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1. Introduction  

Diffusion equations are mathematical models which explain how the concentration of one or 
more substances distributed in space is altered by a diffusion process which causes the 
substances to spread out over a surface in space. For a normal diffusion process, the flux of 
particles into one region must be the sum of particle flux flowing out of the surrounding 
regions. From Fick’s first law, this can be represented mathematically by the following 
diffusion equation 

 = .( )
 t

u
D u

∂

∂
∇ ∇ . (1) 

If the diffusion coefficient is constant in space, then  

 2 = 
 t

u
D u

∂

∂
∇  (2) 

here 2∇ is the normal Laplacian. The values u and D take on different meanings in different 

situations: in particle diffusion, u is interpreted as a concentration and D as a diffusion 

coefficient; while in heat diffusion, u is the temperature and D is the thermal conductivity. 
The application of the finite difference methods for solving time-dependent Partial 
Differential Equations(PDEs) such as this, at any particular time level, yields a system of 
linear simultaneous equations of the form  

 Au = b  (3) 

where iterative methods are normally more feasible in solving the system due to the sparsity 
of the matrix A. The applicability of explicit group methods, in which several unknowns are 
connected together in the iteration formula resulting in a sub-system that must be solved 
before any one of the them can be determined, have been investigated on solving these 
types of PDEs. In their early work, Evans and Abdullah (1983b) generated single-step, one-
parameter families of finite difference approximations to the heat equation in one space 
dimension by coupling in groups of two the values of the approximations obtained by 
known asymmetric formulas at adjacent grid points at the advanced time level. The 
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resulting equations are implicit but they can be easily converted to explicit form. The 
method was shown to possess unconditional stability with good accuracies. Evans and 
Abdullah (1983a) also developed the group explicit method for the solution the two 
dimensional diffusion where a general two-level six point finite difference approximation was 
developed to solve the parabolic equation. The method was further developed as the 
Alternating Group Explicit (AGE) method (Evans & Sahimi, 1988), which is an analogue to the 
famous Alternating Direction Implicit(ADI) method but has the advantage of being explicit 
and thus very easy to parallelise. The emergence of newer explicit group methods on skewed 
or rotated grids with promising and improved results was greatly observed since the early 
1990s. Among them are the works of Abdullah (1991) who developed the four-point Explicit 
Decoupled Group (EDG) by discretising the PDEs on skewed grids. This method was shown 
to require less computational time with the same order of accuracies than the Explicit Group 
(EG) method pioneered by Yousif and Evans (1986) in solving the Poisson model problem. A 
few years on, Othman and Abdullah (2000) modified the formulation of the EG method by 
deriving formulas based on the centred five points approximation formula with the grid 
spacing h and 2h, and the rotated five points approximation formula to come up with the 
improved modified four-point EG which was shown to exhibit lesser computational effort 
than the existing EG and EDG. Since then, active research has been conducted to investigate 
the capabilities of the variants of these group relaxation methods in improving the standard or 
traditional algorithms in solving several types of PDEs. This includes the work of Ali and Lee 
(2007) who derived the Accelerated OverRelaxation (AOR) variant of the EDG group scheme 
in the solution of elliptic equation where its performance results were compared with the EG 
(AOR) proposed by Martins et al. (2002). The new EDG (AOR) scheme requires less execution 
time than the existing EG (AOR) method where the gain in speed of EDG (AOR) method over 
the EG (AOR) method ranges from approximately 51% to 59%. The performance analysis of 
the parallel algorithms of these EG and EDG schemes were also established in Ng and Ali 
(2008) where the algorithms turn out to be efficient solvers for the steady-state elliptic equation 
on distributed memory multicomputer with high scalability. 
In this chapter we shall present the formulation of new explicit group algorithms intended 
for solving the two dimensional time-dependent diffusion equation. A novel approach of 
using four points group strategy, implemented on different spacing stencils incorporated 
with the AOR technique, is used in the formulation. Explainations on how the methods need 
to be reconfigurated mathematically as to be successfully ported to run on a message-
passing parallel computer system is also presented. 

