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1. Introduction 

Portal hypertension, defined as an increase in pressure within the portal vein, is a detrimental 

complication in liver diseases. The increased intrahepatic resistance as a consequence of 

cirrhosis is the primary cause of portal hypertension (Figure 1). Once it is developed, portal 

hypertension influences extrahepatic vascular beds in the splanchnic and systemic circulation. 

Two major consequences of portal hypertension in this regard are excessive arterial 

vasodilation/hypocontractility and the formation of portosystemic collateral vessels. Both 

excessive arterial vasodilation and portosystemic collateral vessel formation help to increase 

the blood flow through the portal vein and worsen portal hypertension. This facilitates the 

development of the abnormal hemodynamic condition, called the hyperdynamic circulatory 

syndrome, and ultimately leads to variceal bleeding and ascites (Bosch 2000; Bosch 2007; 

Groszmann 1993; Iwakiri 2011; Iwakiri & Groszmann 2006). 

 

Fig. 1. Overview of portal hypertension. 

This chapter summarizes current knowledge of molecules and factors that play critical roles 

in the development and maintenance of excessive arterial vasodilation and portosystemic 

collateral vessels in the splanchnic and systemic circulation in cirrhosis and portal 
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hypertension. The chapter concludes with a brief discussion about the future directions of 

this area of study. 

2. Key molecules and factors – Excessive arterial 
vasodilation/hypocontractility 

This section addresses molecules and factors that are involved in the development and 
maintenance of excessive arterial vasodilation/hypocontractility in cirrhosis and portal 
hypertension. 

2.1 Key molecules  

The molecules discussed here include nitric oxide (NO), carbon monoxide (CO), 
prostacyclin (PGI2), endocannabinoids, Endothelium-derived hyperpolarizing factor 

(EDHF), adrenomedullin, tumor necrotic factor alpha (TNF), bradykinin and urotensin II. 
In addition to these vasodilatory molecules, decreased response to vasoconstrictors, such as 
neuropeptide Y, also contributes to hypocontractility of mesenteric arterial beds (i.e., arteries 
of the splanchnic circulation). 

2.1.1 Nitric oxide 

Nitric oxide (NO) is the most potent vasodilatory molecule in vessels and contributes to 
excessive arterial vasodilation in the splanchnic and systemic circulation in portal 
hypertension perhaps to the most significant degree. NO, synthesized by endothelial NO 
synthase (eNOS) in the endothelium, defuses into smooth muscle cells and activates 
guanylate cyclase (GC) to produce cyclic guanosine monophosphate (cGMP) (Arnold, et al. 
1977; Furchgott & Zawadzki 1980; Ignarro, et al. 1987), facilitating vessel relaxation. 

In portal hypertension, elevated eNOS activity causes overproduction of NO and the 
resultant excessive arterial vasodilation in the splanchnic and systemic circulation. As for 
the other two NOS isoforms, neuronal NOS (nNOS) and inducible NOS (iNOS), a couple of 
studies suggest that nNOS, which resides in the nerve terminus and smooth muscle cells of 
the vasculature, also contributes to excessive arterial vasodilation in portal hypertension, 
although its effect is small (Jurzik, et al. 2005; Kwon 2004). In contrast to eNOS and nNOS, 
which are constitutively expressed, iNOS is generally expressed in the presence of 
endotoxin and inflammatory cytokines and generates a large amount of NO. Interestingly, 
however, despite the presence of bacterial translocation and endotoxin in cirrhosis, iNOS 
has not been detected in arteries of the splanchnic and systemic circulation in cirrhosis and 
portal hypertension (Fernandez, et al. 1995; Heinemann & Stauber 1995; Iwakiri, et al. 2002; 
Morales-Ruiz, et al. 1996; Sogni, et al. 1997; Weigert, et al. 1995; Wiest, et al. 1999). This 
paradox remains to be elucidated. Accordingly, eNOS would be the most important among 
the three isoforms of NOS for excessive vasodilation observed in arteries of the splanchnic 
and systemic circulation in portal hypertension (Iwakiri 2011; Iwakiri & Groszmann 2006; 
Wiest & Groszmann 1999). 

eNOS is regulated by complex protein-protein interactions, posttranslational modifications 

and cofactors (Sessa 2004). A summary of mechanisms that activate eNOS is shown in 

Figure 2. Below presented are several proteins that have been reported to increase eNOS 
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activity in the superior mesenteric artery (i.e., an artery of the splanchnic circulation) of 

portal hypertensive rats. 

2.1.1.1 Heat shock protein 90 (Hsp90)  

This figure shows a general idea of eNOS regulation, not limited to portal hypertension. 

Caveolin-1 inhibits eNOS activity, while eNOS is activated through interactions with heat 

shock protein 90 (Hsp90), tetrahydrobiopterin (BH4), guanosine triphosphate (GPT) and 

calcium calmodulin (CaM). Additionally, eNOS is phosphorylated and activated by Akt, 

also known as protein kinase B. VEGF; vascular endothelial growth factor, TNF; tumor 

necrosis factor alpha. 

 

Fig. 2. Endothelial nitric oxide synthase (eNOS) is regulated by complex protein-protein 
interactions and posttranslational modifications. 

