
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900



0

Topology Optimization of Fluid
Mechanics Problems

Maatoug Hassine
ESSTH, Sousse University

Tunisia

1. Introduction

Optimal shape design problems in fluid mechanics have wide and valuable applications in
aerodynamic and hydrodynamic problems such as the design of car hoods, airplane wings
and inlet shapes for jet engines. One of the first studies is found in Pironneau (1974). It is
devoted to determine a minimum drag profile submerged in a homogeneous, steady, viscous
fluid by using optimal control theories for distributed parameter systems. Next, many shape
optimization methods are introduced to determine the design of minimum drag bodies Kim
and Kim (1995); Pironneau (1984), diffusers Cabuk and Modi (1992), valves Lund et al. (2002),
and airfoils Cliff et al. (1998). The majority of works dealing with optimal design of flow
domains fall into the category of shape optimization and are limited to determine the optimal
shape of an existing boundary.
It is only recently that topological optimization has been developed and used in fluid design
problems. It can be used to design features within the domain allowing new boundaries
to be introduced into the design. In this context, Borvall and Petersson Borrvall and
Petersson (2003) implemented the relaxed material distribution approach to minimize the
power dissipated in Stokes flow. To approximate the no-slip condition along the solid-fluid
interface they used a generalized Stokes problem to model fluid flow throughout the domain.
Later, this approach was generalized by Guest and Prévast in Guest and Prévost (2006). They
treated the material phase as a porous medium where fluid flow is governed by Darcy’s law.
For impermeable solid material, the no-slip condition is simulated by using a small value for
the material permeability to obtain negligible fluid velocities at the nodes of solid elements.
The flow regularization is expressed as a system of equations; Stokes flow governs in void
elements and Darcy flow governs in solid elements.
In this work, we propose a new topological optimization method. Our approach is based on
topological sensitivity analysis Amstutz (2005); Amstuts and Masmoudi (2003); Garreau et al.
(2001); Guillaume and Hassine (2007); Guillaume and Sid Idris (2004); Hassine et al. (2007);
Hassine and Masmoudi (2004); Masmoudi (2002); Sokolowski and Zochowski (1999). The
optimal domain is constructed through the insertion of some obstacles in the initial one. The
problem leads to optimize the obstacles location. The main idea is to compute the topological
asymptotic expansion of a cost function j with respect to the insertion of a small obstacle inside
the fluid flow domain. The obstacle is modeled as a small hole Oz,ε around a point z having
an homogeneous condition on the boundary ∂Oz,ε. The best location z of Oz,ε is given by the
most negative value of a scalar function δj, called the topological gradient.
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In practice, this approach leads to a simple, fast and accurate topological optimization
algorithm. The final domain is obtained using an iterative process building a sequence of
geometries (Ωk)k starting with the initial fluid flow domain Ω0 = Ω. Knowing Ωk, the new
domain Ωk+1 is obtained by inserting an obstacle Ok in the domain Ωk; Ωk+1 = Ωk\Ok. The
location and the shape of Ok are defined by a level set curve of the topological gradient δjk

Ok = {x ∈ Ωk, such that δjk(x) ≤ ck} ,

where ck is a scalar parameter used to control the size of the inserted obstacle. The function
δjk is the leading term of the variation j(Ωk\Oz,ε)− j(Ωk).
The chapter is organized as follows. In the next section, we present the topological
optimization problem related to the Stokes system. The aim is to determine the fluid flow
domain minimizing a given cost function. To solve this optimization problem we will use the
topological sensitivity analysis method described in the Section 3. It consists in studying the
variation of a cost function j with respect to a topology modification of the domain. The most
simple way of modifying the topology consists in creating a small hole in the domain. In the
case of structural shape optimization, creating a hole means simply removing some material.
In the case of fluid dynamics where the domain represents the fluid, creating a hole means
inserting a small obstacle O. The topological sensitivity tools which have been developed by
several authors Garreau et al. (2001); Schumacher (1995); Sokolowski and Zochowski (1999)
allow to find the place where creating a small hole will bring the best improvement of the cost
function. The main theoretical results are described in Sections 3.2 and 3.3. In section 3.2, we
derive an asymptotic expansion for an arbitrary cost function with respect to the insertion of a
small obstacle inside the fluid flow domain. In section 3.3, we derive an asymptotic expansion
for two standard examples of cost functions.
As application of the proposed topological optimization method, we consider in Section 4
some engineering applications commonly found in the fluid mechanics literature. In Section
4.1, we present the optimization algorithm. In Section 4.2, we treat the shape optimization of
pipes in a cavity. The aim is to determine the optimal shape of the pipes that connect the inlet
to the outlets of the cavity minimizing the dissipated power in the fluid. The optimization of
injectors location in an eutrophized lake is discussed in Section 4.3. Section 4.4 concerns the
approximation of a wanted flow using a topological perturbation of the domain.