2. Formulations of group methods 

We consider the finite difference discretization schemes for solving the two dimensional 
diffusion equation of the form  

 2= ( , , )
 t

u
u f x y t

∂

∂
∇ +  (4) 

with a specified initial and boundary conditions on a unit square with spacings 

   = 1 /x y h n∆ = ∆ =  in both directions x and y, with 0 0 ,  i jx x ih y y jh= + = +  (i,j = 0,1,2,...,n), 

t = k∆t (k = 0, 1, 2, …); here, f is a real continuous function. One commonly used implicit 

finite difference scheme based on the centred difference in time and space formulation about 

the point (i,j,k+ 1 / 2 ) is the Crank-Nicolson scheme which transform (4) into  
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where 2/r t h= ∆ . Based on this approximation, several group schemes have been 
constructed (Ali, 1998). The Explicit Group (EG) method, for example, was formulated by 
taking the iteration process in groups of four points. At each time level (k+1), the mesh 
points are grouped in blocks of four points (i,j), (i+1,j), (i+1,j+1) and (i,j+1) and equation (5) 
is applied to each of these points resulting in the following (4x4) system: 
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which may be solved explicitly in groups of four points as 
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The method proceed with iterative evaluation of solutions in blocks of four points 
respectively using these formulas throughout the whole net region until convergence is 
achieved.  
Using another type of discretization, which we called the rotated finite difference 
approximation: 
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  (8) 

another group scheme was formulated called the Explicit Decoupled Group (EDG) method. 

This approximation is obtained by using the Taylor series expansion of the solution u at 

appropriate grid points where the resulting computational stencil is 045 clockwise rotated 

from the stencil of the standard Crank-Nicolson (5). At each time level (k+1), the mesh points are 

grouped in blocks of four points, (i,j), (i+1,j+1), (i+1,j) and (i,j+1), and the rotated finite 

difference approximation (8) is applied to the u values at each of these points resulting in a 

(4x4) system which may be decoupled into two 2x2 matrices of the following form (Ali, 1998): 
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The EDG method requires less computing time whilst maintaining the same order of 
accuracies as the original EG method (Ali, 1998). Based on approximation formula (8) 
derived on different grid spacings, new modified group explicit methods will be formulated 
in combination of the Accelerated Over-Relaxation (AOR) technique. The next sub-sections 
will elaborate on the formulations of these methods.  

2.1 Modified explicit group (MEG) AOR method 

We consider the standard five-point formula for the diffusion equation on 2hΩ  grid:  

( 1) ( ) ( ) ( ) ( )
2, 2, , 2 , 2 , ,, 2, 2, , 2 , 2

1 2 2

1
( ) (1 2 ) ,m m m m m

i j i j i j i j i j i ji j i j i j i j i j

r

r
u u u u u v v v v r v tF+

− + − +− + − +
+

 
= + + + + + + + + − + ∆ 

  (12) 

2
=

4

t
r

h

∆ .  

Here, iju  is the value of u at the current time level (k+1), ijv  is the value of u from the 

previous time level (k), while m is the iteration level. ijF  is the value of f at the point (i,j) at 

time level (k+1). We begin by dividing the grid points in the solution domain into 3 types of 

points, indicated by , , , and arranged in a specific alternate ordering, as shown in Fig. 

1. For the iterations, we consider the points indicated by  in Fig. 2. Similar to the EG 

method described in the previous section, we may apply equation (12) to groups of four 

points of the iterative points to produce a 4x4 MEG formula. The convergence of this 

method may be improved by the introduction of the AOR technique (Hadjidimos, 1978) 

where drastic improvement in convergence can be obtained by choosing suitable relaxation 

parameters in its formula. The idea in AOR technique is to apply an extrapolation of a  

two-parameter Successive OverRelaxation (SOR)-type iterative procedure in the formula.  
 

 

Fig. 1. Construction of different grid points in the spatial solution domain at time level k+1. 
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The two parameters may be exploited which result in methods which will converge faster 

than any other method of the same type. Using this idea, we can introduce the over-

relaxation parameters ω  and R into the 4x4 MEG formula as a way to further accelerate the 

convergence of the iterative method scheme as the following: 
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where  

 

1 2 , ,

2 2 2, 2,

3 2 2, 2 2, 2

4 2 , 2 , 2

i j i j

i j i j

i j i j

i j i j

b s v tF

b s v tF

b s v tF

b s v tF

+ +

+ + + +

+ +

= + ∆

= + ∆

= + ∆

= + ∆

 .

( ) ( )
5 1 2 , , 2 2 , 2 , , 2 , 2 1

( ) ( )
6 1 4, 2 , 2 , 4 , 2 , 2 2 , 2 2

( ) ( )
7 1 4, 2 2 , 4 , 2 4, 2 2 , 2 , 4 3

( )
8 1 2 , 2

( )

( )

( )

(

m m
i j i j i j i j i j i j

m m
i j i j i j i j i j i j

m m
i j i j i j i j i j i j

m
i j

b s u u v v v v b

b s u u v v v v b

b s u u v v v v b

b s u

− − − + − +

+ + − + + − + +

+ + + + + + + + + +

− +

= + + + + + +

= + + + + + +

= + + + + + +

=
( )
, 4 2 , 2 2 , 2 , , 4 4)m

i j i j i j i j i ju v v v v b+ − + + + ++ + + + + +

   

  
2

2

1

2

3

4

5

6

0.5

1 2

2(1 )(1 2 )(1 3 )