A molecular chaperone, Hsp90, acts as a mediator of a signaling cascade leading to eNOS 

activation (Garcia-Cardena, et al. 1998). In the superior mesenteric artery isolated from 

portal hypertensive rats, an Hsp90 inhibitor, geldanamycin (GA), partially attenuated 

excessive vasodilation (Shah, et al. 1999). This observation suggests that Hsp90, at least in 

part, plays a role in elevated activation of eNOS, which causes overproduction of NO in the 

superior mesenteric artery in portal hypertensive rats. 

2.1.1.2 Tetrahydrobiopterin (BH4) 

eNOS requires BH4 for its activity (Cosentino & Katusic 1995; Mayer & Werner 1995). 

Cirrhosis increases circulating endotoxin, which elevates activity of guanosine triphosphate 

(GPT)-cyclohydrolase I, an enzyme that generates BH4. One study shows that increased 

levels of BH4, as a result of cirrhosis, enhance eNOS activity in the superior mesenteric 

artery (Wiest, et al. 2003). Thus, an increase in BH4 production in the superior mesenteric 

artery of cirrhotic rats is thought to be one of the mechanisms by which eNOS contributes to 

excessive arterial vasodilation. 

2.1.1.3 Akt/protein kinase B 

Akt, a serine/threonine kinase, can directly phosphorylate eNOS on Serine1177 (human) or 
Serine1179 (bovine) and activates eNOS, leading to NO production (Dimmeler, et al. 1999; 
Fulton, et al. 1999). We have shown that portal hypertension increases eNOS 
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phosphorylation by Akt in the superior mesenteric artery and that wortmannin, an inhibitor 
of the phosphatidylinositol-3-OH-kinase (PI3K)/Akt pathway, decreases NO production 
and excessive vasodilation in the superior mesenteric artery isolated from portal 
hypertensive rats (Iwakiri, et al. 2002). These observations suggest that Akt-dependent 
phosphorylation and activation of eNOS play a role in excessive NO production and the 
resulting vasodilation in the superior mesenteric artery of portal hypertensive rats. 

Since eNOS is the major NOS that generates NO in arteries of the splanchnic and systemic 

circulation, understanding the mechanisms by which eNOS is activated in these arteries is 

essential and allows us to develop critical strategies to block excessive arterial vasodilation 

and the subsequent development of the hyperdynamic circulatory syndrome. 

2.1.2 Carbon monoxide (CO) 

CO is an end product of the heme oxygenase (HO) pathway and a potent vasodilatory 
molecule that functions in a similar mechanism to NO (Figure 3). It activates sGC in vascular 
smooth muscle cells and regulates the blood flow and resistance in several vascular beds 
(Naik & Walker 2003). HO has two isoforms, HO-1 and HO-2. HO-1, also known as heat 
shock protein 32, is an inducible isoform. HO-2, a ubiquitously expressed constitutive 
isoform, is also found in blood vessels (Ishizuka, et al. 1997; Zakhary, et al. 1996). In 
pathological conditions, HO activity increases markedly due to the up-regulation of HO-1 
(Cruse & Lewis 1988). Several experimental and clinical studies have shown a possible 
relationship between HO pathway and several complications of cirrhosis and portal 
hypertension, such as cardiac dysfunction (Liu, et al. 2001), renal dysfunction (Miyazono, et 
al. 2002), hepatopulmonary syndrome (Carter, et al. 2002), spontaneous bacterial peritonitis 
(De las Heras, et al. 2003) and viral hepatitis (Tarquini, et al. 2009). 

Increased portal pressure alone contributes to the activation of HO pathway in mesenteric 
arteries and other organs (Angermayr, et al. 2006; Fernandez & Bonkovsky 1999). In a study 
using rats with partial portal vein ligation, a surgical model that induces portal 
hypertension, HO-1 was up-regulated in the superior mesenteric arterial beds (Angermayr, 
et al. 2006). When rats with partial portal vein ligation were given an HO inhibitor, tin(Sn)-
mesoporphyrin IX, intraperitoneally immediately after surgery for the following 7 days, a 
significant reduction in portal pressure was observed in the HO inhibitor-treated group 
compared to the placebo group. However, the HO inhibition did not affect the formation of 
portosystemic collaterals in portal hypertensive rats (Angermayr, et al. 2006). 

Like those surgically induced portal hypertensive rats, rats with cirrhosis exhibit enhanced 
HO pathway to mediate excessive vasodilation in arteries of the splanchnic and systemic 
circulation (Chen, et al. 2004; Tarquini, et al. 2009). Rats with bile duct ligation (a surgical 
model of biliary cirrhosis) showed an increase in HO-1 expression in both the superior 
mesenteric artery and the aorta, compared to sham-operated rats. In contrast, HO-2 
expression did not differ between the two groups of rats. Importantly, aortic HO activities as 
well as blood CO levels were positively related to the degree of the hyperdynamic 
circulatory syndrome assessed by mean arterial pressure, cardiac input and peripheral 
vascular resistance. Acute administration of an HO inhibitor, zinc protoporphyrin (ZnPP), 
ameliorated the hyperdynamic circulatory syndrome in cirrhotic rats with 4 weeks after bile 
duct ligation (Chen, et al. 2004; Tarquini, et al. 2009). 
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Fig. 3. Hemeoxygenase (OH) pathway in the arterial splanchnic and systemic circulation in 
cirrhosis and portal hypertension. HO-1 is an inducible isoform, while HO-2 is a constitutive 
isoform. Both nitric oxide (NO) and carbon monoxide (CO) activate soluble guanylate 
cyclase (sGC) in smooth muscle cells and facilitate vasodilation. 