2. Topological optimization problem

Let Ω be a bounded domain of R
d, d = 2, 3 with smooth boundary Γ. We consider an

incompressible fluid flow in Ω described by the Stokes equations. The velocity field u and
the pressure p satisty the system

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

−ν ∆u +∇p = F in Ω

div u = 0 in Ω

u = 0 on Γ,

(1)

where ν denotes the kinematic viscosity of the fluid, F is a given body force per unit of mass
(gravitational force).
The aim is to determine the optimal geometry of the fluid flow domain minimizing a given
design function j:

min
D∈Dad

j(D), such that |D| ≤ Vdesired,
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Topology Optimization of Fluid Mechanics Problems 3

where j has the form
j(D) = J(uD),

with uD is the velocity field solution to the Stokes system in D and Dad is a given set of
admissible domains.
Here |D| is the Lebesgue measure of D and Vdesired denotes the target volume (weight).
To solve this shape optimization problem we shall use the topological sensitivity analysis
method. It consists in studying the variation of the objective function J with respect to a small
topological perturbation of the domain Ω.

2.1 Stokes equations in the perturbed domain

We denote by Ω\Oε the perturbed domain, obtained by inserting a small obstacle Oε in Ω. We
suppose that the obstacle has the form Oε = x0 + εO, where x0 ∈ Ω, ε > 0 and O is a given

fixed and bounded domain of IRd, containing the origin, whose boundary ∂O is connected
and piecewise of class C1.
In Ω\Oε, the velocity uε and the pressure pε are solution to

⎧

⎪

⎪

⎨

⎪

⎪

⎩

−ν∆uε +∇pε = F in Ω\Oε

div uε = 0 in Ω\Oε

uε = 0 on Γ

uε = 0 on ∂Oε.

(2)

Note that for ε = 0, Ω0 = Ω and (u0 , p0) is solution to

⎧

⎨

⎩

−ν∆u0 +∇p0 = F in Ω,
div u0 = 0 in Ω,

u0 = 0 on Γ.
(3)

2.2 Topological optimization problem

Consider now a design function j of the form

j(Ω\Oε) = Jε(uε), (4)

where Jε is a given cost function defined on H1(Ω\Oε)d for ε ≥ 0 and uε is the velocity field
solution to the Stokes system (2).
Our aim is to determine the optimal location of the obstacle Oε in the domain Ω in order
to minimize the design function j. Then, the optimization problem we consider is given as
follows:

min
Oε⊂Ω

j(Ω\Oε). (5)

To this end, we will derive in the next section a topological asymptotic expansion of the
function j with respect to ε.

3. Topological sensitivity analysis

In this section we consider a topological sensitivity analysis for the Stokes equations. We
present a topological asymptotic expansion of a design function j with respect to the insertion
of a small obstacle Oε inside the domain Ω. The proposed approach is based on the following
general adjoint method.

211Topology Optimization of Fluid Mechanics Problems
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3.1 General adjoint method

Let (Vε)ε≥0 be a family of Hilbert spaces depending on the parameter ε, such that, ∀ε ≥
0 Vε →֒ V0. For ε ≥ 0, we consider
• Aε : Vε × Vε −→ IR a bilinear, continuous and coercive form on Vε,
• lε : Vε −→ IR a linear and continuous form on Vε.
For all ε ≥ 0, we denote by uε the unique solution to the problem

Aε(uε, w) = lε(w), ∀w ∈ Vε. (6)

Consider now a cost function of the form j(ε) = Jε(uε), where Jε is defined on Vε for ε ≥ 0 and
J0 is differentiable with respect to u, its derivative being denoted by DJ0(u).
Our aim is to derive an asymptotic expansion of j with respect to ε. We consider the following
assumptions.

Hypothesis 3.1. There exist a real number δA and a scalar function f : IR+ −→ IR+ such that
∀ ε ≥ 0

A0(u0 − uε, v0) = f (ε)δA+ o( f (ε)),

lim
ε→0

f (ε) = 0,

where v0 ∈ V0 is the solution to the adjoint problem

A0(w, v0) = −DJ0(u0)w, ∀w ∈ V0. (7)

Hypothesis 3.2. There exists a real number δJ such that ∀ ε ≥ 0

Jε(uε)− J0(u0) = DJ0(u0)(uε − u0) + f (ε)δJ + o( f (ε)).

Under the assumptions 3.1 and 3.2, we have the following theorem.

Theorem 3.1. Hassine et al. (2008) If the assumptions 3.1 and 3.2 hold, the function j has the following
asymptotic expansion

j(ε) = j(0) + f (ε)
(

δA+ δJ
)

+ o( f (ε)).

3.2 Topological sensitivity for the Stokes problem

In this section, we derive a topological asymptotic expansion for the Stokes equations. In
order to apply the adjoint method described in the previous paragraph, first we establish a
variational problem associated to the Stokes system. From the weak variational formulation
of (2), we deduce that uε ∈ Vε is solution to

Aε(uε, w) = lε(w), ∀w ∈ Vε,

where the functional space Vε, the bilinear form Aε and the linear form lε are defined by

Vε =
{

w ∈ H1
0(Ωε), div w = 0 in Ωε

}

, (8)

Aε(v, w) = ν
∫

Ωε

∇v · ∇w dx, ∀u, v ∈ Vε, (9)

lε(w) =
∫

Ωε

F w dx, ∀w ∈ Vε, (10)

212 Advanced Methods for Practical Applications in Fluid Mechanics
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Topology Optimization of Fluid Mechanics Problems 5

where Ωε = Ω\Oε.
Next we have to distinguish the cases d = 2 and d = 3, because the fundamental solutions
to the Stokes equations in IR2 and IR3 have an essentially different asymptotic behaviour at
infinity.

