
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900



7 

Role of Manganese  
as Mediator of Central Nervous System: 

Alteration in Experimental Portal Hypertension 

Juan Pablo Prestifilippo1,2, Silvina Tallis2,  
Amalia Delfante2, Pablo Souto2,  

Juan Carlos Perazzo2 and Gabriela Beatriz Acosta1,2 
1Institute of Pharmacological Research (ININFA),  

National Research Council of Argentina (CONICET) 
 and Department of Pathophysiology,  

School of Pharmacy and Biochemistry,  
University of Buenos Aires, Buenos Aires,  

2Laboratory of Portal Hypertension,  
School of Pharmacy and Biochemistry & Hepatic Encephalopathy,  

University of Buenos Aires, Buenos Aires,  
Argentina 

1. Introduction 

Portal hypertension (PH) is a major syndrome that frequently accompany chronic liver 

diseases such as cirrhosis. Prehepatic PH develops a splanchnic hyperdynamic circulation 

and hyperemia with increased splanchnic resistance and production of collateral vessels that 

drive splanchnic blood flow to systemic circulation (Chojkier & Groszmann, 1981). Several 

substances have been proposed as mediators of this hypodynamic circulatory state 

including prostacyclins, nitric oxide and endotoxins (Bosch et al., 1992; Reiner & 

Groszmann, 1999; Palma et al., 2005). PH is found in patients with cirrhosis, and in portal 

vein thrombosis. It is characterized by an increase in splanchnic blood flow and pressure, 

among others caused by abdominal blood flow resistance, secondary to important liver 

parenchyma alterations (fibrosis or cirrhosis). 

Recent studies have demonstrated that experimental PH in rats is also a sub-clinic model of 
Minimal Hepatic Encephalopathy (MHE) (Butterworth et al., 2009), since rats with PH 
develop hyperammonemia, electrophysiology alterations, blood-brain barrier (BBB) 
breakdown, hippocampal mitochondrial dysfunction and changes in frontal cortex and 
hippocamus on glutamate uptake (Scorticati et al., 2004; Lores-Arnaiz et al., 2005; Eizayaga 
et al., 2006; Acosta et al., 2009; Bustamante et al., 2011). 

Chronic hepatic encephalopathy (HE) is a complex neuropsychiatric syndrome associated 
with liver dysfunction, such as cirrhosis. The pathophysiology of HE is poorly understood 
and there are few high-quality diagnostic tests and markers. As a result, its treatment has 
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improved only slightly over the last several decades (Zafirova & O’Connor, 2010). The 
current classificaton of HE is: Type A HE associated with acute liver failure, Type B with 
portosystemic bypass without intrinsic liver disease and Type C with cirrhosis (Merino et 
al., 2011; Ferenci et al., 2002). In chronic liver dysfunction, such as cirrhosis, it occurs more 
insidiously causing a range of neuropsychiatric disturbances which include psychomotor 
dysfunction, impaired memory, increased reaction time, sensory abnormalities and poor 
concentration (Albrecht, 1998; Scorticati et al., 2005; Albrecht et al., 2007). In its severest 
forms, patients may develop confusion, stupor, coma and death (Ferenci et al., 2002). 

Hyperammonemia is a well-known toxic substance for the central nervous system (CNS), 
especially when levels exceed the antitoxic capacity of the brain cells. Arterial blood 
ammonia concentrations are frequently elevated in patients with portal-systemic 
encephalopathy and studies in experimental animal models of chronic liver failure reveal 
blood and brain  ammonia concentrations approaching the millimolar range (normal range 
0.05-0.10 mM) (Butterworth, 1991; Therrien et al., 1991).  

The CNS is an important target for manganese (Mn), an essential element that is normally 
excreted via the hepatobiliary route (Papavasiliou et al., 1966; Teeguarden et. al., 2007). 
Manganese has a key role in the normal functioning of several enzymes including 
mitochondrial superoxide dismutase, glutamine synthetase, and phosphoenolpyruvate 
carboxykinase (Bentle et al., 1976; Stallings et al., 1991). The metal was first considered to be 
neurotoxic more than 150 years ago, when workers employed in grinding black oxide of Mn 
developed an unsteady gait and muscle weakness (Couper, 1837). Since that time, many 
cases of Mn neurotoxicity (manganism), a neurologic disease characterized by psychological 
and neurologic abnormalities, have been reported, particularly in miners, smelters, welders, 
and workers involved in the alloy industry (Mena et al., 1967; Eamara et al., 1971). 