In contrast to other studies, a study by Sacerdoti et al. (Sacerdoti, et al. 2004) reported that 

HO-2, not the inducible HO-1, was up-regulated in mesenteric arteries of cirrhotic rats. In 

their study, cirrhotic rats were generated by giving carbon tetrachloride (CCl4) in gavage for 

8 to 10 weeks. Consistent with other studies, however, administration of an HO inhibitor, 

tin(Sn)-mesoporphyrin IX, ameliorated excessive arterial vasodilation in cirrhotic rats. 

Collectively, these observations may suggest that different experimental models of cirrhosis 

and portal hypertension cause different effects on HO pathway in the aorta and mesenteric 

arteries, thus resulting in up-regulation of different types of HO isoforms. 

Studies with cirrhotic patients also showed an increase in plasma CO levels (De las Heras, et 

al. 2003; Tarquini, et al. 2009). Spontaneous bacterial peritonitis further accelerated blood CO 

levels in cirrhotic patients (De las Heras, et al. 2003). Furthermore, Tarquini et al. (Tarquini, et 

al. 2009) documented that plasma CO levels as well as HO expression and activity in 

polymorphonuclear cells were significantly increased in patients with viral hepatitis and the 

hyperdynamic circulatory syndrome. Importantly, plasma CO levels were directly correlated 

with the severity of the hyperdynamic circulatory syndrome. Collectively, these clinical 

studies with cirrhotic patients also suggest that enhanced circulating CO levels are associated 

with the development of the hyperdynamic circulatory syndrome. 

2.1.3 Prostacyclin (PGI2) 

PGI2 is generated by the activity of cyclooxygenase (COX) in endothelial cells and facilitates 

smooth muscle relaxation by stimulating adenylate cyclase to produce cyclic adenosine 

monophosphate (Claesson, et al. 1977) (Figure 4). There are two isoforms of COX. COX-1 is a 

constitutively expressed form, and COX-2 is an inducible form (Smith, et al. 2000; Smith, et 

al. 1996). 

PGI2 is an important mediator in the development of experimental and clinical portal 
hypertension (Hou, et al. 1998; Ohta, et al. 1995; Skill, et al. 2008). Increased COX-1 
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expression contributed to increased arterial vasodilation in the splanchnic circulation in 
portal hypertensive rats (Hou, et al. 1998). COX-2, however, was not detected in the superior 
mesenteric artery of those rats. These observations suggested that COX-1, not COX-2, would 
be responsible for the increased vasodilation in the superior mesenteric artery of portal 
hypertensive rats. However, inhibiting COX-1 only neither decreased PGI2 levels nor 
ameliorated the hyperdynaic circulatory syndrome in portal hypertensive mice (Skill, et al. 
2008). A study using both COX-1-/- and COX-2-/- mice in combination of selective COX-2 
(NS398) and COX-1 (SC560) inhibitors, respectively, showed that blockade of both COX-1 
and COX-2 ameliorated the hyperdynamic circulatory syndrome in portal hypertensive 
mice. Therefore, it is suggested that both COX-1 and COX-2 need to be suppressed to reduce 
PGI2 production and to ameliorate the hyperdynamic circulatory syndrome (Skill, et al. 
2008). Similar to experimental portal hypertension, circulating PGI2 levels are also elevated 
in cirrhotic patients (Ohta, et al. 1995). 

 

Fig. 4. Cyclooxygenase (COX) pathway in the arterial splanchnic and systemic circulation in 
cirrhosis and portal hypertension. COX-1 is a constitutive form, while COX-2 is inducible 
form. Both COX-1 and COX-2 seem to play a role in production of prostacyclin (PGI2), 
which activates adenylate cyclase (AC) in smooth muscle cells to produce cyclic adenosine 
monophosphate (cAMP), thereby leading to vasodilation. 

2.1.4 Endocannabinoids 

Endocannabinoid is a collective term used for a group of endogenous lipid ligands, 
including anandamide (arachidonyl ethanolamide) (Wagner, et al. 1997). Endocannabinoids 
bind to their receptors, CB1 receptors, and cause hypotension (Figure 5). The bacterial 
endotoxin lipopolysaccharide (LPS) elicits production of endocannabinoids (Varga, et al. 
1998) and thus develops hypotension. 

Cirrhotic patients are generally endotoxemia, which is characterized by elevated 
endotoxin/LPS levels in the blood. Thus, it is not surprising that circulating anandamide 
levels are elevated in cirrhotic patients (Caraceni, et al. 2010; Fernandez-Rodriguez, et al. 
2004). Cirrhotic rats also exhibit endotoxemia. Thus, antibiotic treatment to suppress 
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endotoxemia decreased hepatic endocannabinoid levels and ameliorated the hyperdynamic 
circulatory syndrome in those rats (Lin, et al. 2011). 

 

Fig. 5. Anandamide produced by circulating monocytes causes hypotension in cirrhotic rats 
and patients. Anandamide (arachidonyl ethanolamide) is an endogenous lipid ligand that 
belongs to endocannabinoids (Wagner, et al. 1997) and generated from arachidonic acid 
(AA). The bacterial endotoxin lipopolysaccharide (LPS) elicits production of anandamide in 
monocytes and endothelial cells (Varga, et al. 1998). Anandamide binds to CB1 receptors 
located on endothelial cells and smooth muscle cells and causes hypotension. 