3.2.1 The three dimensional case

Let (U, P) denote a solution to
⎧

⎪

⎪

⎨

⎪

⎪

⎩

−ν∆U +∇P = 0 in IR3\O
div U = 0 in IR3\O

U −→ 0 at ∞

U = −u0(x0) on ∂O.

(11)

The existence of (U, P) is most easily established by representing it as a single layer potential
on ∂O (see Dautray and Lions (1987))

U(y) =
∫

∂O
E(y − x)η(x) ds(x), P(y) =

∫

∂O
Π(y − x)η(x) ds(x), y ∈ IR3\O

where (E, Π) is the fundamental solution of the Stokes equations

E(y) =
1

8πνr

(

I + ereT
r

)

, Π(y) =
y

4πr3
,

with r = ||y||, er = y/r and eT
r is the transposed vector of er. The function η ∈ H−1/2(∂O)3 is

the solution to the boundary integral equation,
∫

∂O
E(y − x) η(x) ds(x) = −u0(x0), ∀y ∈ ∂O. (12)

One can observe that the function η is determined up to a function proportional to the normal,
hence it is unique in H−1/2(∂O)3/IRn.
We start the derivation of the topological asymptotic expansion with the following estimate
of the H1(Ωε) norm of uε(x) − u0(x) − U(x/ε). This estimate plays a crucial role in the
derivation of our topological asymptotic expansion. It describes the velocity perturbation
caused by the presence of the small obstacle Oε.

Proposition 3.1. Guillaume and Hassine (2007); Hassine et al. (2008) There exists c > 0,
independent on ε, such that for all ε > 0 we have

‖uε(x)− u0(x)− U(x/ε)‖1,Ωε
≤ c ε.

The following corollary follows from Proposition 3.1. It gives the behaviour of the velocity uε

when inserting an obstacle. The principal term of this perturbation is given by the function U,
solution to (11).

Corollary 3.1. We have

uε(x) = u0(x) + U(x/ε) + O(ε), x ∈ Ωε.

We are now ready to derive the topological asymptotic expansion of the cost function j. It
consists in computing the variation j(Ω\Oε) − j(Ω) when inserting a small obstacle inside
the domain. The leading term of this variation involves the function η, the solution to the
boundary integral equation (12). The main result is described by Theorem 3.2.
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Theorem 3.2. Guillaume and Hassine (2007); Hassine et al. (2008) If Hypothesis 3.1 holds, the
function j has the following asymptotic expansion

j(Ω\Oε) = j(Ω) + ε δj(x0) + o(ε).

where the topological gradient δj is given by

δj(x) =
(

−
∫

∂O
η(y) ds(y)

)

· v0(x) + δJ(x), x ∈ Ω.

If O is the unit ball centred at the origin, O = B(0, 1), the density η is given explicitly η(y) =

−
3ν

2
u0(x0), ∀y ∈ ∂O.

Corollary 3.2. If O = B(0, 1), under the hypotheses of theorem 3.2, we have

j(Ω\Oε) = j(Ω) + ε
[

6πν u0(x0) · v0(x0) + δJ(x0)
]

+ o(ε).

3.2.2 The two dimensional case

In this paragraph, we present the topological asymptotic expansion for the Stokes equations
in the two dimensional case. The result is obtained using the same technique described in
the previous paragraph. The unique difference comes from the expression of the fundamental
solution of the Stokes equations. In this case (E, Π) is given by

E(y) =
1

4πν

(

− log(r)I + ereT
r

)

, Π(y) =
y

2πr2
.

Theorem 3.3. Guillaume and Hassine (2007); Hassine et al. (2008) Under the same hypotheses of
theorem 3.2, the function j has the following asymptotic expansion

j(Ω\Oε) = j(Ω) +
−1

log(ε)
δj(x0) + o

( −1

log(ε)

)

.

where the topological gradient δj is given by

δj(x) = 4πν u0(x) · v0(x) + δJ(x), x ∈ Ω.

3.3 Cost function examples

We now discuss Assumption 3.2. We present two standard examples of cost functions
satisfying this Assumption and we calculate their variations δJ. For the proofs one can see
Guillaume and Hassine (2007) or Hassine et al. (2008).

Proposition 3.2. Let wd ∈ H1(Ω) be a given wanted (objective) velocity field. The cost function

Jε(u) =
∫

Ω\Oε

|u − wd|
2 dx, (13)

satisfies the assumption 3.1 with

DJ0(w) = 2
∫

Ω
(u0 − wd) · w dx, ∀w ∈ V0, and δJ(x0) = 0.