As manganese acts as a cofactor for many enzymes and therefore, it plays important 
biological functions (Keen et al., 1984). Nevertheless, high concentration of Mn exerts toxic 
effects in the brain (Yamada et al., 1986) and the accumulation of Mn in the basal ganglia 
produces an irreversible neurological syndrome similar to Parkinson's disease. Typically, 
patients exhibit extrapyramidal changes that include hypokinesia, rigidity and tremor 
(Cotzias, 1958; Mena, 1974). High levels of this metal can cause alterations in development 
as well as reproductive dysfunction (Grey & Laskey, 1980; Laskey et al., 1982). Manganese 
deficiencies produce impairment of growth and reproduction in rats of both sexes (Boyer et 
al., 1942; Smith et al., 1944; Prestifilippo et al., 2008). Manganese exists as divalent and 
trivalent forms in the plasma (Nandedkav et al., 1973; Scheuhammer and Cherian, 1985) and 
both may be transported into the brain across the BBB and reach the blood–cerebral spinal 
fluid (CSF) and accumulates in the brain (Aschner 1992; 1999). 

Importantly, these not only occurs in animal models but in human since the patients with 
chronic liver failure have been shown to exhibit increased serum and brain levels of Mn and 
display many of the clinical and pathological features associated with manganese toxicity 
(Krieger et al., 1995; Spahr et al., 1996; Hauser et al., 1994; 1996; Sassine et al., 2002). 
Excessive deposition of Mn in brain has also been demonstrated in a rat model of cirrhosis 
(Rose et al., 1999). This elevation is believed to be due to decrease elimination of manganese 
via biliary excretion (Papavasiliou et al., 1966; Teeguarden et al., 2007), and to increase 
systemic availability due to portal-systemic shunting associated with chronic liver disease 
(Spahr et al., 1996;  Rose et al., 1999). 
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1.1 Study of the effect of manganese in plasma and hypothalamus levels in portal 
hypertensive rats 

Different studies indicated that participation of manganese in HE (Hauser et al., 1994; 

Matsuda et al., 1994; Krieger et al., 1995; Pomier-Layrargues et al., 1995; Siger-Zajde et al., 

2002). Therefore we determinate manganese concentration on plasma and the effects of this 

metal in hypothalamus in PH rats. 

1.2 Investigate the action of manganese of manganese on amino acids and nitric 
oxide levels 

Amino acids play an important role in the maintenance of homeostasis on the brain. 

Considering that manganese may also have a role in the pathogenesis of chronic HE (Hauser 

et al., 1994; Matsuda et al., 1994; Krieger et al., 1995; Poimier-Layrargues et al., 1995). The 

second point was to analyze the effects of manganese on amino acids levels in 

hypothalamus using the same animal model.  

The third point to consider in this work was whether changes produced by manganese in 
PH may be due to the mechanism of nitric oxide pathway.  

2. Materials and methods 

2.1 Animals and surgical procedures  

Adult male Wistar rats (240–260 g of body weight) were kept under controlled conditions 

of light (12 h light/dark cycle: 8 a.m. to 8 p.m.). They were housed under constant 

temperature and a 12-hour light-dark cycle and kept in an acclimatized animal room (21-

23 ºC) with ad libitum access to dry food and tap water. Special care for perfect air renewal 

was taken. 

All animal procedures were performed in accordance with our institutional guidelines after 

obtaining the permission of the Laboratory Animal Committee and with the U.S. National 

Institute of Health Guide for the Care and Use of Laboratory Animals (NIH publication N8 

80-23/96).  

