0.423,2.026)] 
HYDROPHOBIC[NAME=HY_2;TARGET=(3.520,-0.863,-0.432)] 
HYDROPHOBIC[NAME=HY_3;TARGET=(1.540,0.665,0.009)] 
HYDROPHOBIC[NAME=HY_4;TARGET=(-0.820,-0.017,-0.450)] 
HYDROPHOBIC[NAME=HY_5;TARGET=(-2.846,1.434,-0.588)] 
HYDROPHOBIC[NAME=HY_6;TARGET=(-4.916,0.526,-1.145)] 
HYDROPHOBIC[NAME=HY_7;TARGET=(4.890,0.689,-0.736)] 
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HYDROPHOBIC[NAME=HY_8;TARGET=(-4.841,-2.039,-0.846)] 
spatial_point[name=SPAT_DA_1;feature=DA_1;point=(-6.205,0.423,2.026);tolerance=0.800] 
spatial_point[name=SPAT_HY_2;feature=HY_2;point=(3.520,-0.863,-0.432);tolerance=0.290] 
spatial_point[name=SPAT_HY_3;feature=HY_3;point=(1.540,0.665,0.009);tolerance=0.330] 
spatial_point[name=SPAT_HY_4;feature=HY_4;point=(-0.820,-0.017,-0.450);tolerance=0.710] 
spatial_point[name=SPAT_HY_5;feature=HY_5;point=(-2.846,1.434,-0.588);tolerance=0.450] 
spatial_point[name=SPAT_HY_6;feature=HY_6;point=(-4.916,0.526,-1.145);tolerance=0.310] 
spatial_point[name=SPAT_HY_7;feature=HY_7;point=(4.890,0.689,-0.736);tolerance=0.410] 
spatial_point[name=SPAT_HY_8;feature=HY_8;point=(-4.841,-2.039,-0.846);tolerance=0.600] 
partial_match[min=6;max=6;features=DA_1,HY_2,HY_3,HY_4,HY_5,HY_6,HY_7,HY_8] 
>> 

As a result (see Table 4), pharmacophore based virtual screening yielded 13 hits (out of 24) 
from Table 1 compounds, 16 hits from FIMM library (out of 120k compounds) and 76 hits 
from NCI library (out of 240k compounds) that meet the specified requirements. The hits list 
selected from the Table 1 compounds confirm the selectivity of our query. Among the set of 
24 betulin derivatives used as controls, about half (13) were retrieved by the procedure, 
mostly the highly active ones. Finally, as a result of this study the best 20 hits from FIMM 
and NCI were selected for further pharmacological assay (Table 5 and 6). The inhibition (I50) 
percentage of the selected compounds are in the range of the values of active compounds 
present in the Table 1 dataset and their values of LogP are near the value (8.07) of the most 
active compound (compound 18) of Table 1. These predicted values of I50 and LogP should 
be used to prioritize compounds to send in experimental test. 

 
Fig. 8. FIMM library distribution 

 
Fig. 9. NCI library distribution 
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 Table 1 FIMM NCI 

Number hits 13 16 76 

Table 4. Summary of hits found by pharmacophore based 3D search virtual screening on 
FIMM, NCI and table 1 compound. 

 

FIMM ID Image QFIT RANK 
LOGBIO CLOGP 

538990053 34.33 1 3.63 10.66 

538990110 22.94 2 3.66 7.95 

538990111 27.42 3 3.67 8.52 

538990154 34.33 4 3.69 8.62 

538990271 34.33 5 3.52 9.53 

538990190 34.33 6 3.39 11.60 

538990189 46.28 7 4.37 3.88 
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538990181 35.60 8 4.25 3.74 

538990200 39.75 9 3.67 6.47 

538990295 45.39 10 4.00 5.23 

AE-641/00404032 56.28 11 3.76 6.97 

538990112 47.15 12 3.66 8.67 

538988558 56.28 13 3.55 10.51 

538990155 47.15 14 3.73 8.62 

538990368 42.53 15 3.68 4.67 

538990294 45.39 16 4.07 5.23 

 

Table 5. List of compounds selected with pharmacophore based 3D search virtual screening 
on FIMM compounds. 
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NCI ID Image QFIT RANK LOGBIO CLOGP 

661747 80.42 1 3.55 8.40 

144946 64.10 2 3.70 6.14 

680072 30.81 3 3.68 7.07 

152534 30.60 4 3.81 8.075 

250423 60.03 5 3.70 8.44 

277277 30.62 6 4.06 7.77 

119118 30.62 7 4.06 7.77 

527971 53.78 8 3.70 10.66 

90487 60.03 9 3.68 10.51 

152535 30.60 10 3.83 8.45 

403166 53.78 11 3.59 11.60 
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281807 20.53 12 3.82 10.11 

114945 53.78 13 3.70 8.62 

113090 60.03 14 3.70 8.47 

655415 53.78 15 3.67 8.62 

94656 50.21 16 3.93 8.22 

655414 50.21 17 3.81 8.22 

125854 51.71 18 3.91 6.86 

677578 60.03 19 3.70 8.47 

133914 29.32 20 3.63 8.42 

Table 6. List of compounds selected with pharmacophore based 3D search virtual screening 
on NCI compounds. 

4. Conclusions 

In the current study, 3D-QSAR and pharmacophore models were derived for betulin 
derivatives as inhibitors of Leishmaniases, which should be useful for assisting the design of 
active compounds. Such models correlate well structural features with inhibitory activities 
and bring valuable information about the relevant characteristics of inhibitors. CoMFA and 
CoMSIA approaches were developed to derive structure–activity relationships. CoMFA and 
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CoMSIA modeling were efficients tools to suggest outliers that we could link to a specific 
molecular mechanism, in that case covalent crosslinking. The models are reliable and were 
obtained by using steric and electrostatic CoMFA fields, and by using steric, electrostatic, 
hydrophobic, HB acceptor and donor CoMSIA fields. In this study, CoMSIA outperforms 
CoMFA, but this is not always the case. Moreover, contour plots may help identify relevant 
regions where any change can affect binding preference. According to the obtained 
statistics, prediction of betulin derivatives activities with sufficient accuracy should be 
possible by using these models. In a second phase, pharmacophore models were derived 
with GALAHAD. Models derived from 5 active compounds that all match best the CoMSIA 
predictions were obtained. These models include hydrophobes, and HB donors. The 
obtained pharmacophore models were used as queries for 3D flexible search engine to 
search for the FIMM, NCI and QSAR dataset collection. Without the verification of the 
predictive characteristic of the compounds in our dataset with 3D-QSAR model, it would 
have been much more speculative to do a pharmacophore-based screening. The process of 
screening takes less than two hours (standard 2 CPUs workstation). In comparison, a 
molecular docking study involving the same two libraries in the same conditions, counting 
2-5 seconds (2 CPU) for each compound, would take 20 to 50 hours. The search was really 
efficient, allowing us to retrieve among the hit lists 9 out of the 14 molecules that had been 
used to build the model and had been put in the library as a control, as well as 4 out of 8 
molecules in the test set also used as a control. As a result of this study, 20 first molecules 
were selected from FIMM and NCI hit list for further biological binding assay. 

While this study is conducted for a small number of compounds, for which biological 
activity was easily obtainable and testing conducted in a single laboratory, it could easily be 
generalized to larger sets and databases. The results described in this paper indicate that this 
method is very efficient in the study of hit identification and lead optimization. 
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