214 Advanced Methods for Practical Applications in Fluid Mechanics
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Proposition 3.3. Let wd ∈ H2(Ω). The cost function

Jε(u) = ν
∫

Ω\Oε

|∇u −∇wd|
2 dx, (14)

satisfies the assumption 3.1 with

DJ0(w) = 2
∫

Ω
∇(u0 − wd) · ∇w dx ∀w ∈ V0,

δJ(x0) =

{
(

−
∫

∂O
η(y) ds(y)

)

· u0(x0) if d = 3,

4πν|u0(x0)|
2 if d = 2.

For d=3, if O is the unit ball B(0, 1), we have δJ = 6πν|u0(x0)|
2.

4. Numerical experiments

As an application of the previous theoretical results, we consider some engineering
applications commonly found in the fluid mechanics literature. Our implementation is based
on the following optimization algorithm.

4.1 The optimization algorithm

We apply an iterative process to build a sequence of geometries (Ωk)k≥0 with Ω0 = Ω. At the

kth iteration the topological gradient is denoted by δjk and the new geometry Ωk+1 is obtained
by inserting an obstacle Ok in the domain Ωk; Ωk+1 = Ωk\Ok. The location and the size of
the obstacle Ok are chosen in such a way that j(Ωk+1)− j(Ωk) is negative.
Based on the last remark, the obstacle Ok is defined by a level set curve of the topological
gradient δjk

Ok =
{

x ∈ Ωk, such that δjk(x) ≤ ck ≤ 0
}

,

where ck is chosen in such a way that |Ok|/|Ωk| is less than a given ratio δ ∈]0, 1[.
The algorithm : Topology optimization with volume constraint.
• Initialization: choose Ω0 = Ω, and set k = 0.
• Repeat until |Ωk| ≤ Vdesired :

- compute uk the solution to the Stokes equations (15) in Ωk,

- compute vk the solution to the associated adjoint problem (16) in Ωk ,

- compute the topological sensitivity δjk(z), ∀z ∈ Ωk,

- determine Ωk+1 = Ωk\Ok, where Ok =
{

x ∈ Ωk, such that δjk(x) ≤ ck ≤ 0
}

,

- k ←− k + 1.

The topological gradient δjk is defined by

δjk(z) = uk(z) · vk(z) + δJk(z), ∀z ∈ Ωk,

where uk is the velocity field solution to

{

−ν ∆uk +∇pk = F in Ωk

div uk = 0 in Ωk,
(15)

215Topology Optimization of Fluid Mechanics Problems
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and vk is the solution to the associated adjoint problem

{

−ν ∆vk +∇qk = −DJ(uk) in Ωk

div vk = 0 in Ωk.
(16)

The discretization of the problems (15) and (16) is based on the mixed finite element method
P1 + bubble/P1 Arnold et al. (1984). The function δjk is computed piecewise constant over
elements. The term δJk is the variation of the considered cost function J (see Propositions 3.2
and 3.3). The constant ck determines the volume of the obstacle Ok to be inserted. In practice,
ck is chosen in such a way that:

i- Ok ⊂
{

x ∈ Ωk, such that δjk(x) ≤ 0
}

,

ii- the obstacle volume |Ok| is less or equal to 10% of the current domain volume |Ωk| i.e.
|Ok|/|Ωk| ≤ 0.1.
This algorithm can be seen as a descent method where the descent direction is determined by
the topological sensitivity δjk and the step length is given by the volume variation |Ωk\Ωk+1|.

4.2 Pipes shape optimization

We consider a viscous and incompressible fluid in a tank Ω having one inlet Γin and some
outlets Γi

out, 1 ≤ i ≤ m. The aim is to determine the optimal design of the pipes that connects
the inlet to the outlet of the domain minimizing the dissipated power in the fluid.

4.2.1 Comparison

In order to test the advantage of our approach, we compare our results to those obtained in
Borrvall and Petersson (2003); Glowinski and Pironneau (1975). We consider two numerical
examples in two dimensional (2D) case. The first one is the pipe bend example presented in
Figure 1. This test case is treated by Borrvall and Petersson in Borrvall and Petersson (2003).
The second one is the double pipe shown in Figure 2. It is also considered by Borrvall and
Petersson in Borrvall and Petersson (2003) and recently by Guest and Prévost in Glowinski
and Pironneau (1975). The aim here is to obtain the optimal shape minimizing the dissipated
power in the fluid.
The considered design function is given by

j(D) = ν
∫

D
|∇uD|

2 dx,

where uD is the solution to the Stokes system in D.
The optimization problem consists in finding the fluid flow domain solution to

min
D∈Dad

j(D) , such that |D| ≤ Vdesired

where Dad is the set of admissible domains defined by

Dad = {D ⊂ Ω such that Γin ⊂ ∂Ω ∩ ∂D and Γi
out ⊂ ∂Ω ∩ ∂D}.