7 8 2

(1 2 )

1

r

r

r r r

r r

r r

r

s

s

s

s

s

s

−

+ + +

+ +

+

=

=

=

=

=

=

 

( 1) ( ) ( 1) ( )
1 1 2 , 2 , , 2 , 2

( 1) ( )
2 1 2 , 2 2 , 2

( 1) ( )
3 1 2 , 2 2 , 2

( )

( )

( ).

m m m m
i j i j i j i j

m m
i j i j

m m
i j i j

t s u u u u

t s u u

t s u u

+ +

− − − −

+

+ − + −

+

− + − +

= − + −

= −

= −

  (14) 

Unlike SOR, there is no general formula to determine the parameters R and w. But according 

to Hadjidimos (1978), the parameter R is normally chosen to be close to the value ω  

obtained from the corresponding SOR technique which give the least number of iterations. 
We can then define the four points MEG (AOR) method for diffusion equation as the 
following: 
Algorithm 1  

1. Divide the grid points into points of type ,  and  at level k+1 as shown in Fig. 1.  

2. Set the initial guess for the iterations. 

3. Use Equations (13)-(14) to evaluate the solution of points of type  iteratively at level 

k+1. 

4. Check the convergence. If the iterations converge, go to step 5. Otherwise, repeat step 3 

until convergence is achieved. 

5. After the solution at points of type  converge, the converged values are then adopted 

as the initial guess for the next time level.  

6. Then, repeat steps 1 to 5 until the solutions at all the required time levels have been 

obtained. 

7. For the solutions at the remaining points at level k+1 (Fig. 1), compute them directly 

once according to the following sequence: 
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a) For points of type    , use the rotated five points approximation formula on the 
2h

Ω  

grid: 

 2
, 1, 1 1, 1 1, 1 1, 1
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t
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 (15)  

b)For points of type   , use the standard five points approximation formula on the 

hΩ grid: 
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 (16) 

Here, 

3 2

t
r

h

∆
= . 

 

Fig. 2. Grid points which are involved in the iterative process at time level k+1. 

2.2 Modified Explicit Decoupled Group (MEDG) AOR method 

To formulate the MEDG (AOR) method for the diffusion equation, we consider the rotated 

five-point approximation formula for the diffusion equation with 2h  spacing: 
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Fig. 3. Points involved in the updates of solutions in 4 points MEG (AOR). 
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The method is constructed by firstly dividing the grid points into 4 types of points in a 

specific alternate ordering as shown in Fig. 5 in a unit square domain with n=14. The MEDG 

(AOR) formula for diffusion equation can then be obtained by applying equation (17) to 

groups of points of type  in the solution domain. This application will produce a 4x4 

system which can be inverted and rewritten in explicit decoupled form of two equations:  
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Fig. 4. Group of points involved in the iterative process with the spacing of 2h for MEDG 
(AOR) at time level k+1 and k. 

The resulting grid or the computational molecule to update at the two points can be viewed 

in Fig. 4 with a mesh size 2h. From Fig. 5, it is obvious that the evaluation of equations (18) -

(19) involves only points of type . This means that by using the approximation formulas 

(18)-(19), it is easy to see that the black filled points are linked only to the same type of 

points. Thus the iterative procedure involving these formulas can be performed 

independently of the other type of points. We can then formulate the four points MEDG 

(AOR) method as in Algorithm 2:  
Algorithm 2 

1. Divide the grid points at layer k+1 into points of type ,  ,  and  as shown in Fig. 

5.  

2. Set the initial guess for the iterations. 

3. Evaluate the solution at the points of type  iteratively at layer k+1 by using equations 

(18)-(19). 

4. Check the convergence. If the iterations converge, go to step 5. Otherwise, repeat step 2 

and step 3 until convergence is achieved. 

5. After the solutions at points of type  converge, the converged points are then adopted 

as initial guess for the next time level.  

6. Then, repeat steps 1 to 5 until the solutions at all the required time levels have been 

obtained. 

7. For the solutions at the remaining points at layer k+1 (Fig. 5), compute them directly 

once according to the following sequence: 

a. For points of type , use the standard five points approximation formula on the 

2hΩ  grid:  

1
, 2, 2, , 2 , 2

1

1
( (

1 2 2
i j i j i j i j i j

r
u u u u u

r
− + − += + + +

+
 

 2, 2, , 2 , 2 1 , ,) (1 2 ) )i j i j i j i j i j i jv v v v r v tF− + − ++ + + + + − + ∆ 1 2
=

4

t
r

h

∆
  (20)  

8h  

i, j i+2,j+2 

y 

x 

t 

k 

k+1 
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b. For points of type   , use the rotated five points approximation formula on the 

2h
Ω  grid:  