Prehepatic PH in rats was induced by a calibrated stenosis of the portal vein according to 

Chojkier & Groszmann (1981). Rats were lightly anesthetized with ether and then a midline 

abdominal incision was made. The portal vein was located and isolated from surrounding 

tissues. A ligature of 3.0 silk sutures was placed around the vein, and snugly tied to a 20-

gauge blunt-end needle placed alongside the portal vein. The needle was subsequently 

removed to yield a calibrated stenosis of the portal vein, after which the abdominal incision 

was sutured. Operations were performed at 2 p.m. to obey circadian rhythm. Fourteen days 

after portal vein ligation, animals exhibit an increase in portal pressure. Sham-operated rats 

underwent the same experimental procedure, except that the portal vein was isolated but 

not stenosed. Animals were placed in individual cages and allowed to recover from surgery. 

Rats were sacrificed by decapitation at two weeks after surgery.  

All efforts were made to minimize suffering of animals and to reduce the number of animals 

used.  
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2.2 Portal pressure measurement 

Fourteen days after the corresponding operation, the rats were anesthetized with 
intraperitoneal sodium pentobarbital (40 mg/kg). Portal pressure was measured through a 
needle placed in the splenic pulp, and maintained in place by cyanoacrylate gel. The needle 
was cannulated to a polyethylene catheter (50) filled with a heparinized saline solution (25 
U/mL), and connected to a Statham Gould P23ID pressure transducer (Statham, Hato Rey, 
Puerto Rico), coupled to a Grass 79D polygraph (Grass Instruments, Quincy, MA, USA). 

2.3 Determination of plasma ammonia 

Blood samples were obtained by abdominal aortic artery puncture for the determination of 
biochemical parameters. Ammoniac Enzymatic UV kits (Biomerieux-France) were used to 
determine plasma ammonia concentration. 

 

 Sham operated PH 

Portal pressure (mmHg) 7.3±1.4 13.5±1.3* 

Plasma Ammonia(μm/L) 26±4 82±17 ** 

Table 1. Determination of portal pressure and plasma ammonia levels 

Portal pressure was 7.3 ± 1.4 mm Hg in the sham-operated group versus  PH group vs 13.5 ± 
1.3 mm Hg by an enhanced 184% (* p<0.05). In other hand,  plasma ammonium levels was 
26 ± 4 μm/L in the sham-operated group versus PH group was 82 ± 17 μm/L, by an increase 
of 315% (** p <0.01). 

2.4 Determination of manganese levels and in Hypothalamus  

For the determination of manganese levels in tissue, brains were rapidly dissected and the 
hypothalamus was removed. Tissue blocks were snap frozen in liquid nitrogen and saved at 
-80 ºC and blood was digested by digestion in oxidizing acid, both were analysis by 
inductively coupled plasma mass spectrometry as described (Melnyk et al., 2003). The 
method was considered in Sham operated when the duplicates were ± 15% of the expected 
value and blank values were < 0.001 ppb. 

 

Fig. 1. Manganese analyses. A significant increase of manganese (*p < 0.05) was observed in 
plasma levels in PH groups compared with the respective Sham operated. 

Sham operated 
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Fig. 2. Effects of Manganese on hypothalamus. The stenosis of the portal vein produced an 
accumulation of Manganese in the brain by 14 days after surgery versus sham operated  
resulting an increase in Manganese levels in hypothalamus *(p <0.05).  

2.5 In vivo studies 

The rats were anesthetized (ketamian/xilasiana) and implanted a cannula into the lateral 

cerebral ventricle, using a stereotaxic instrument and coordinates from the atlas. The correct 

localization of the cannula in the ventricle was confirmed at the end of the experiment. The 

experiments were performed a week after the implantation of the cannula. The day of 

experiment, conscious, freely moving rats were divided into two groups of 10 animals each. 

The rats were microinjected intracerebroventricularly (i.c.v.) during 1 min with 5 μl of sterile 

saline (control group) or 10 μg of MnCl2/5 μl sterile saline. After decapitation, the brains 

were rapidly dissected and the hypothalamus was removed. All incubations were carried 

out in a Dubnoff shaker (50 cycles per min; 95% O2/5% CO2) at 37°C. The hypothalami 

(seven to eight for each group) were preincubated individually in glass tubes in 500μl of 

Krebs-Ringer bicarbonate-buffered medium (NaCl 124.40 mM, KCl 4.98 mM, NaHCO3 24.88 

mM, CaCl2 1.50 mM, MgCl2 1.42 mM, KH2PO4 1.25mM containing 0.1% glucose, pH: 7.4). 