In both cases the inflow and the outflow conditions are given by a parabolic flow profile type
with a maximum flow velocity equal to 1. Elsewhere the velocity is prescribed to be zero on
the boundary of the domain.
A- Test 1 : 2D pipe bend example. We consider a cavity Ω =]0, 1[×]0, 1[ having one inlet (left)
and one outlet (bottom) (see figure 1(a)).
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1

1

0.2

0.2

0.2

0.2

(a) The initial domain (b) The obtained domain (c) The velocity field

INRIA-MO

ODULEF

INRIA-MO

ODULEF

Fig. 1. 2D pipe bend example.

The cavity Ω is discretized using a finite elements mesh with 6561 nodes and 12800 triangular
elements. The results of this example are presented in figure 1. The obtained pipe geometry
is described in figure 1(b). It is computed using Vdesired = 0.08π |Ω|. The prescribed volume
constraint is chosen so that the optimal solution has the same volume as a quarter torus of
inner radius 0.7 and outer radius 0.9 that exactly fits to the inlet and outlet. In figure 1(c) we
present the velocity field computed in the final domain.
The obtained solution is nearly identical to those presented in Borrvall and Petersson Borrvall
and Petersson (2003). However, we obtain this result in 14 iterations, where Borrvall and
Petersson needed more than sixty. As it can be seen, we have a more torus shaped pipe than
in Borrvall and Petersson (2003), like most pipe bends in fluid mechanics literature. As it
is stated in Glowinski and Pironneau (1975), the solution in Borrvall and Petersson Borrvall
and Petersson (2003) contains regions of artificial material and does not sufficiently take into
account the adherence condition.
B- Test 2: 2D double pipe example. The initial domain of this example is shown in Figure 2(a).
It is the rectangular Ω =]0, 3/2[×]0, 1[ with two inlets and two outlets.

1/6

1/6

1/4

1/4

1

δ

(a) The initial domain (b) The obtained domain

Fig. 2. The initial and the optimal domains for the 2D double pipe example.

The cavity Ω is discretized using a finite elements mesh with 9801 nodes and 19200 triangular
elements. The results of this example are presented in figure 2. The final geometry is

computed with Vdesired =
1

3
|Ω|.
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We present in figure 2(b) the obtained geometry. The final geometry is obtained in only 12
iterations, where Borrvall and Petersson needed more than sixty. We remark that the two pipes
join to form a single, wider pipe through the center of the domain. This design decreases the
length of the fluid-solid interface by decreasing the power lost. As it can be seen, the optimal
solution is identical to that obtained by Guest and Prévost Glowinski and Pironneau (1975),
but it does not match that of Borrvall and Petersson Borrvall and Petersson (2003). As for the
pipe bend example, the solution in Borrvall and Petersson (2003) contains regions of artificial
material and does not sufficiently take into account the adherence condition.

4.2.2 Three dimensional case

In this section we propose an extension of the two 2D examples considered in the last section
to the three dimensional case.
A- Example 1 : 3D pipe bend example. For the 3D pipe bend example, the initial domain is the
unit cube Ω =]0, 1[×]0, 1[×]0, 1[ having one inlet and one outlet (see figure 3). The inlet Γin

(left) and the outlet Γout (bottom) are described by the following discs

Γin = B(zin, 0.1) ∩ {0}×]0, 1[×]0, 1[, and Γout = B(zout, 0.1)∩]0, 1[×]0, 1[×{0},

where B(zβ, 0.1), β = in, out, is the ball of center z and radius 0.1, with zin = (0, 0.5, 0.8) and
zout = (0.8, 0.5, 0).

in
Γ

Γ
out

Fig. 3. The initial domain

For the boundary conditions, we consider a parabolic flow profile type with a maximum flow
velocity equal to 1 on Γin and Γout, and a velocity equal to zero elsewhere. The domain is
discretized using 29791 nodes and 162000 tetrahedral elements.
Like in the 2D case, we aim to determine the optimal design of the pipe that connects the inlet
to the outlet of the domain and minimizes the dissipated power in the fluid. We present in
figure 4 the optimal pipe domains obtained for different volume constraint Vdesired choices.
The first case (figure 4(a)), corresponding to Vdesired = 0.50 |Ω|, is obtained after 7 iterations,
the second one (figure 4(b)) after 11 iterations for Vdesired = 0.35 |Ω| and the last one (figure
4(b)) needs 16 iterations to reach Vdesired = 0.20 |Ω|. We show in figure 5 a 2D cut of the
velocity field corresponding to the three obtained domains.
B- Example 2 : 3D double pipe bend example. The initial domain is the cavity Ω =
]0, 3/2[×]0, 1[×]0, 1[ (described in figure 6). It has two inlets (left) Γi

in, i=1,2, and two outlets

218 Advanced Methods for Practical Applications in Fluid Mechanics
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(a) Vdesired = 0.50 |Ω|. (b) Vdesired = 0.35 |Ω|. (c) Vdesired = 0.20 |Ω|.

Fig. 4. The obtained domains (see Abdelwahed, Hassine and Masmoudi (2009)).

Case (a) Case (b) Case (c)

Fig. 5. 2D vertical cut of the velocity field in the obtained domains.