 2
i , j i 1, j 1 i 1, j 1 i 1, j 1 i 1, j 1

2

1 r
u ( (u u u u

1 2r 2
− − + − − + + += + + +

+
  

 i 1, j 1 i 1, j 1 i 1, j 1 i 1, j 1 2 i , j i , jv v v v ) (1 2r )v tF )∆− − + − + − + ++ + + + + − + , 2 2

t
r =

2h

∆
  (21)  

c. For points of type    , use the standard five points approximation formula on the 

hΩ  grid: 

3
, 1, 1, , 1 , 1

3

1
( (

1 2 2
i j i j i j i j i j

r
u u u u u

r
− + − += + + +

+
  

 1, 1, , 1 , 1 3 , ,) (1 2 ) )i j i j i j i j i j i jv v v v r v tF− + − ++ + + + + − + ∆ , 3 2
=

t
r

h

∆
  (22) 

 

 

Fig. 5. The discretized domain of the four points MEDG (AOR) method at time level k+1. 

3. Numerical experiments of the sequential group methods 

In order to verify the performance of the proposed methods which were shown in previous 

sections, the algorithms were tested on the following model problem: 
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2 2

2 2
sin sin 4tu u u

x ye
t x y

−∂ ∂ ∂
= + + −

∂ ∂ ∂
 (23) 

with Dirichlet boundary conditions satisfying its exact solution  

2 2( , , ) sin sin tu x y t x ye x y−= + + ,  

( , )x y ∈ ∂Ω , ∂Ω  is the boundary of the unit square Ω . The model equation (23) is of the form  

2 2

2 2
( , , , )

u u u
g x y t u

t x y

∂ ∂ ∂
= + +

∂ ∂ ∂
  

and is normally called a reaction-diffusion equation which models the movement of basic 

particles in sciences (for example, heat transfer, growth population, or dilution of chemical 

in water) in a region Ω . Here,  

2 2

2 2

u u

x y

∂ ∂
+

∂ ∂
  

is the diffusion term which describes the movement of the particles and the remaining term 

at the right hand side of equation (23) (i.e. g(x,y,t,u)) is the reaction term which describes 

changes (due to birth, death, chemical reactions, etc.) occuring inside the region (or habitat). 

For this numerical experiment, we purposely find a model problem which has an exact 

solution to ensure that the proposed methods yield correct results. To terminate the iteration 

process, the relative error test, i.e. ( 1) ( ) ( 1)( ) /(1 ( ))m m m
ij ij ijError abs u u abs u+ +

= − + , was used as the 

convergence test with tolerance ε = 1.0 x 10-6. As described in Section 2.1, the over-relaxation 

parameters, R and w, need to be found which give the best convergence rates for the 

proposed schemes. To achieve this, we obtained the values of w for the corresponding SOR 

scheme, and then the value of R was found by running the experiments using these specific 

values of w which gave the least number of iterations. Different grid sizes of n = 82, 102, 122, 

142, 162, 182 and 202 were chosen to record the total iteration counts (Iter) at all time levels 

and computer timings (t) of the group AOR methods. The value of t∆ = 0.0005 with 1000 

time levels was used to run the programs. 

The numerical results of the proposed MEG(AOR) and MEDG (AOR) methods together 

with the original explicit group methods EG(AOR), EDG(AOR) are tabulated in Tables 1 to 

2. The point AOR method which uses the existing traditional Crank-Nicolson scheme (5) 

accelerated with the AOR technique is also shown in Table 3 for comparison purposes . The 

value of R was chosen experimentally to be close to the value of w  as depicted in the tables. 
All of the methods tested are of second order accuracies so that the results they produce are 

of similar accuracies as seen in Table 4. From Tables 1 and 2, it can be seen that between 

EG(AOR) and EDG(AOR), the latter has better rates of convergence which is consistent with 

the results in Ali and Lee (2007) for the elliptic problem. The diffusion equation is a time 

dependent parabolic equation where each time level represents an elliptic problem. In these 

tables, it can also be observed that both of the proposed MEG (AOR) and MEDG (AOR) 

methods have better execution times than the original EG (AOR) and EDG (AOR) respectively 

which is due to the reduction in computing efforts of the proposed methods. In the proposed 
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modified group schemes, lesser grid points are involved in the iterative processes than the 

original group schemes which result in lesser overall arithmetic operation counts 

 

EG(AOR) MEG(AOR) 

n R w  Iter t R w  Iter t 

82 1.308 

1.3128-

1.3134 13472 13.75 1.109 

1.110-

1.111 7421 6.766 

102 1.3825 

1.3843-

1.3849 16613 21.875 1.1645 

1.1646-

1.1656 8703 9.469 

122 1.44175 

1.44561-

1.4458 19841 34.375 1.2134 

1.216-

1.219 10410 13.453 

142 1.49475 

1.49903-

1.4992 23523 51.172 1.26475 

1.2672-

1.2676 11672 19.015 

162 1.5319 

1.5374-

1.5375 26931 72.11 1.308 

1.3128-

1.3134 13472 26.36 

182 1.57195 

1.5761-

1.5762 30634 102.578 1.348 

1.3495-

1.3499 14914 33.344 

202 1.60085 

1.60397-

1.60402 34307 133.375 1.3825 

1.3839-

1.385 16614 41.453 

Table 1. The numerical performances of the EG(AOR) and MEG(AOR) methods. 