After this preincubation (15 min) the medium was discarded and replaced with fresh 

medium alone or containing the substances to be tested. The incubation continued for 30 

min. At the end of the incubation period the media were removed and the tissues were 

homogenized and submitted to appropriate extraction procedure and stored at −20 °C until 

the respective assays were conducted. 

2.6 NOS enzimatic activity determination 

Determination of NOS activity was performed by a modification (Canteros et al., 1995) of 

the 14C-arginine method of Bredt & Snyder (1989). After the incubation period (30 min) 

the hypothalamus  were immediately homogenized in 0.5 ml of N-(2-hydroxyethyl)-

piperazine-N-2-ethanesulfonic acid (HEPES) (20mM, pH: 7.4) with addition of CaCl2 

(1.25mM) and DL-dithiothreitol (DTT, 1mM). The reaction was started by adding NADPH 

(nicotinamide adenine dinucleotide phosphate, reduced) (120M) and 200.000 dpm of 14C-

arginine (360 mCi/mmol) to the homogenates. The tubes were incubated for 15 min at 

Sham operated 
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37ºC in a Dubnoff metabolic shaker (50 cycles per min and 95%O2;5%CO2 atmosphere). At 

the end of this incubation period, the tubes were immediately centrifuged at 10.000 g for 

10 min at 4ºC. The supernatants were immediately applied to individual columns 

containing 1 ml of Dowex AG 50 W-X8 200 mesh sodium form, and washed with 2.0 ml of 

double distilled water. All collected fluid from each column was counted for 14C-citrulline 

activity in a scintillation counter. NOS converts arginine into equimolar quantities of 

citrulline and NO, the data were expressed as pmol of NO produced per hypothalamus 

per min. 

  

Fig. 3. Determination of NOS activity. Results show that Manganese increased NOS activity 
(**p<0.01) evaluated by the conversion of 14C-arginine into 14C-citrulline compared with the 
control group.  

2.7 Quantification of GABA, aspartate and glutamate 

The method described by Durkin et al. (1988) allowed the isolation of -aminobutiric acid 

(GABA), aspartate and glutamate. Aliquots of 50 μl of homogenates were mixed with 400 μl 

of O-phthalaldehyde, 50 μl of 2-mercaptoethanol in 50 μl of ethanol, and 400 μl of 0.5 M 

sodium borate, pH 9 (reaction mixture). After 30 min at room temperature, 50 μl of the 

reaction mixture were injected into the HPLC column. The O-phthalaldehyde derivates 

were then separated on a reverse-phase column and eluted with a buffer of 

acetonitrile/sodium acetate 1:9 (v/v), pH 4 at a flow rate of 1.6 ml/min. The concentrations 

of amino acids were extrapolated from curves made with known amounts of standard 

amino acids. 

Different functions of the CNS are mediated by the action of diverse amino acids 

neurotransmitters such as aspartate, glutamate and GABA. Therefore, with the purpose of 

determining whether manganese could affect their secretions, evaluating the release and the 

content of aspartate, glutamate and GABA from the hypothalamus obtained after i.c.v. 

injection of manganese determined by high-performance liquid chromatography (HPLC). 

GABA release by 2 folds (* p< 0.05) compared with the respective control group. The others 

neurotransmitters not shown significative differences. 

www.intechopen.com



 
Role of Manganese as Mediator of Central Nervous System: Alteration in Portal Hipertension 

 

127 

 Aspartate Glutamate GABA 

 Release Content Release Content Release Content 

Control 192 ± 11 1505± 171 157±10 309± 39 78 ± 7 84 ± 24 

Manganese 206± 11 1679± 63 163± 9 271±  47 106± 7 * 115 ±21 

Table 2. Release and concentration of different amino acids such as aspartate, glutamate and 
GABA following the injection of manganese. 