(right) Γi
out, i=1,2 defined by

Γ1
in = B(z1

in, 0.1) ∩ {0}×]0, 1[×]0, 1[, Γ2
in = B(z2

in, 0.1) ∩ {0}×]0, 1[×]0, 1[,
Γ1

out = B(z1
out, 0.1) ∩ {3/2}×]0, 1[×]0, 1[, Γ2

out = B(z2
out, 0.1) ∩ {3/2}×]0, 1[×]0, 1[,

where

z1
in = (0, 1/2, 1/4), z2

in = (0, 1/2, 3/4), z1
out = (3/2, 1/2, 1/4), and z2

out = (3/2, 1/2, 3/4)

For the boundary conditions, as in the last example, we consider a parabolic flow profile type
with a maximum flow velocity equal to 1 on Γi

in and on Γi
out, and a velocity equal to zero

elsewhere. We use a mesh with 160602 nodes and 895900 tetrahedral elements.
We present in figure 7 the optimal shape design obtained respectively for Vdesired = 0.40 |Ω| (9
iterations) and Vdesired = 0.10 |Ω| (21 iterations). A vertical cut of the corresponding velocity
field is shown in figure 8.

4.2.3 Shape optimization of tubes in a 3D cavity

In this section we treat the shape optimization of tubes in a cavity. We consider an
incompressible fluid in a cavity Ω having one inlet Γin and four outlets Γi

out, i = 1, 4. The
aim here is to determine the optimal shape of the tubes that connect the inlet to the outlets of
the cavity maximizing the outflow rate. It consists in inserting small obstacles in the cavity in
order to maximize the outflow rate at Γi

out, i = 1, 4.
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Γ

Γ
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Γ
in

1

2
Γ
out

out

1

1

2

1/6

1/6

1.5

Fig. 6. The initial domain

(a) Vdesired = 0.40 |Ω|. (b) Vdesired = 0.10 |Ω|.

Fig. 7. The optimal domains (see Abdelwahed, Hassine and Masmoudi (2009)).

Fig. 8. 2D vertical cut of the velocity isovalues and field in the optimal domains.

In our numerical computation, we have used the cavity Ω =]0, 1[×]0, 1[×]0, 1[ with the inlet
Γin:

Γin =
{

(x, y, z) ∈ Ω such that x2 + (y − 0.5)2 + (z − 0.5)2 ≤ 0.04
}

and the four outlets Γ1
out, Γ2

out, Γ3
out and Γ4

out:

Γ1
out =

{

(x, y, z) ∈ Ω such that (x − 0.75)2 + (y − 0.5)2 + z2 ≤ 0.0025
}

,

Γ2
out =

{

(x, y, z) ∈ Ω such that (x − 0.75)2 + (y − 0.5)2 + (z − 1)2 ≤ 0.0025
}

,

Γ3
out =

{

(x, y, z) ∈ Ω such that (x − 0.75)2 + y2 + (z − 0.5)2 ≤ 0.0025
}

,

Γ4
out =

{

(x, y, z) ∈ Ω such that (x − 0.75)2 + (y − 1)2 + (z − 0.5)2 ≤ 0.0025
}

.

The considered cost function measuring the outflow rate is given by

j(D) =
m

∑
i=1

∫

Γi
out

|uD.n| ds,
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where D ∈ Dad and uD is the velocity field, solution to the Stokes equations in D satisfying
the following boundary conditions :

- A free surface boundary condition on the outlets

σ(u) · n = 0 on ∪m
i=1 Γi

out,

where σ(u) = ν(∇u +∇uT)− pI, I is the 3 × 3 identity matrix and n denotes the outward
normal to the boundary.

- The normal component of the stress tensor is prescribed on the inlet Γin

σ(u) · n = g on Γin,

- The velocity is equal to zero on Γ\(∪m
i=1Γi

out ∪ Γin).

Γ

Γ
1

2

Γ
in

out

out

Γ
out

3

Γ
out

4

Fig. 9. The initial domain.

The results of this example are described in figures 10-13. In figure 10 we present the obtained
geometries for different volume constraints. We present the obtained geometry: in figure10(a)
for Vdesired = 0.35 |Ω|, in figure10(b) for Vdesired = 0.25 |Ω| and in figure10(b) for Vdesired =
0.15 |Ω|. This domains are obtained respectively after 10, 14 and 19 iterations. The associated
velocities fields are given in figures 11 and 12. In figure 13 we illustrate the variation of the
outflow rate.

(a) Vdesired = 0.35 |Ω|. (b) Vdesired = 0.25 |Ω|. (c) Vdesired = 0.15 |Ω|.

Fig. 10. The optimal domains (see Abdelwahed, Hassine and Masmoudi (2009)).
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Case (a) Case (b) Case (c)

Fig. 11. 2D vertical cut of the velocity field.