Monocytes and platelets are the two major sources of endocannabinoids in endotoxemia 

(Batkai, et al. 2001; Ros, et al. 2002; Varga, et al. 1998). When monocytes and platelets were 

pre-exposed to LPS and then injected to normal rat recipients, hypotension was developed 

(Varga, et al. 1998). Hypotension was however prevented by pretreatment of recipient rats 

with a CB1 receptor antagonist, SR141716A. Thus, endotoxemia elicits production of 

endocannabinoids in monocytes and platelets, leading to hypotension. 

Anandamide levels were also elevated 2- to 3-fold and 16-fold in monocytes isolated from 

cirrhotic rats and patients, respectively, compared to their corresponding controls (Batkai, et 

al. 2001). Transplantation of monocytes isolated from cirrhotic rats or patients via 

intravenous injection, but not those monocytes from control rats, to normal recipient rats 

gradually caused the development of hypotension. In contrast, when normal recipient rats 

were pretreated with a CB1 receptor antagonist, SR141716A, the monocytes from the same 

cirrhotic rats or patients did not cause hypotension in those rats. Besides elevated 

anandamide levels, CB1 receptor levels were 3 times higher in hepatic arterial endothelial 

cells isolated from cirrhotic human livers than in those isolated from normal human livers. 

Importantly again, blocking CB1 receptor by SR141716A ameliorated arterial hypotension 

and the hyperdynamic circulatory syndrome in cirrhotic rats. Collectively, these results 

suggest that CB1 receptor can be a therapeutic target to ameliorate the hyperdynamic 

circulatory syndrome in cirrhosis and portal hypertension. 
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2.1.5 Endothelium-Derived Hyperpolarizing Factor (EDHF) 

Endothelium-derived hyperpolarizing factor (EDHF) is also an important vasodilatory 

molecule that regulates vascular tone (Cohen 2005; Feletou & Vanhoutte 2006; Feletou & 

Vanhoutte 2007; Griffith 2004). It is associated with hyperpolarization of vascular smooth 

muscle cells and facilitates vasodilation. The term EDHF might be confusing, since it implies 

a single molecule (Feletou & Vanhoutte 2006). Currently, it is not still fully characterized 

what molecule EDHF is. However, accumulating evidence suggests that HDHF could be 

multiple molecules, including PGI2 (Feletou & Vanhoutte 2006), NO (Cohen, et al. 1997; 

Plane, et al. 1998), epoxyeicosatrienoic acids (EETs) (Fleming 2004; Gauthier, et al. 2004; Li & 

Campbell 1997; Oltman, et al. 1998; Quilley & McGiff 2000; Widmann, et al. 1998), 

lipoxygenase [12-(s)-hydroxyeicosatetraenoic acid (12-S-HETE)] (Barlow, et al. 2000; Faraci, 

et al. 2001; Gauthier, et al. 2004; Pfister, et al. 1998; Zhang, et al. 2005; Zink, et al. 2001), 

hydrogen peroxide (H2O2) (Beny & von der Weid 1991; Chaytor, et al. 2003; Ellis, et al. 2003; 

Gluais, et al. 2005; Matoba, et al. 2002; Matoba, et al. 2003; Matoba, et al. 2000; Morikawa, et 

al. 2003; Shimokawa & Matoba 2004), potassium ions (K+), C-type natriuretic paptides 

(Banks, et al. 1996; Wei, et al. 1994) and hydrogen sulfide (Mustafa, et al. 2011). It has also 

been suggested that EDHF function may be mediated through direct coupling between 

endothelial and smooth muscle cells at myoendothelial gap junctions composed of 

connexins (Cohen 2005; Feletou & Vanhoutte 2007; Griffith 2004) (Figure 6). 

Most recently, a study by Mustafa et al. (Mustafa, et al. 2011) suggested that H2S could be an 

EDHF. H2S is synthesized endogenously from L-cystathionine--lyase (CSE) and 

cystathionine--synthase (Hosoki, et al. 1997; Stipanuk & Beck 1982). The H2S-mediated 

vasodilation occurs through the opening of ATP-sensitive potassium channel (KATP channel) 

and is independent of the activation of cGMP pathway (Zhao, et al. 2001). In the superior 

mesenteric artery of mice lacking CSE, hyperpolarization is virtually abolished. Most 

interestingly, H2S covalently modifies (i.e., S-sulfhydrating) KATP channel and leads to 

relaxation of vessels. 

EDHF seems to be more important in smaller arteries and arterioles than in larger arteries. 

This tendency has been recognized in a number of vascular beds, including mesenteric and 

cerebral arteries and arteries in ear and stomach (Tomioka, et al. 1999; Urakami-Harasawa, 

et al. 1997; You, et al. 1999). 

It has not been established whether EDHF is involved in vasodilation and hypocontractility 

of arteries of the splanchnic and systemic circulation in cirrhosis and portal hypertension. 