 

EDG(AOR) MEDG(AOR) 

n R w  Iter t R w  Iter t 

82 1.2305 

1.238-

1.239 10398 9.328 1.066 

1.064-

1.069 6208 5.89 

102 1.302 

1.3114-

1.3117 12564 14.157 1.105 

1.104-

1.11 7239 8.89 

122 1.367 

1.3675-

1.3678 14879 19.891 1.15 

1.15-

1.154 8286 12.391 

142 1.4207 

1.4213-

1.4217 17448 29.406 1.19 

1.191-

1.195 9343 15.641 

162 1.467 

1.4694-

1.4702 19853 41.235 1.23 

1.237-

1.24 10396 20.672 

182 1.5075 

1.50808-

1.5082 22344 52.672 1.27 

1.2773-

1.2786 11480 26.266 

202 1.54 

1.5449-

1.5453 24927 67.266 1.3017 

1.311-

1.312 12561 32.187 

Table 2. The numerical performances of EDG(AOR) and MEDG(AOR) methods 
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Point C-N (AOR) 

n R w  Iter t 

82 1.34545 1.35832 15706 25.469 

102 1.43985 1.4307 19127 43.906 

122 1.4833 1.51066 23884 72.182 

142 1.53835 1.5574 27683 101.11 

162 1.58092 1.588 30430 148.813 

182 1.6301 1.63048 34878 212.141 

202 1.66 1.66004 38945 282.328 

Table 3. The numerical performance of point Crank-Nicolson (C-N) AOR method. 

 

Average Errors 

n C-N AOR EG AOR EDG AOR MEG AOR MEDG AOR 

82 5.76E-04 2.43E-04 4.13E-04 1.42E-04 5.25E-04 

102 5.78E-04 2.31E-04 3.91E-04 1.41E-04 5.16E-04 

122 6.35E-04 2.23E-04 3.74E-04 1.38E-04 5.06E-04 

142 7.44E-04 2.24E-04 3.64E-04 1.35E-04 4.94E-04 

162 8.96E-04 2.35E-04 3.66E-04 1.32E-04 4.81E-04 

182 1.07E-03 2.58E-04 3.82E-04 1.29E-04 4.67E-04 

202 1.26E-03 2.91E-04 4.11E-04 1.26E-04 4.55E-04 

Table 4. Average errors of all the methods for different mesh sizes. 

From Tables 1 and 2, it can also be concluded that MEDG (AOR) is able to show the most 

substantial reduction in execution times compared with the other group and point AOR 

schemes without having to jeorpadize the solution accuracies. MEDG (AOR) requires the 

least number of total iterations and computing timings to converge. The required number of 

iterations is reduced because the introduction of the over-relaxation parameters, w and R, 

into its formulas is able to reduce the most the number of iterations of the scheme compared 

with the other schemes tested. This combined with the fact that only about 1/8 of the total 

nodal points are involved in the iterative process at each time level results in the least 

computing times for this method. In summary, the proposed MEG (AOR) and MEDG 

(AOR) methods are viable alternative solvers to the diffusion equation with the latter being 

the more efficient one in terms of CPU times.  
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4. Parallel implementations for the group methods 

This section will discuss the implementation of the proposed group methods on a message-
passing environment.  

 

Fig. 6. Domain Decomposition For MEG (AOR) for the case n = 18 and p = 3 

4.1 MEG (AOR) in parallel 

For the MEG (AOR) method, we decompose the domain Ω into a number of vertical panels 
at layer k+1 based on the number of available processors, p. The idea is to allocate 
approximately equal number of strips to the processors. Each strip consists of four grid lines 
which form the four points blocks with the spacing of 2h between the points. The equal 
number of vertical strips in each panel can be approximated using a specific formula. The 
distribution of tasks (panels) to processors for the case n=18 and p= 3 is as shown in Fig. 6 
where the configuration is as follows: 

1+1(extra) strips for one panel 1 strip for each panel 

 
Decomposition 

t 
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- Number of panels = Number of processors, p = 3. 
- Number of strips in a panel = (n-2) / 4p = (18-2)/12 =1. 
- Number of panels that have an extra one strip = ((n -2) % 4p)/2 = ((18-2) %12)/4 = 1. 
As shown in Fig. 6, we distribute 1+1(extra strip) strips into panel 1. The other panels (panel 
2 and 3) will be allocated with 1 strip of values to update.  
 