(a) (b) (c)

Fig. 12. 2D horizontal cut of the velocity field.
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Fig. 13. Variation of the outflow rate

4.3 Optimization of injectors location in an eutrophic lake

Eutrophication is a complex phenomena involving many physico-chemical parameters.
Specifically in some climatic areas, the thermic factors combined to the biological and to the
biochemical ones are dominant in the behavior of the aquatic ecosystems. Consequently, they
generate important bio-climatology variations creating in lakes an unsteady dynamic process
that decreases progressively water quality. Practically, the eutrophication in a water basin is
characterized mainly by a poor dissolved oxygen concentration in water. Furthermore, this
phenomena is accompanied by a stratification process dividing the water volume, during a
large period of the year, into three distinct layers as depicted in Figure 14.
Three zones constitute this stratification:
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Fig. 14. (a): Structure of a stratified lake, (b): average temperature curve during summer

i) at the top, the epilimnion, a layer of around 7 m depth, well mixed by the effect of drafting
wind and consequently well aerated,

ii) in the middle, the thermocline, a zone with a quick decrease of temperature (27 oC to
18 oC) and of 5 m depth. This area is weakly affected by the wind action and consequently
a medium concentration of oxygen is observed,

iii) at the bottom, the hypolimnion, a deeper layer beyond 12 m, having a temperature varying
from 18 oC to 14 oC. This region is characterized by a low concentration of oxygen and a
high concentration of toxic gas (H2S, ammoniac, carbonic gas, etc.)

The dynamic aeration process seems to be the most promising remedial technique to treat
water eutrophication. This technique consists in inserting air by the means of injectors located
at the bottom of the lake in order to generate a vertical motion mixing up the water of the
bottom with that in the top, thus oxygenating the lower part by bringing it in contact with the
surface air.
Theoretically, the bubble flow is a multi-phase flow where the presence of free interfaces
raises difficulties in both the physical and mathematical modelling. Hence, to obtain a
physical and significant resolution by numerical simulation of the air injection phenomena
in an eutrophised lake, one should consider a two-phase model: water-air bubble (see Ishii
Ishii (1975)). This kind of modelling involves large systems of PDE’s and variables in a
multi-scale frame as well as closure conditions through turbulence model and phases interface
interaction. Moreover, the domain mesh size should be “small” in order to capture the
significant variations of the spectrum. Therefore, the computational cost should be also
addressed.
For all these reasons, we consider here, as a first approximation, only the liquid phase, which
is the dominant one. The flow is described by a simplified model based on incompressible
Stokes equations. The injected air is taken into account through local boundary conditions
for the velocity on the injectors holes. In order to generate the best motion in the fluid with
respect to the aeration purpose, the topological sensitivity analysis method is used to optimize
the injectors location.

4.3.1 Optimization problem

In this section, we use the topological sensitivity analysis method to optimize the injector
locations in the lake Ω in order to generate the best motion in the fluid with respect to the
aeration purpose.
To this end, each injector Injk is modeled as a small hole Bzk ,ε = zk + εBk, 1 ≤ k ≤ m having

an injection velocity uk
inj, where ε is the shared diameter and Bk ⊂ IRd are bounded and
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smooth domains containing the origin. The points zk ∈ Ω, 1 ≤ k ≤ m determine the location
of the injectors.
Then, in the presence of injectors, the velocity uε and the pressure pε satisfy the following
system

⎧

⎪

⎪

⎨

⎪

⎪

⎩

−ν∆uε +∇pε = F in Ω\∪m
k=1Bzk ,ε

div uε = 0 in Ω\∪m
k=1Bzk ,ε

uε = ud on Γ

uε = uk
inj on ∪m

k=1 ∂Bzk ,ε,

(17)

where uk
inj is a given injection velocity on ∂Bzk ,ε, 1 ≤ k ≤ m.

Ω
Γ

Γ
s

w
b

Ω
m

Fig. 15. The geometry of the lake.

Concerning the optimization criteria, we assume that a “good” lake oxygenation can be
described by a target velocity Ug. Then, the cost function Jε to be minimized is defined by

Jε(uε) =
∫

Ωm

|uε − Ug|
2 dx, (18)

where Ωm ⊂ Ω is the measurement domain (the top layer, see Figure 15).
Consider the design function j of the form

j(Ω\ ∪m
k=1 Bzk ,ε) = Jε(uε), (19)

Our identification problem can be formulated as a topological optimization problem one. It
consists in finding the optimal location of the holes Bzk ,ε = zk + εBk, 1 ≤ k ≤ m, inside the
domain Ω in order to minimize the optimal design function j.

(Oε)

{

Find z∗k ∈ Ω, 1 ≤ k ≤ m, such that :

j(Ω\ ∪m
k=1 Bz∗k ,ε) = min

Bzk ,ε⊂Ω
j(Ω\ ∪m

k=1 Bzk ,ε).

To solve this optimization problem (Oε) we have used the topological sensitivity analysis
method. It consists in studying the variation of the design function j with respect to the
presence of a small injector Bz,ε = z + εB in the lake Ω.

4.3.2 Numerical results

We propose an adaptation of the previous algorithm to our context. At the kth iteration, the
topological gradient δjk is given by

δjk(z) =
(

uk(x)− uinj

)

· vk(x), ∀z ∈ Ωk (20)

where uk and vk are, respectively, solutions to the direct and adjoint problems in Ωk.
We consider the set {x ∈ Ωk; δjk(x) < ck+1}. Each connected component of this set is a hole
created by the algorithm. Our idea is to replace each hole by an injector located at the local
minimum of δjk(x). The obtained results are described in figures 16 and 17.
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The desired flow Ug.