Barriere et al. (Barriere & Lebrec 2000) reported that EDHF contributed to hypocontractility 

in the superior mesenteric artery isolated from cirrhotic rats when NO and PGI2 production 

were inhibited. This hypocontractility was abolished when the vessels were further treated 

with inhibitors of small conductance Ca2+-activated K+ channel (SK channel), such as 

apamin and charybdotoxin, suggesting that EDHF blunts contractile response in cirrhotic 

rats (Barriere & Lebrec 2000). In contrast, a study by Dal-Ros et al. (Dal-Ros, et al. 2010) 

showed that the contribution of EDHF to vasodilation in mesenteric arteries was even 

smaller in cirrhotic rats than in normal rats. It was speculated that decreased expression of 

connexins (Cx), such as Cx37, Cx40, and Cx43, as well as Ca2+-activated K+ channel 

contributed to this smaller contribution of EDHF to vasodilation in the superior mesenteric  
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Fig. 6. Overview of endothelium-derived hyperpolarizing factor (EDHF) in the superior 
mesenteric artery. Shear stress generated by an increase in portal pressure increases 
endothelial Ca2+ concentration and produces hyperpolarization by activating ion channels, 
such as small conductance calcium-activated potassium channel (SK3) and intermediate 
conductance calcium-activated potassium channel (IK1). Hydrogen sulfide (H2S) is formed 
in vascular endothelial cells from cysteine by L-cystathionine-gamma-lyase (CSE). H2S 
causes hyperpolarization through activation of SK3, IK1 and ATP-sensitive potassium 
channel (KATP). Connexins (Cx) 37 and 40 are predominant gap junction proteins in 
endothelial cells and contribute to EDHF-mediated response. Connexin 43 (Cx43) is also 
present at the gap junction, but it does not play a major role in this context. Potassium ion 
(K+) activates Na+/K+-ATPase pump, preventing the effects of any substantial rise of 
potassium during endothelium-dependent hyperpolarization. Bradykinin, through its G-
protein coupled receptor (B2R), activates the metabolism of arachidonic acid (AA) via 
cytochrome P450 monooxygenase (P450). Bradykinin also activates phospholipase C (PLC) 
that stimulates inositol trisphosphate (IP3) to increase cytosolic Ca2+ concentration. 
Epoxyeicosatrienoic acids (EETs) cause hyperpolarization/relaxation, acting through the 
voltage-gated potassium channel (BKCa) and gap junction. 

artery of cirrhotic rats (Dal-Ros, et al. 2010). However, Bolognesi et al. (Bolognesi, et al. 2011) 
presented that mesenteric arteries isolated from cirrhotic rats exhibited elevated Cx40 and 
Cx43 expression, which increased sensitivity to epoxyeicosatrienoic acids (EETs) in those 
arteries and contributed to enhanced vasodilation. 

2.1.6 Tumor necrosis factor  

A proinflammatory cytokine, tumor necrosis factor  (TNF), is produced by mononuclear 
cells upon activation by bacterial endotoxins. In cirrhosis and portal hypertension, therefore, 

TNF levels are elevated (Lopez-Talavera, et al. 1995; Mookerjee, et al. 2003). Inhibition of 

TNF action by an anti-TNF antibody resulted in a significant reduction in hepatic venous 
pressure gradient (HVPG) of patients with alcoholic hepatitis (Mookerjee, et al. 2003). 

Similarly, inhibition of TNF synthesis by thalidomide also prevented the development of 
the hyperdynamic circulatory syndrome in portal hypertensive rats (Lopez-Talavera, et al. 

1996). The mechanism of TNF action in cirrhosis and portal hypertension is not fully 
understood. 
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TNF stimulates NOS activity by increasing BH4 production through stimulation of 

expression and activity of guanosine triphosphate-cyclohydrolase I, a key enzyme for the 

regulation of BH4 biosynthesis in endothelial cells (Katusic, et al. 1998; Rosenkranz-Weiss, et 

al. 1994). Enhanced BH4 production directly increases eNOS-derived NO production 

(Katusic, et al. 1998; Rosenkranz-Weiss, et al. 1994; Wever, et al. 1997). In biliary cirrhotic 

rats, it was demonstrated that TNF, through the activation of iNOS in the aorta and lung, 

plays a role in the development of the hyperdynamic circulatory syndrome and the 

hepatopulmonary syndrome (Sztrymf, et al. 2004). 

2.1.7 Adrenomedullin 

Adrenomedullin is an endogenous vasodilatory peptide consisting of 52 amino acid 

residues in human and 50 amino acid residues in the rat (Kitamura, et al. 1993; Kitamura, et 

al. 1993; Nuki, et al. 1993). The major producers of circulating adrenomedullin are vascular 

smooth muscle cells (Sugo, et al. 1994) and endothelial cells (Sugo, et al. 1995). 

Adrenomedullin binds to and induces its signaling through the G-protein-coupled 

calcitonin receptor-like receptor/receptor activity-modifying protein (RAMP)2 and 3, which 

are expressed in multiple tissues, including blood vessels, kidney, lung, atrium, 

gastrointestinal tract, spleen, endocrine glands, brain and heart. Receptor RAMP2 is 

essential for angiogenesis and vascular integrity (Ichikawa-Shindo, et al. 2008). 

Adrenomedullin expression is up-regulated by hypoxia (Nagata, et al. 1999; Wang, et al. 

1995) and inflammation (Sugo, et al. 1995; Ueda, et al. 1999), both of which are associated 

with neovascularization. 