 

Fig. 7. Send right boundary cell values (grid A’s) to left adjacent neighbouring panel. 

 

 

Fig. 8. Send left boundary cell values (grid B’s) to right adjacent neighbouring panel. 

After the domain Ω is decomposed into the individual panels, message passing needs to be 
done between the processors to send and receive data at the right and left boundaries of 
each panel. Based on equations (13)-(14), certain values from adjacent processors need to be 
communicated during the iterative cycle. The right boundary cell values, grid A’s (panels 1 

Panel 3Panel 2 Panel 1

Panel 3 Panel 2Panel 1
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and 2) will be sent to the left adjacent neighbouring panels (panels 2 and 3) as shown in Fig. 7. 
The left boundary cell values, grid B’s (panels 2 and 3) will be sent to the right adjacent 
neighbouring panel (panels 1 and 2) as shown in Fig. 8. These communications need to be 
executed correctly to ensure that each processor possesses the correct values needed for their 
respective independent calculations. After the message passing process is completed, the local 
error for each processor is calculated and is sent to the master processor for the global 
convergence check. The local convergence test used is the relative error test similar with their 
sequential counterparts. The global error is the sum of the local error from each processor. If 
the global error is greater than a certain tolerance ε, then the iteration is repeated.  

4.2 MEDG (AOR) in parallel 

Similar with the MEG (AOR) method, we decompose the spatial domain Ω into a number of 

vertical panels based on the number of available processors, p. For MEDG (AOR), we rotate 

the x-y axis clockwise 045 and forms the four points block with the spacing of 8h  between 

the points of the matrices.  
 

 

 

Fig. 9. Domain Decomposition For MEDG (AOR). 

2 (extras) strips for one panel 1 strip for each panel 

Decomposition 

8h
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We again consider the ordering of the strips for the case n=18 and p= 3 as  shown in Fig. 9. 

Each strip consists of four grid lines which form the four-point groups with spacing 2h. We 

will distribute 1+1(extra strip) strips into panel 1. The other panels (panels 2 and 3) will be 

allocated with 1 strip each to ensure that the tasks are distributed almost equally amongst 

the processors. The number of strips for each panel (processor) will be computed similar as 

the one in the previous method.  

 

 

Fig. 10. Send right boundary cell values (grid A’s) to the left adjacent neighbouring panel. 

 

 

Fig. 11. Send left boundary cell values (grid B’s) to the right adjacent neighbouring panel. 

After the domain Ω is decomposed into the individual panels, message passing needs to be 
done between the processors to send and receive data at the right and left boundaries of 
each panel. The points involved in the iterative process are different from the ones in the 

Panel 3Panel 2 Panel 1 

Panel 3Panel 2Panel 1 

www.intechopen.com



 
Advanced Methods for Practical Applications in Fluid Mechanics 

 

116 

previous method due to their different computational molecules. From equations (18)-(19), 
we can determine these specific values that need to be communicated between adjacent 
panels during the iterative cycle as shown in Fig. 10 and Fig. 11. The local and global 
convergences are checked the same way as in MEG.  

5. Performance analysis of the parallel group methods 

We assume that there are q2 internal mesh points where q=n-1 and arithmetic operations 

estimates for each method are made per iteration. We assume that the values r, ,i jtF∆ , 1-

w, 1 2 3 4 5 6, , , , ,s s s s s s  are stored beforehand. To update a single block in MEG (AOR) method, 

the computing cost is given by equation (24): 

 meg(aor)-update a mt   61t   53t= +  (24) 

with at = the cost of the addition for a double point and mt = the cost of the multiplication 

for a double point. Here, we will consider the problem size, n, and number of processors, p, 

to have a complete iterative step for the computational cost of MEG (AOR) method which is 

given by 

 
2

meg(aor)-comp meg(aor)-update

( 1)
t   t

16

q

p

−
=   (25) 

The transition cost for message passing of double-type data in a distributed memory 
multicomputer is given by 

 send s dt    t    tq= +   (26) 

where st  is the startup time, and dt  is the sending time for a double-type data. The 

computation of the MEG (AOR) formula requires that q points to be passed to the adjacent 

processor in an iteration. Therefore, the total communication cost of MEG (AOR) method in 

a single iterative step, consisting of two sequential point-to-point communications and one 

global collective communication, is given by 

 meg(aor)-comm s dt    4t    4 tq= +   (27) 

After the message passing process is completed, the local error for each processor, p, is 
calculated and sent to the master processor for the global convergence check. Therefore,  