The initial velocity field The obtained velocity field

Fig. 16. Numerical results in 2D (for more details one can see Hassine and Masmoudi (2004)).

The desired flow Ug.

The initial velocity field. The obtained velocity field

Fig. 17. Numerical results in 3D (see Abdelwahed, Hassine and Masmoudi (2009)).

4.4 Geometrical control of fluid flow

We consider a tank Ω filled with a viscous and incompressible fluid. The aim is to determine
the optimal shape of the fluid flow domain minimizing a given objective function.

4.4.1 Approximation of a desired flow

The aim is to determine the optimal shape O∗ ⊂ Ω of the fluid flow domain such that the
velocity uO∗ , solution to the Stokes equations in O∗, approximate a desired flow wd defined
in a fixed domain Ωm. The optimal shape O∗ can be characterized as the solution to the
following topological optimization problem

min
D⊂Ω

∫

Ωm

|uD − wd|
2dx,

where uD is the solution to the Stokes equations in D ⊂ Ω. This test is treated in two and three
dimensional cases. In 2D, the tank Ω = [0, 1.5]× [0, 1], the domain Ωm = [0, 1.5]× [0.8, 1] and
the velocity field wd is defined by

wd =

{

(1, 0) in Ωm,
(0, 0) elsewhere .
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The numerical results are described in Figure 18. A 3D extension of this case is presented in
Figure 19.

Γin
Γout

Ωm
target flow

dw

u= (0,0)

u= (0,0)

u= (0,0)

(1,0)u=(1,0)u=

u.n=0

(a) The initial geometry Ω (b) The velocity field in the
initial domain

(c) The optimal domain is obtained
in only 3 iterations

(d) The velocity field in the ob-
tained domain

Fig. 18. Approximation of a desired flow: 2D case

4.4.2 Maximizing velocity in a fixed zone

Here the aim is to maximize the fluid flow velocity in Ωm = ∪kΩk
m ⊂ Ω (fixed zones)

using a topological perturbation of the domain. The optimal domain of the fluid flow can
be characterized as a solution to the following problem

max
O⊂Ω

∫

Ωm

|uO |
2dx,

where uO is the solution to the Stokes equations in O.
Two 3D test cases are considered. The first case is described in Figure 20. The inflow Γin and
the outflow Γout (see Figure 20(a)) are defined by
Γin = [0, 1.5]× 0 × [0.4, 0.6], Γout = [0, 1.5]× 0 × [0.4, 0.6].
The domain Ωm = Ω1

m ∪ Ω2
m, with Ω1

m = [0, 1.5]× [0, 1]× [0.9, 1] and Ω2
m = [0, 1.5]× [0, 1]×

[0, 0.1].
The optimal domain (see Figure 20(c)) is obtained in four iterations.
The second case is described in Figure 21. Here we have used the same 3D tank considered in
the last case but with different Γin, Γout and Ωm (see Figure 21(a)). The optimal domain (see
Figure 21(c)) is obtained in five iterations.
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mΩ

Γ Γ
in out

u.n=0

u=(1,0,0)

u=(0,0,0)
u=(0,0,0)

u=(1,0,0)

u=(0,0,0)

(a) The initial geometry (b) The velocity field in the ini-
tial domain

(c) The optimal domain is obtained in
only 4 iterations

(d) The velocity field in the ob-
tained domain

Fig. 19. Approximation of a desired flow: 3D case
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(a) The initial geometry (b) Cut of the initial velocity

(c) The optimal domain (d) 2D cuts of the optimal velocity

Fig. 20. Maximizing velocity in a fixed zone: first case (see Abdelwahed and Hassine (2009))
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out
Γ

in
Γ

1

Ω
m

m

Ω
m

Ω
3

m

u=(0,0,0)

u=(0,0,0)

u=(0,0,0)

u=(0,0,0)

u=(1,0,0)

u=(1,0,0)

Ω
2

4

(a) The initial geometry (b) The optimal geometry

(c) Vertical cut of the velocity in the
obtained domain

(d) Horizontal cut of velocity in the
obtained domain

Fig. 21. Maximizing velocity in a fixed zone: second case (see Abdelwahed and Hassine
(2009))

5. Conclusion

In this chapter we have proposed an accurate and fast topological optimization algorithm.
The optimal domain is obtained iteratively by inserting some obstacles at each iteration. The
location and size of the obstacles are described by a scalar function called the topological
gradient. The topological gradient is derived as the leading term of the cost function variation
with respect to the insertion of a small obstacle in the fluid flow domain.
The proposed method has two main features. The first one concerns its mathematical
framework. The topological sensitivity analysis can be adapted for various operators like
elasticity, Helmholtz, Maxwell, Navier Stokes, ...
The second interesting feature of the approach is that it leads to a fast and accurate numerical
algorithm. Only a few iterations are needed to construct the final domain. It is easy to be
implemented and can be used for many applications. At each iteration we only need to solve
the direct and the adjoint problems on a fixed grid.
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