The vasodilatory action of adrenomedullin was considered in the beginning to be solely due 

to elevated cAMP production, i.e., endothelium-independent vasodilation. However, 

endothelial denudation substantially reduced its vasodilatory action in rodent aortic rings 

(Hirata, et al. 1995; Nishimatsu, et al. 2001). Furthermore, this adrenomedullin-induced 

endothelium-dependent vasodilation was exerted mostly through activation of the 

phosphatidylinositol 3-kinase (PI3-K)/Akt pathway (Nishimatsu, et al. 2001). It has been 

well established that this pathway is involved in various important actions in endothelial 

cells, such as activation of eNOS. While one study demonstrated in a mouse model of 

ischemia that adrenomedullin-induced collateral vessel formation in ischemic tissues was 

eNOS-dependent (Abe, et al. 2003), no study has so far shown that adrenomedullin activates 

eNOS through Akt activation. 

Several studies have reported that in liver cirrhotic patients, circulating adrenomedullin 

levels are elevated and are associated with increased levels of plasma nitrite (a stable NO 

metabolite) and plasma volume expansion (Guevara, et al. 1998; Kojima, et al. 1998; Tahan, 

et al. 2003). Furthermore, the increased circulating adrenomedullin levels in those patients 

are inversely related to peripheral resistance (Guevara, et al. 1998). These observations 

indicate that adrenomedullin may promote excessive vasodilation and the hyperdynamic 

circulatory syndrome in cirrhotic patients. It is not surprising, therefore, that administration 

of an anti-adrenomedullin antibody prevented the occurrence of the hyperdynamic 

circulatory syndrome in the early sepsis (Wang, et al. 1998) and ameliorated blunted 

contractile response to phenylephrine in the aorta isolated from cirrhotic rats (Kojima, et al. 

2004). 
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Portal hypertension alone, regardless of the presence of cirrhosis, increases adrenomedullin 
production. One clinical study showed that adrenomedullin and NO levels are elevated not 
only in patients with cirrhotic portal hypertension, but also in those patients with non-
cirrhotic portal hypertension (Tahan, et al. 2003). How an increase in portal pressure 
influences production of adrenomedullin is an interesting and important question to be 
investigated. 

 

Fig. 7. Adrenomedullin causes vasodilation and hypotension. Adrenomedullin (AM) binds 
to and induces its signaling through the G-protein-coupled calcitonin receptor-like receptor 
(CRLR)/receptor activity-modifying protein (RAMP)2 and 3. The vascular action of 
adrenomedullin was at first considered to be solely due to elevated cAMP production by 
activation of adenylate cyclase (AC) in endothelial cells, thereby causing endothelium-
independent vasodilation. Adrenomedullin-induced endothelium-dependent vasodialation 
is exerted mostly through activation of the phosphatidylinositol 3-kinase (PI3-K)/Akt 
pathway, which activates eNOS to produce NO. NO then diffuses into smooth muscle cells 
to activate soluble guanylate cyclase (sGC) and produce cyclic GMP (cGMP), leading to 
vasodilation. 

2.1.8 Bradykinin 

Bradykinin is a nine amino acid peptide and known to facilitate vasodilation (Antonio & 

Rocha 1962). Bradykinin leads to endothelium-dependent hyperpolarization through 

activation of phospholipase C (PLC), which could raise Ca2+ concentration and also 

stimulate production of EETs (Feletou & Vanhoutte 2006) (Figure 6). Bradykinin reduces 

sensitivity to glypressin (a long lasting vasopressin analogue) in both portal hypertensive 

and cirrhotic rats (Chen, et al. 2009; Chu, et al. 2000), thereby advancing vasodilation. 

2.1.9 Urotensin II 

Urotensin II is a cyclic peptide and has a structural similarity to somatostatin. It can function 
both as a vasoconstrictor and a vasodilator depending on vascular beds (Coulouarn, et al. 
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1998). In the systemic vessels including the aorta and coronary artery, urotensin II serves as 
the strongest vasoconstrictor known (Ames, et al. 1999; Douglas, et al. 2000). In rat 
mesenteric arteries, however, urotensin II causes vasodilation (Bottrill, et al. 2000). In biliary 
cirrhotic rats, plasma urotensin II levels were increased, and 
hypocontractility/vasodilatation was advanced in mesenteric arteries. An urotensin II 
receptor antagonist, palosuran, improved this hypocontractility/vasodilatation, by 
increasing RhoA/Rho-kinase expression and Rho-kinase activity (thereby more contraction) 
and decreasing nitrite/nitrate levels (Trebicka, et al. 2008). These observations may suggest 
that elevated levels of urotensin II also lead to hypocontractility/excessive vasodilation in 
the mesenteric arteries of patients with cirrhosis and portal hypertension. Thus, blocking the 
urotensin II-mediated signaling pathway may be an effective way to treat those patients. 

2.1.10 Neuropeptide Y 

Neuropeptide Y is a sympathetic neurotransmitter and known to cause -adrenergic 

vasoconstriction (Tatemoto 1982; Tatemoto, et al. 1982). RhoA/Rho-kinase modulates 

various cellular functions such as cell contractility through phosphorylation of myosin light 

chain (Uehata, et al. 1997; Wang, et al. 2009). It was suggested that impaired RhoA/Rho-

kinase signaling was responsible for excessive vasodilation and vascular hypocontractility 

in biliary cirrhotic rats (Hennenberg, et al. 2006). Acute administration of neuropeptide Y 

improved arterial contractility in the mesenteric arteries of cirrhotic rats by restoring 

impaired RhoA/Rho-kinase signaling (Moleda, et al. 2011). These observations may suggest 

that neuropeptide Y can be used for the treatment of hypocontractility/excessive 

vasodilation of the arterial splanchnic circulation in cirrhosis and portal hypertension. 