2.8 Drugs, chemicals and radiolabeled compounds  

Manganese chloride (MnCl2) was purchased from Anedra (San Fernando, Buenos Aires, Argentina). 

HEPES, DTT, NADPH, Glutamate, Aspartate and GABA were purchased from Sigma Aldrich (St 

Louis, MO , USA). Dowex AG 50 W-X8 200-400 mesh sodium form was obtained from Bio-Rad 

(Hercules, CA), and the 14C-arginine-monohydrochloride 360 mCi/mmol was from Amersham 

Pharmacia (Buckinghamshire, HP, UK). All other chemical materials used in this work were from 

analytical grade.  

2.9 Statistical analysis 

Experiments were repeated at least twice employing seven to eight animals per group in 

each experiment. All data are expressed as the mean ± SEM. Comparisons between groups 

were performed by using a one-way ANOVA followed by the Student-Newman-Keuls 

multiple comparison tests for unequal replicates. Student's t-test was used when comparing 

two groups. Differences with p values < 0.05 were considered significant. 

3. Conclusions 

Experimental prehepatic PH produces a hyperdynamic redistribution of splanchnic 

circulation and minimal liver damage. Ammonia was considerate the major responsible of 

the alterations in CNS included cytotoxic brain edema characterized by swelling of 

astrocyte. However the ammonia is not the only toxic and as Shawcross & Jalan (2005) 

demonstrated the participation of other relevant metabolic molecules such as manganese. 

In the present work we showed for the first time that rats with experimental prehepatic PH 

presented increase of manganese level in plasma and hyphotalamus. The manganese is 

transported to the liver after absorption from the gut and the liver may be important as a 

deposit for manganese, with hepatic manganese later delivered to the brain (Takeda, 1998). 

Rats with PH show a redistribution of splanchnic circulation and increase the different toxic 

in blood including ammonia and manganese as shown in this work. Even more, patients 

with abnormal deposit of manganese in the basal ganglia has been estimated by magnetic 

resonance imaging was associated with the elevated levels of manganese in the blood 

(Krieger et al., 1995; Siger-Zajdel et al., 2002).  

This metal is able to enter the brain through the cerebral vasculature and the spinal fluid. 
The mechanism by which Mn crosses the BBB is not yet well understood, but involves 
binding of the metal to transport systems such as transferrin (Aschner & Aschner, 1992; 
1999). Also, as Mn levels rise in blood, the influx into the spinal fluid rises and entry across 
the choroid plexus becomes more important (Murphy et al., 1991). Importantly, Mn 
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accumulates in the hypothalamus (Deskin et al., 1980; Pine et al., 2005) and is known to be 
taken up by both neurons and glial cells (Tholey et al., 1990) and, hence, suggesting a 
potential role in neuronal/glial communications within the developing hypothalamus.  

We investigated the participation of hypothalamus NO production and we found that the 
rats with administer this metal increased the activity of NOS. So we can deduce that  nitric 
oxide  has been involved in  this  pathophysiological brain processes 

This metal is able to enter the brain through the cerebral vasculature and the spinal fluid. 
The mechanism by which manganese crosses the BBB is not yet well understood, but 
involves binding of the metal to transport systems such as transferrin (Aschner & Aschner, 
1992; 1999). On the other hand, has been observed a decrease of GABA concentration 
opposite to the chronic exhibition to manganese in certain regions of the CNS as the globo 
pallidum, but not in substance nigra or hippocampus (Bonilla et al., 1994; Zwingmann et al., 
2003). This effect on GABA levels produces to itself across the direct action of the manganese 

on the expression of glutamic decarboxylase, enzyme that regulates GABA synthesis 
(Tomas-Camardiel et al., 2002). 

When the Mn is  accumulated in the synapsis it produces a consistent neuropathy with an 
excitocitotoxic effect, suggesting that the mechanism of glutamate is involved in the 
development of the pathology described by the manganese. These findings suggest that the 
manganese induce an increase in nitric oxide synthase production probably correlated to 
GABAergic and glutamatergic hypothalamic neurons that form a part of a network neuronal 
autoregulation. 
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