 
2

meg(aor)-global a m s d

( 1)
t   (2t   t )  (t   t )

4

q
p

p

−
= + + +  (28) 

The total costs of iterations in parallel MEG (AOR) method is 

 meg(aor) meg(aor)-comp meg(aor)-comm meg(aor)-globalt   t t t  = + +   (29) 

After completing the iteration process, we need to compute at the remaining points by using 
the rotated five points formula for points of type    and standard 5-points formula for points 

of type . This process will be done directly once and the cost of these processes is 
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2 2

meg(aor)-once meg(aor)-rotated meg(aor)-standard

( 1) ( -1)
t   t t

4 2

q q+
= +   (30) 

where  

meg(aor)-rotated a mt 9t  3 t= +  

and 

 meg(aor)-standard a mt 9t  3 t= + . 

For the MEDG (AOR) method, we assume that the values r, ,i jtF∆ , 1-w, 1 2 3 4, , ,s s s s  are stored 

beforehand. To update a single block in this method, the cost is as follows: 

 medg(aor)-update a mt   27t   18t= +  (31) 

with at = the cost of the addition for a double point and mt = the cost of the multiplication 

for a double point. We will also consider the problem size, n, and number of processors, p, to 

have a complete iterative step for the computational cost of MEDG (AOR) method which is 

given by 

 
2

medg(aor)-comp medg(aor)-update

( 1)
t   t

16

q

p

−
=   (32) 

The transition cost for message passing of double-type data in a distributed memory 

multicomputer is given by 

 send s dt    t    tq= +   (33) 

where st  is the startup time, and dt  is the sending time for a double-type data. The 

execution of the MEDG (AOR) formula requires that q points to be passed to the adjacent 

processor in an iteration. Therefore, the total communication cost of MEDG (AOR) method 

in a single iterative step, consisting of two sequential point-to-point communications and 

one global collective communication, is given by 

 medg(aor)-comm s dt    4t    4 tq= +   (34) 

After the message passing process is completed, the local error for each processor, p is 

calculated and is sent to the master processor for the global convergence check. Therefore,  

 
2

medg(aor)-global a m s d

( 1)
t   (2t   t )  (t   t )

8

q
p

p

−
= + + +   (35) 

As such, the total costs of iteration in MEDG (AOR) method in parallel is 

 medg(aor) medg(aor)-comp medg(aor)-comm medg(aor)-globalt   t t t  = + +   (36) 
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After completing the iteration process, we need to compute the solutions at the remaining 

points using the standard 5-points formula with the spacing of 2h for the points , rotated 5-

points formula for  and standard 5-points method for . This process will be done only 

once directly and the cost of computing these values is 

 
2 2 2

medg(aor)-once medg(aor)-standard_2 h medg(aor)-rotated medg(aor)-standard

( -1) ( 1) ( -1)
t   t t t

8 4 2

q q q+
= +  (37) 

where 

medg(aor)-standard_2 h a mt 9t   3t= +  , medg(aor)-rotated a mt 9t  3 t= +   

and  

medg(aor)-standard a mt 9t   3t= + . 

5.1 Benchmarking 

Although it is difficult to obtain reliable estimates for various parameters in any 

performance models, we run several benchmarking tests on the computing cluster available 

at the School of Computer Science, Universiti Sains Malaysia (USM), in which the 

experiments of explicit group methods were carried out. This process is to ensure that we 

could get the best benchmark with more tests on different time. The specifications of the 

clusters are shown as below: 

a. Stealth cluster consists of 1 unit of PC with two 900 MHz CPUs, 2GB RAM, and  

b. 6 units of PCs each with two 1002 MHz CPUs, 2 GB RAM.  

c. Solaris9 (SunOS 2.9) with Sun HPC ClusterTools 5 and Sun MPI 6.0. 

 

Performance parameter Benchmark in Stealth cluster 

MEG (AOR) point update cost, meg(aor)-updatet  1.53 µs/block 

MEDG (AOR)point update cost, 

medg(aor)-updatet  

1.43 µs/block 

sending startup time, st  2.3 µs 

sending word cost, dt  0.033 µs/point 

global convergence check cost, meg(aor)-globalt  

and medg(aor)-globalt  

0.066 µs/point +  

2.333 µs/proccessor 

Table 5. Performance parameters benchmarking in Stealth Cluster, USM. 

5.2 Scalability analysis 

By referring to the parameter values in Table 5, we form the performance models for MEG 

(AOR) and MEDG (AOR) methods which are shown as the following: 
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a) MEG (AOR): 

2 2

method

( 1) ( 1)
t ( , )  A B   C D  E

16 4

q q
n p q p

p p

− −
= + + + + , (38) 

b) MEDG (AOR): 

2 2

method

( 1) ( 1)
t ( , )  A B   C D  E

16 8

q q
n p q p

p p

− −
= + + + +  (39) 

where A, B, C, D and E are coefficients of the methods which shown in Table 6. 