2.2 Key factors 

An increase in portal pressure alone can induce excessive arterial vasodilation and 

hypocontractility in the splanchnic and systemic circulation. In addition, chronic liver 

cirrhosis and portal hypertension are known to cause arterial wall thinning in these 

circulations. This arterial wall thinning is a critical factor that maintains excessive arterial 

vasodilation and hypocontractility and facilitates the development of the hyperdynamic 

circulatory syndrome in advanced portal hypertension. 

2.2.1 Portal pressure 

Using rats with partial portal vein ligation (Abraldes, et al. 2006; Fernandez, et al. 2005; 
Fernandez, et al. 2004; iwakiri 2011), which enables induction of different degrees of portal 
hypertension in animals (Iwakiri & Groszmann 2006), Abraldes et al. (Abraldes, et al. 2006) 
showed that portal pressure is detected at different vascular beds depending on the stage of 
portal hypertension. A small increase in portal pressure is first detected by the intestinal 
microcirculation. Then, further increased portal pressure is sensed by the arterial splanchnic 
circulation (e.g., the mesenteric arteries), finally followed by the arterial systemic circulation 
(e.g., the aorta). Thus, the intestinal microcirculation functions as a “sensing organ” to portal 
pressure. It is postulated that mechanical forces generated as a result of increased portal 
pressure, presumably cyclic strains and shear stress, activate eNOS and thus lead to NO 
production (Abraldes, et al. 2006; Iwakiri, et al. 2002; Tsai, et al. 2003). 
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When mild portal hypertension is generated in rats using partial portal vein ligation, an 

increase in portal pressure is too small to cause splanchnic arterial vasodilation. However, 

the level of vascular endothelial growth factor (VEGF) is significantly elevated in the 

intestinal microcirculation, followed by increased eNOS levels (Abraldes, et al. 2006). This 

model of mild portal hypertension may likely correspond to the portal pressure changes 

observed in early-stage cirrhosis, in which the progression of portal hypertension is 

generally slow. When portal pressure is further increased to a certain level, vasodilation 

develops in the arterial splanchnic circulation. Once vasodilation is established in the 

intestinal microcirculation and the arterial splanchnic circulation, arterial systemic 

circulatory abnormalities seem to follow (iwakiri 2011). 

Like the above study using rats with partial portal vein ligation, portal pressure modulates 

intestinal VEGF and eNOS levels during the development of cirrhosis in rats (Huang, et al. 

2011). We have shown that there is a significant positive correlation between portal pressure 

and intestinal VEGF levels (r2 = 0.4, p<0.005). While plasma VEGF levels were significantly 

elevated in cirrhotic rats with portal hypertension (63.7 pg/ml, p<0.01) compared to controls 

(8.5 pg/ml), no correlation was observed between portal hypertension and plasma VEGF 

levels. 

2.2.2 Arterial wall thinning 

Endothelial NO plays a critical part in regulating the structure of the vessel wall (Rudic, et 

al. 1998). Studies using cirrhotic rats with ascites documented the occurrence of arterial wall 

thinning. Those rats exhibited decreased thickness of the vascular walls of the thoracic aorta, 

abdominal aorta, mesenteric arteries and renal artery (Fernandez-Varo, et al. 2007; 

Fernandez-Varo, et al. 2003). Administration of a NOS inhibitor significantly ameliorated 

wall thickness and attenuated the hyperdynamic circulatory syndrome, by increasing 

arterial pressure and peripheral resistance (Fernandez-Varo, et al. 2003). Since NO is 

predominantly derived from endothelial cells in these arteries, these observations suggest 

that increased eNOS-derived NO, at least in part, is responsible for this profound arterial 

wall thinning. Therefore, understanding the mechanisms of arterial wall thinning is 

important for the development of useful therapies for patients with portal hypertension. 

3. Key molecules and factors – Portosystemic collateral vessel formation 

In addition to excessive arterial vasodilation/hypocontractility in the splanchnic and 

systemic circulation, the formation of portosystemic collateral vessels is also thought to 

exacerbate portal hypertension (Bosch 2007; Iwakiri & Groszmann 2006). The portosystemic 

collateral vessel formation is probably an adaptive response to increased portal pressure, 

which, by releasing the pressure, may transiently help to delay the progression of portal 

hypertension. However, these collateral vessels eventually contribute to an increase in the 

blood flow through the portal vein and advance portal hypertension (Langer & Shah 2006). 

In addition, the formation of these vessels can also lead to detrimental complications. Since 

the vessels are fragile, they tend to rupture easily, causing esophageal and gastric variceal 

bleeding. Furthermore, since these vessels have the portal blood bypass the liver, toxic 

substances carried by it, such as drugs, bacterial toxins and toxic metabolites, returns to the 
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systemic circulation and can cause portal-systemic encephalopathy and sepsis (Bosch 2007; 

Iwakiri & Groszmann 2006). The enlargement of pre-existing vessels as well as angiogenesis 

facilitate the development of these collateral vessels (Langer & Shah 2006; Sumanovski, et al. 

1999). Studies have shown that vascular endothelial growth factor (VEGF) and placental 

growth factor (PIGF) play critical roles in the development of portosystemic collateral 

vessels in cirrhosis and portal hypertension. 

3.1 Vascular Endothelial Growth Factor (VEGF) 

The process of angiogenesis is regulated by growth factors exhibiting vasodilatory activity, 
such as VEGF. How are these angiogenic growth factors elevated in cirrhosis and portal 
hypertension? One mechanism may be initiated by an increase in portal pressure. As 
described previously, studies using portal hypertensive rats showed that a sudden increase 
in portal pressure is signaled to the intestinal microcirculation and induces intestinal VEGF 
expression (Abraldes, et al. 2006; Fernandez, et al. 2005). This sudden increase in portal 
pressure may create local mechanical forces, such as cyclic strains and shear stress, which 
may trigger VEGF induction. 

It has been documented that administration of anti-angiogenic agents, such as blockers of 
VEGF receptor-2 (SU5416, anti-VEGFR2 monoclonal antibody) (Fernandez, et al. 2005; 
Fernandez, et al. 2004) and inhibitors of receptor tyrosine kinases (Sorafenib and Sunitinib)  
(Mejias, et al. 2009; Tugues, et al. 2007), reduces the formation of portosystemic collateral 
vessels and decreases portal pressure. 

3.2 Placental growth factor 

In addition to VEGF, placental growth factor (PlGF), another member of the VEGF family, 
has also been found to be increased in the intestinal microcirculation of portal hypertensive 
mice (Van Steenkiste, et al. 2009). In portal hypertensive mice lacking PlGF or given an anti-
PlGF monoclonal antibody, both portal pressure and portosystemic collateral vessel 
formation were decreased. Collectively, these VEGF and PIGF studies suggest that blocking 
angiogenic activities, thereby decreasing the formation of portosystemic collateral vessels, 
has potential for the treatment of portal hypertension. 

4. Summary 

There are two major factors that contribute to excessive arterial vasodilation/hypocontractility 
in arteries of the splanchnic and systemic circulation in portal hypertension. One is an intrinsic 
factor and the other is a structural factor. The intrinsic factor includes vasodilatory molecules 

such as NO, CO, PGI2, endocannabinoids, EDHF, adrenomedullin, TNF, bradykinin and 
urotensin II. Decreased response to vasoconstrictors, such as neuropeptide Y, also facilitates 
hypocontractility of mesenteric arterial beds in cirrhosis and portal hypertension. The 
structural factor includes thinning of arterial wall (Fernandez-Varo, et al. 2007; Fernandez-
Varo, et al. 2003). NO plays a critical role for arterial wall thinning in cirrhotic rats. However, 
its mechanism is not clear. In addition to excessive arterial vasodilatation/hypocontractility in 
the splanchnic and systemic circulation, the development of portosystemic collateral vessels is 
also regarded as the major factor that worsens portal hypertension (Bosch 2007; Iwakiri & 
Groszmann 2006). 
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4.1 Future direction 

Both experimental and clinical studies of cirrhosis and portal hypertension have 
documented that a wide variety of molecules are involved in excessive arterial 
vasodilation/hypocontractility in the splanchnic and systemic circulation. This 
accumulation of knowledge allows us to further investigate molecular and cellular 
mechanisms in which these molecules exert excessive arterial vasodilation/ 
hypocontractility in cirrhosis and portal hypertension. In particular, it is interesting and 
important to address how changes in portal pressure, along with these molecules, influence 
the function and structure of vasculatures in the splanchnic and systemic circulation. 
Furthermore, it is not fully elucidated how these molecules are excessively induced in portal 
hypertension. Another important investigation would be to elucidate paracrine and 
autocrine regulations of vascular cells (e.g., endothelial cells, smooth muscle cells and 
fibroblasts) by these molecules. While the roles of these molecules in the vasculature per se 
have been described, few studies have investigated cell specific regulations and cell-cell 
communications exerted by these molecules. 

Among those molecules introduced in this chapter, there are at least two molecules that are 
particularly anticipated for further investigation in the context of excessive arterial 
vasodilation and portosystemic collateral vessel formation in portal hypertension. One is 
hydrogen sulfide (H2S). An increasing body of evidence suggests that H2S is a crucial 
vasodilatory molecule in the superior mesenteric artery. However, it is not known whether 
H2S is also involved in excessive arterial vasodilation in the splanchnic circulation in portal 
hypertension. Another molecule of interest is adrenomedullin. Studies using mice lacking 
adrenomedullin or its receptors indicated that adrenomedullin plays a critical role in the 
regulation of blood vessel integrity, including vascular stability and permeability (Caron & 
Smithies 2001; Fritz-Six, et al. 2008; Ichikawa-Shindo, et al. 2008; Shindo, et al. 2001). Given 
that increased vascular permeability and decreased vessel integrity are typical of vessels in 
cirrhosis and portal hypertension, this aspect of adrenomedullin should be explored in 
cirrhosis and portal hypertension. 

5. Conclusion 

To date, there are only limited options for the treatment of portal hypertension, despite the 
fact that portal hypertension leads to the most lethal complications of liver diseases such as 
gastro-oesophageal varices and ascites. Facing this situation, there is a strong need for 
studies of the vascular abnormalities associated with cirrhosis and portal hypertension 
(Shah 2009). These studies will have potential to lead us to develop novel targets for the 
treatment of portal hypertension. 
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