 

Method A B C D E 

MEG (AOR) 1.53 9.2 0.132 0.066 µs 2.333 

MEDG (AOR) 1.43 9.2 0.132 0.066 µs 2.333 

Table 6. Coefficients of the performance models in µs. 

6. Numerical results of the parallel group accelerated methods 

We implement the parallel algorithms on the Stealth cluster at USM. The experiments were 

carried out on 1 unit of PC with two 900 MHz CPUs, 2 GB RAM, and 6 units of PC, where 

each PC had two 1002 MHz CPUs and 2 GB RAM. The Operating System used was Solaris9 

(SunOS 2.9) with Sun HPC ClusterTools 5 and Sun MPI 6.0. The parallel algorithms were 

tested on the same model problem that was used for the sequential version (23). For the 

MEG (AOR) and MEDG (AOR) methods, the sizes of n were chosen appropriately to make 

sure that all of the strips consisting of two grid lines can be decomposed approximately 

evenly to the 6 processors. The tolerance used was ε = 1.0 x 10-6 and the acceleration 

parameters, w and R, were chosen to give the least number of iterations. 

From Table 6, we can see that the computation coefficient of MEDG (AOR) is slightly lesser 

than MEG (AOR). Therefore we expect that MEDG (AOR) should have better timings if 

compared to MEG (AOR). We further test the scalability analysis by comparing the 

experimental and predicted timings of these methods using n = 182 and 202 which are 

shown in Figs. 12 and 13 respectively.  
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Fig. 12. Comparison of Predicted Timings and Experimental Timings of parallel MEG (AOR) 
and MEDG (AOR) methods for n = 182. 

www.intechopen.com



 
Advanced Methods for Practical Applications in Fluid Mechanics 

 

120 

MEG (AOR) 

0

50

100

150

200

250

1 2 3 4 5 6

Number of Processors, p

E
x

ec
u

ti
o

n
 t

im
e 

(s
) Predicted

Experimental

MEDG (AOR)

0

50

100

150

200

250

1 2 3 4 5 6

Number of Processors, p

E
x

ec
u

ti
o

n
 t

im
e 

(s
)

Predicted

Experimental

 

Fig. 13. Comparison of Predicted Timings and Experimental Timings of parallel MEG (AOR) 

and MEDG (AOR) methods for n = 202. 

The figures show that the experimental and predicted timings are very close to one another 
especially when the grid size is larger. Comparing between the two grid sizes, it is found 
that the efficiency improves as the grid size increases. This improvement indicates that the 
performance models are more accurate as the grid sizes increase. Based on the parallel 
implementation which was described in Section 4, we used the size of n = 162, 182 and 202 
to record the timings, speedups and efficiencies of both the MEG (AOR) and MEDG (AOR) 
methods. Several performance results of the MEG (AOR) and MEDG (AOR) methods are 
shown in Figs. 14-16. 
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Fig. 14. Comparisons of execution time (Left) and speedup values (Right) between 

MEG(AOR) and MEDG(AOR) methods for n = 162.  
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Fig. 15. Comparisons of execution timings (Left) and speedup values (Right) between 

parallel MEG(AOR) and MEDG(AOR) methods for n = 182.  
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Fig. 16. Comparisons of execution timings (Left) and speedup values (Right) between 
parallel MEG(AOR) and MEDG(AOR) methods for n = 202.  

From these figures, we can see that the parallel MEDG (AOR) is better in execution timings 

compared to the MEG (AOR). Generally we can see that with the enhancement of grid size, 

the speedup increases with nearly 70% efficiency. However, the speedup and efficiency 

values of MEG (AOR) are slightly better than MEDG (AOR). This difference in values 

indicates that the amount of computations carried out over the total communication 

overheads in MEG(AOR) is greater than the one in MEDG(AOR). 

7. Conclusions 

In this chapter, the formulation of new improved explicit group AOR methods in solving 

the two dimensional diffusion equation is presented. The improvement of the numerical 

result shows the potential of these methods in solving the parabolic equation. We further 

implement both of these methods on a cluster of distributed memory computer using 

Message-Passing Interface programming environment. The experimental results show that 

these two methods can be performed successfully in parallel on a cluster of distributed 

memory computer. Performance models to explain the parallel behaviour of these proposed 

methods were also developed. The experimental timings agreed with the predicted results 

especially when the grid size and processors increase. The MEDG (AOR) shows a faster rate 

of convergence with similar accuracies if compared with MEG (AOR), especially when the 

grid size increases. Both methods were shown to be suitable to be programmed on a 

distributed memory computer.  
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